
Linear Program.
How?

From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax

and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?

Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi

= ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix)

= yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)

Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we

Maintain feasibility: adjust prices by δ .
Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.

Maintain complementary slackness (2).
xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.

Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:

Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1.

So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.

Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman.

Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?

Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,?

Duality.

Geometric View, Linear Equation, and Combinatorial.

Today: Strong Duality from Geometry.

Duality.

Geometric View, Linear Equation, and Combinatorial.

Today: Strong Duality from Geometry.

Duality.

Geometric View, Linear Equation, and Combinatorial.

Today: Strong Duality from Geometry.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.

This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.

Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:

Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.

Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane?

(1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why?

Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.

(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.

(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.

(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C?

(m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z
x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1

y ≤ 1
x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.

Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X

X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X

X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X

X

X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X

X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path.

Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1

a = 1

z +y ≤ 1

b = 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0

c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1

1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a

= 1

z +y ≤ 1 b

= 1
y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c

= 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

y

z

x

0

0

0

0

.3

0

0

.7

0

0

1

0

.3

.7

.3

.7

.3

.7

1

0

1
1

1 0

0

maxx +y +z

x ≤ 1

x +z ≤ 1 a = 1
z +y ≤ 1 b = 1

y ≤ 1

x ≥ 0
y ≥ 0
z ≥ 0 c = 1

Blue constraints intersect.Blue constraints redundant.

Blue constraints tight.

Sum: x +z +y .

x

y

z

X
X
X

X

X

X

X

+1 −1 +1

Augmenting Path. Via Gaussian Elimination!

Strong Duality

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Strong Duality

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Strong Duality

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Strong Duality

Convex Separator.

Farkas

Strong Duality!!!!!

Maybe.

Strong Duality

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.

yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Convex body.

A a set of points P is convex if x ,y ∈ P implies that

αx +(1−α)y ∈ P

for α ∈ [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax ≤ b,x ≥ 0

defines a convex set of points.

Convex body.

A a set of points P is convex if x ,y ∈ P implies that

αx +(1−α)y ∈ P

for α ∈ [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax ≤ b,x ≥ 0

defines a convex set of points.

Convex body.

A a set of points P is convex if x ,y ∈ P implies that

αx +(1−α)y ∈ P

for α ∈ [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax ≤ b,x ≥ 0

defines a convex set of points.

Convex body.

A a set of points P is convex if x ,y ∈ P implies that

αx +(1−α)y ∈ P

for α ∈ [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax ≤ b,x ≥ 0

defines a convex set of points.

Convex body.

A a set of points P is convex if x ,y ∈ P implies that

αx +(1−α)y ∈ P

for α ∈ [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax ≤ b,x ≥ 0

defines a convex set of points.

Convex Body and point.

For a convex body P and a point b,
either b ∈ P

or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v

< b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .

p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0.

Is this always true?

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Proof.

For a convex body P and a point b,
either b ∈ A

or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done

or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0

→ ≤ 90◦ angle between −−−→x −p and
−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ

point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x

(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:

|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.
Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...

−2|p−b||x −p|cosθ +2(µ|x −p|2).
which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ

(for positive cosθ .)

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p|
ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.

That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.

Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A.

Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal.

y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.

yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0

→ yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.

Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why?

If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,

Contradiction.
Farkas A: Solution for exactly one of:

(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:

(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0

or (2) yT A ≥ 0,yT b < 0.

Ax = b, x ≥ 0

[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Farkas 2

Farkas A: Solution for exactly one of:

(1) Ax = b,x ≥ 0
(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0

(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:

(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b

(2) yT A = 0,yT b < 0,y ≥ 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Strong Duality

(From Goemans notes.)

Primal P z∗ =mincT x
Ax = b
x ≥ 0

Dual D :w∗ =maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0

Strong Duality

(From Goemans notes.)

Primal P z∗ =mincT x
Ax = b
x ≥ 0

Dual D :w∗ =maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0

Strong Duality

(From Goemans notes.)

Primal P z∗ =mincT x
Ax = b
x ≥ 0

Dual D :w∗ =maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where

(
AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
.

Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done,

otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0.

A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗.

Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.

Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.

(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible
cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b.

Feasible
cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A(x
λ
) = b, cT (x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞

Primal unbounded!

Done

Today:

Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.

Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.
Convex separator.

Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.

Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise:

Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.

