How?

How? From lecture warmup.

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa. Weak Duality:

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

Zero and one. My love is won. Nothing and nothing done.

(2) $\implies y^T b = \sum_i y_i b_i$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

(2)
$$\implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x)$$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

(2)
$$\implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x) = y^T A x.$$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

(2)
$$\implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x) = y^T A x.$$

Similarly: (1) $\implies y^T A x = c x.$

How? From lecture warmup.

Linear program: $\max cx, Ax \le b, x \ge 0$ Dual: $\min y^T b, y^T A \ge c, y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

 $y^T b \ge y^T A x \ge c x$

First inequality from $b \ge Ax$ and second from $y^A \ge c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $y_i > 0 \implies a_ix = b_i$

What does multiplying by 0 do?

Zero and one. My love is won. Nothing and nothing done.

(2)
$$\implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x) = y^T A x.$$

Similarly: (1) $\implies y^T A x = c x$.

Complementary slackness conditions imply optimality.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \leq 1$, $x_e \geq 0$

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.)

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ .

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \leq 1$, $x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \geq w_e$, $p_u \geq 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2).

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2).

 $x_e > 0$ only if $p_u + p_v = w_e$.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \leq 1$, $x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \geq w_e$, $p_u \geq 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$.

Eventually match all vertices.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \leq 1$, $x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \geq w_e$, $p_u \geq 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$.

Eventually match all vertices.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \leq 1$, $x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \geq w_e$, $p_u \geq 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train:

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $\forall v: \sum_{e=(u,v)} x_e = 1.$

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching. $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching. $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?

Perfect Matching

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental? Are things as easy or as hard as 0,1,2,.....?

Perfect Matching

Linear program: $\max \sum_{e} w_e x_e$, $\forall v : \sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: $\min \sum_{v} p_v$, $\forall e = (u, v) : p_u + p_v \ge w_e$, $p_u \ge 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $\forall v : \sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental? Are things as easy or as hard as 0,1,2,.....?

Duality.

Geometric View, Linear Equation, and Combinatorial.

Geometric View, Linear Equation, and Combinatorial. Today: Strong Duality from Geometry.

 $\max C \cdot X$.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., *x* = 0.

 $max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy n-1 ind. equations.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy n-1 ind. equations. Intersection of n-1 hyperplanes.

 $\max c \cdot x.$ $Ax \le b$ $x \ge 0$

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy n-1 ind. equations. Intersection of n-1 hyperplanes.

Move in direction that increases objective.

 $\max c \cdot x.$ $Ax \le b$ x > 0

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy n-1 ind. equations. Intersection of n-1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

 $\max c \cdot x.$ $Ax \le b$ x > 0

Start at feasible point where *n* equations are satisfied.

E.g., x = 0. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy n-1 ind. equations. Intersection of n-1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

 $x + y + z \le 1$

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1. Normal to hyperplane?

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1. Normal to hyperplane? (1,1,1).

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1. Normal to hyperplane? (1,1,1).

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1. Normal to hyperplane? (1,1,1). Why?

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane.

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane. (a, b, c) where a + b + c = 1.

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane. (a, b, c) where a + b + c = 1. (a', b', c') where a' + b' + c' = 1.

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane. (a, b, c) where a + b + c = 1. (a', b', c') where a' + b' + c' = 1. (a' - a, b' - b, c' - c) $\cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0$.

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane. (a, b, c) where a + b + c = 1. (a', b', c') where a' + b' + c' = 1. (a' - a, b' - b, c' - c) $\cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0$.

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal:
$$u \cdot (v - w) = 0$$
 for any v, w in hyperplane.
 (a, b, c) where $a + b + c = 1$.
 (a', b', c') where $a' + b' + c' = 1$.
 $(a' - a, b' - b, c' - c) \cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0$.

Normal to mx + ny + pz = C?

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal:
$$u \cdot (v - w) = 0$$
 for any v, w in hyperplane.
 (a, b, c) where $a + b + c = 1$.
 (a', b', c') where $a' + b' + c' = 1$.
 $(a' - a, b' - b, c' - c) \cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0$.
Normal to $mv + nv + nz = C^2 (m + n)$

Normal to mx + ny + pz = C? (m, n, p)

 $x + y + z \le 1$

On one side of hyperplane defined by x + y + z = 1.

