

Strong Duality

P $(Ax = b, \min cx, x \ge 0)$: feasible, bounded $\implies z^* = w^*$. Primal feasible, bounded, minimum value z^* . **Claim:** Exists a solution to dual of value at least z^* . $\exists y, y^T A \le c, b^T y \ge z^*$. Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A - b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ $(c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^tx - z^*\lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b, c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$. Any feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible

Linear Program.

 $\min cx, Ax \ge b$

 $\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x < 0, & i = 1, ..., m \end{array}$

 $c^{T}(\tilde{x} + \mu x) = x^{T}\tilde{x} + \mu c^{T}x \rightarrow -\infty$ as $\mu \rightarrow \infty$ Primal unbounded!

Lagrangian (Dual):

 $L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$

or

 $\begin{array}{l} L(\lambda,x)=-(\sum_j x_j(a_j\lambda-c_j))+b\lambda.\\ \text{Best }\lambda \text{? Good against every }x\text{? Any term }(a_j\lambda-c_j)\neq 0 \text{ is bad.}\\ \max b\cdot\lambda \text{ where }a_j\lambda=c_j.\\ \text{Why is this good? Every }x \text{ is the same.} \end{array}$

 $\max b\lambda, \lambda^T A = c, \lambda \ge 0$ Dual to linear program.

Lagrangian Dual.

Find *x*, subject to $f_i(x) \le 0, i = 1, ..., m.$ Remember calculus (constrained optimization.) Lagrangian: $L(x, \lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$ λ_i - Lagrangian multiplier for inequality *i*, must be positive. For feasible solution *x*, $L(x, \lambda)$ is (A) non-negative in expectation (B) positive for any λ . (C) non-positive for any valid λ . If λ , where $L(x, \lambda)$ is positive for all *x*

(A) there is no feasible *x*.
(B) there is no *x*, λ with *L*(*x*, λ) < 0.

Interior point on the central path.

Find x, that minimizes $f_0(x)$ subject to $f_i(x) \le 0, i = 1, \dots m$. Central path: $\min tf_0(x) - \sum_{i=1} m \ln(-f_i(x))$ The minimizer, x(t), form the **central path.**

The sequence of x's are "central path".

Lagrangian:constrained optimization.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:
$$\begin{split} L(x,\lambda) &= f(x) + \sum_{i=1}^m \lambda_i f_i(x) \\ \text{If (primal) } x \text{ value } v \\ \text{For all } \lambda \geq 0 \text{ with } L(x,\lambda) \leq v \\ \text{Maximizing: } \lambda \text{ only positive when? } f_i(x) = 0. \end{split}$$

If there is λ with $L(x,\lambda) \ge \alpha$ for all xOptimum value of program is at least α

Primal problem: x, that minimizes $L(x, \lambda)$ over all $\lambda \ge 0$. Dual problem: λ , that maximizes $L(x, \lambda)$ over all x.

Lagrangian Dual and Central Path.

$$\begin{split} \min tf_0(x) - \sum_{i=1} \ln(-f_i(x)) \\ \text{Optimality condition?} \\ \text{Derivative: } t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0 \ \nabla f_0(x) + \sum_{i=1} \frac{1}{tf_i(x)} \nabla f_i(x) = 0 \\ \text{Or, } \nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)} \text{ (Opposing force fields.)} \\ \text{Recall, Lagrangian: } L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x). \\ \text{Fix } \lambda, \text{ optimize for } x^* \text{ give valid lower bound on solution.} \\ \text{Optimality Condition.} \\ \text{Derivative: } \nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0. \\ \text{Take } \lambda_i^{(t)} = -\frac{1}{tf_i(x)}. \ x(t) = x^*(\lambda^{(t)})! \text{ Same optimal point!} \\ \text{Value? } f_0(x) + \sum_{i=1} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}. \\ \text{Central point } x(t) \text{ within } \frac{m}{t} \text{ of optimal!!!!} \\ L(\lambda, x(t)) \geq f_0(x) - \frac{m}{t} \implies \min_x L(\lambda, x) + \frac{m}{t} \geq f_0(x) \\ \implies OPT + \frac{m}{t} \geq f_0(x) \end{split}$$

Central path.
$\min_x f_0(x), f_i(x) \leq 0.$
$\min_{x} tf_0(x) - \sum_{i>0} \ln(-f_i(x))$
Optimal: $x(t)$ is feasible.
$f_0(x(t)) \ge OPT - rac{m}{t}$
Algorithm: take $t \rightarrow \infty$.
Finding x(t)?
Next.