Normal to hyperplane? (1, 1, 1).

Why? Normal:
$$u \cdot (v - w) = 0$$
 for any v, w in hyperplane.
 (a, b, c) where $a + b + c = 1$.
 (a', b', c') where $a' + b' + c' = 1$.
 $(a' - a, b' - b, c' - c) \cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0$.

Normal to mx + ny + pz = C? (m, n, p)

Points in hyperplane are related by nullspace of row.

Blue constraints intersect.

Blue constraints intersect.

Blue constraints redundant.

$$\bigcirc +1 \bigcirc -1 \bigcirc +1 \bigcirc \bigcirc$$

Augmenting Path.

Blue constraints tight.

 $(-+1)^{-1}^{-1}^{+1}$

Blue constraints tight.

 $(-+1)^{-1}^{-1}^{+1}$

Blue constraints tight.

 $(-+1)^{-1}^{-1}^{+1}$

Blue constraints tight.

 0^{+1} 0^{-1} 0^{+1} 0^{-1}

Blue constraints tight.

 $(-+1)^{-1}^{-1}^{+1}$

Blue constraints tight.

Sum: x + z + y.

Blue constraints tight.

Sum: x + z + y.

Blue constraints tight.

Sum: x + z + y.

Blue constraints tight.

Sum: x + z + y.

Convex Separator.

Convex Separator.

Farkas

Convex Separator.

Farkas

Strong Duality!!!!!

Convex Separator.

Farkas

Strong Duality!!!! Maybe.

Linear Equations.

Ax = b

Linear Equations.

Ax = b

A is $n \times n$ matrix...

Linear Equations.

Ax = b

A is $n \times n$ matrix...

..has a solution.

Ax = b

A is $n \times n$ matrix...

..has a solution.

If rows of A are linearly independent.

Ax = b

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^T A \neq 0$ for any *y*

Ax = b

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^T A \neq 0$ for any *y*

.. or if b in subspace of columns of A.

Ax = b

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^T A \neq 0$ for any *y*

...or if *b* in subspace of columns of *A*. If no solution, $y^T A = 0$ and $y \cdot b \neq 0$.

Ax = b

A is $n \times n$ matrix...

..has a solution.

If rows of A are linearly independent. $y^T A \neq 0$ for any y

...or if *b* in subspace of columns of *A*. If no solution, $y^T A = 0$ and $y \cdot b \neq 0$.

A a set of points *P* is *convex* if $x, y \in P$ implies that

A a set of points *P* is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$

A a set of points P is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$ for $\alpha \in [0, 1]$.

A a set of points *P* is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$ for $\alpha \in [0, 1]$. That is, the points in between *x* and *y* are in *P*.

A a set of points P is *convex* if $x, y \in P$ implies that

$$\alpha x + (1 - \alpha)y \in P$$

for $\alpha \in [0, 1]$.

That is, the points in between x and y are in P. Exercise:

$$Ax \leq b, x \geq 0$$

defines a convex set of points.

For a convex body P and a point b, either $b \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b-p). $(x \cdot v) = x \cdot (b-p) \le p \cdot (b-p) = p \cdot v$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p). $(x \cdot v) = x \cdot (b - p) \le p \cdot (b - p) = p \cdot v < b \cdot v$.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

 $(x \cdot v) = x \cdot (b-p) \le p \cdot (b-p) = p \cdot v < b \cdot v.$ $p \cdot (b-p) < b \cdot (b-p)?$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

$$(x \cdot v) = x \cdot (b-p) \le p \cdot (b-p) = p \cdot v < b \cdot v.$$

 $p \cdot (b-p) < b \cdot (b-p)$?
 $pb - p^2 < b^2 - bp$ iff $b^2 - 2pb + p^2 > 0.$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

$$(x \cdot v) = x \cdot (b-p) \le p \cdot (b-p) = p \cdot v < b \cdot v.$$

 $p \cdot (b-p) < b \cdot (b-p)$?
 $pb - p^2 < b^2 - bp$ iff $b^2 - 2pb + p^2 > 0.$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: v, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

$$(x \cdot v) = x \cdot (b-p) \le p \cdot (b-p) = p \cdot v < b \cdot v.$$

$$p \cdot (b-p) < b \cdot (b-p)?$$

 $pb - p^2 < b^2 - bp$ iff $b^2 - 2pb + p^2 > 0$.

That is, if $(b - p)^2 > 0$.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take v = (b - p).

 $(x \cdot v) = x \cdot (b-p) \le p \cdot (b-p) = p \cdot v < b \cdot v.$ $p \cdot (b-p) < b \cdot (b-p)?$

 $pb - p^2 < b^2 - bp$ iff $b^2 - 2pb + p^2 > 0$.

That is, if $(b-p)^2 > 0$. Is this always true?

For a convex body P and a point b, either $b \in A$

For a convex body *P* and a point *b*, either $b \in A$ or there is point *p* where $(x - p)^T (b - p) \le 0 \ \forall x \in P$.

For a convex body P and a point b,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \le 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \le 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done

For a convex body P and a point b,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \le 0 \quad \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x-p)^T(b-p) > 0$

For a convex body P and a point b,

either $b \in A$

or there is point p where $(x-p)^T(b-p) \le 0 \ \forall x \in P$.

 $(x-p)^T(b-p)>0$

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x-p)^T (b-p) > 0$

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \le 0 \quad \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x-p)^T (b-p) > 0$

$$(x-p)^T(b-p) \ge 0$$

 $\rightarrow \le 90^\circ$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point p where $(x-p)^T(b-p) \le 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x-p)^T (b-p) > 0$

$$(x-p)^T(b-p) \ge 0$$

 $\rightarrow \le 90^\circ$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.

Must be closer point *b* on line from *p* to *x*.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point p where $(x-p)^T(b-p) \le 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x-p)^T (b-p) > 0$

$$(x-p)^{T}(b-p) \ge 0$$

$$\rightarrow \le 90^{\circ} \text{ angle between } \overrightarrow{x-p} \text{ and } \overrightarrow{b-p}.$$

Must be closer point *b* on line from *p* to *x*.
All points on line to *x* are in polytope.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \le 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x-p)^T (b-p) > 0$

 $(x-p)^T(b-p) \ge 0$ $\rightarrow \le 90^\circ$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.

Must be closer point b on line from p to x.

All points on line to x are in polytope.

Contradicts choice of *p* as closest point to *b* in polytope.

More formally.

More formally.

Squared distance to *b* from $p + (x - p)\mu$

point between p and x

Simplify:

Derivative with respect to μ ...

 $-2|p-b||x-p|\cos\theta+2(\mu|x-p|^2).$

which is negative for a small enough value of μ

which is negative for a small enough value of μ (for positive $cos\theta$.)

Theorems of Alternatives.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find y where $y^T A = \hat{0}$ and $y^T b \neq 0$.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of *A*.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of *A*. Affine subspace is columnspan of *A*.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find y where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of A. Affine subspace is columnspan of A. y is normal.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of *A*. Affine subspace is columnspan of *A*. *y* is normal. *y* in nullspace for column span.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find y where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find y where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

There is a separating hyperplane between any two convex bodies.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find y where $y^T A = \hat{0}$ and $y^T b \neq 0$. Space is image of A. Affine subspace is columnspan of A. y is normal. y in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$.

y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$. Why? If $y \cdot A^{(i)} < 0$, then take $x_i \rightarrow \infty$, $y^T b - y^T A x \rightarrow +\infty$,

y where $y^T(b - Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$. Why? If $y \cdot A^{(i)} < 0$, then take $x_i \rightarrow \infty$, $y^T b - y^T Ax \rightarrow +\infty$, Contradiction.

y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$. Why? If $y \cdot A^{(i)} < 0$, then take $x_i \rightarrow \infty$, $y^T b - y^T Ax \rightarrow +\infty$, Contradiction.

Farkas A: Solution for exactly one of:

y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$. Why? If $y \cdot A^{(i)} < 0$, then take $x_i \rightarrow \infty$, $y^T b - y^T Ax \rightarrow +\infty$, Contradiction.

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$

y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$. Why? If $y \cdot A^{(i)} < 0$, then take $x_i \rightarrow \infty$, $y^T b - y^T A x \rightarrow +\infty$, Contradiction.

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ or (2) $y^T A \ge 0, y^T b < 0$.

Farkas A: Solution for exactly one of:

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$

(2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of:

Farkas A: Solution for exactly one of: (1) A: b x > 0

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of: (1) $Ax \le b$

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of:

(1) $Ax \le b$ (2) $y^T A = 0, y^T b < 0, y \ge 0.$

Strong Duality

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$

 $Ax = b$
 $x > 0$

Dual D: $w^* = \max b^T y$ $A^T y \le c$

Strong Duality

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$
Dual $D: w^* = \max b^T y$ $Ax = b$ $A^T y \le c$ $x \ge 0$ $A^T y \le c$

Weak Duality: x, y- feasible P, D: $x^T c \ge b^T y$.

Strong Duality

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$
Dual $D: w^* = \max b^T y$ $Ax = b$ $A^T y \le c$ $x \ge 0$ $A^T y \le c$

Weak Duality: x, y-feasible P, D: $x^T c \ge b^T y$.

$$x^{T}c - b^{T}y = x^{T}c - x^{T}A^{T}y$$
$$= x^{T}(c - A^{T}y)$$
$$\geq 0$$

Primal feasible, bounded, minimum value z^* .

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$

Want y where

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want y where

$$\begin{pmatrix} A^T \\ -b^T \end{pmatrix} \mathbf{y} \leq \begin{pmatrix} \mathbf{c} \\ -\mathbf{z}^* \end{pmatrix}.$$

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$

Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \leq b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \geq 0$. If (1) then done,

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$

Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \leq b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \geq 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$.

$$(A -b)\begin{pmatrix} x\\\lambda \end{pmatrix} = 0$$
 $(c^T -z^*)\begin{pmatrix} x\\\lambda \end{pmatrix} < 0$

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \Longrightarrow \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \Longrightarrow \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \le c, b^T y \ge z^*.$$

Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$
Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0.$
If (1) then done, otherwise (2) $\Longrightarrow \exists y' = [x, \lambda] \ge 0.$

$$(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \le c, b^T y \ge z^*.$$

Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$
Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0.$
If (1) then done, otherwise (2) $\Longrightarrow \exists y' = [x, \lambda] \ge 0.$
 $(A = -b) \begin{pmatrix} x \\ -b \end{pmatrix} = 0$ $(c^T = -z^*) \begin{pmatrix} x \\ -b \end{pmatrix} < 0$

 $(A -b) \left(\lambda \right) = 0$ $(c' - z^*) \begin{pmatrix} \ddots \\ \lambda \end{pmatrix} < 0$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^{T}(\frac{x}{\lambda}) < z^{*}$. Better Primal!!

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \le c, b^T y \ge z^*.$$
Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$
Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0.$
If (1) then done, otherwise (2) $\Longrightarrow \exists y' = [x, \lambda] \ge 0.$
 $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$
 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^*\lambda < 0$

Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^{T}(\frac{x}{\lambda}) < z^{*}$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^{T}x < 0$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \leq c, b^T y \geq z^*.$$
Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$
Recall Farkas B: Either (1) $A'x' \leq b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \geq 0$.
If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$.
 $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$
 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$
Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b, c^T(\frac{x}{\lambda}) < z^*$. Better Primal!!

Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Feasible \tilde{x} for Primal.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \le c, b^T y \ge z^*.$$
Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$
Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$.
If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$.
 $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$
 $(c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Feasible \tilde{x} for Primal.

(a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \Longrightarrow \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^{T}(\frac{x}{\lambda}) < z^{*}$. Better Primal!!

Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \Longrightarrow \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^{T}(\frac{x}{\lambda}) < z^{*}$. Better Primal!!

Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \Longrightarrow \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^{T}(\frac{x}{\lambda}) < z^{*}$. Better Primal!!

Case 2:
$$\lambda = 0$$
. $Ax = 0$, $c^T x < 0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$.
(b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^T(\tilde{x} + \mu x) = x^T \tilde{x} + \mu c^T x \rightarrow -\infty$ as $\mu \rightarrow \infty$

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \Longrightarrow \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^{T}(\frac{x}{\lambda}) < z^{*}$. Better Primal!!

Case 2:
$$\lambda = 0$$
. $Ax = 0$, $c^T x < 0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$.
(b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^T(\tilde{x} + \mu x) = x^T \tilde{x} + \mu c^T x \rightarrow -\infty$ as $\mu \rightarrow \infty$
Primal unbounded!

Today:

Today: Matching and simplex.

Today: Matching and simplex. Convex separator.

Today: Matching and simplex. Convex separator. Farkas.

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Exercise:

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Exercise: Is there an algorithm there?

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.