How?

How? From lecture warmup.

How? From lecture warmup.

Linear program: max*cx*,*Ax* ≤ *b*,*x* ≥ 0 Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

How? From lecture warmup.

Linear program: max $cx, Ax \leq b, x \geq 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa. Weak Duality:

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from *b* ≥ *Ax*

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$

 (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

Zero and one. My love is won. Nothing and nothing done.

 $y^T b = \sum_j y_j b_j$

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

$$
(2) \implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x)
$$

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

$$
(2) \implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x) = y^T A x.
$$

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

(2)
$$
\implies
$$
 y^Tb = $\sum_i y_i b_i = \sum_i y_i (a_i x) = y^T Ax$.
Similarly: (1) \implies y^TAx = cx.

How? From lecture warmup.

Linear program: max*cx*, $Ax \le b$, $x \ge 0$ Dual: min $y^T b$, $y^T A \ge c$, $y \ge 0$

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

y ^T b ≥ *y ^TAx* ≥ *cx*

First inequality from $b \geq Ax$ and second from $y^A \geq c$.

Complementary slackness: (1) $x_j > 0 \implies a^{(j)}y = c_j$ (2) $v_i > 0 \implies a_i x = b_i$

What does multiplying by 0 do?

Zero and one. My love is won. Nothing and nothing done.

$$
(2) \implies y^T b = \sum_i y_i b_i = \sum_i y_i (a_i x) = y^T A x.
$$

Similarly: (1) \implies $y^T Ax = cx$.

Complementary slackness conditions imply optimality.

Linear program: $\max \sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.)

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Linear program: max $\sum_{e} w_e x_e$, ∀*v* : $\sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \ge \max_{e=(u,v)} w_e$

Linear program: max $\sum_{e} w_e x_e$, ∀*v* : $\sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min∑*v p*^{*v*}, ∀*e* = (*u*,*v*) : p ^{*u*} + p ^{*v*} ≥ w ^{*e*}, p ^{*u*} > 0.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ .

Linear program: max $\sum_{e} w_e x_e$, ∀*v* : $\sum_{e=(u,v)} x_e \le 1$, $x_e \ge 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility.

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2).

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2).

 $x_e > 0$ only if $p_u + p_v = w_e$.

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$.

Eventually match all vertices.

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$.

Eventually match all vertices.

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{P}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train:

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{P}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Linear program: max∑_{*e*}</sub> $w_e x_e$, ∀*v* : ∑_{*e*=(*u*,*v*) x_e ≤ 1, x_e ≥ 0} $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{P}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*,*v*) : $p_{U} + p_{V} > w_{P}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀V: \sum_{e=(U,V)} x_e = 1.$

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing.

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman.

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing.

Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Perfect Matching

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental? Are things as easy or as hard as $0, 1, 2, \ldots$?

Perfect Matching

Linear program: $\max\sum_{e} w_e x_e, \forall v : \sum_{e=(u,v)} x_e \leq 1, x_e \geq 0$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise. (Note: integer solution.) Dual: min $\sum_{V} p_{V}$, ∀*e* = (*u*, *v*) : $p_{U} + p_{V} > w_{e}$, $p_{U} > 0$.

Dual feasible at start: $p_u \geq \max_{e=(u,v)} w_e$ Maintain feasibility: adjust prices by δ . Maintain Primal feasibility. Maintain complementary slackness (2). $x_e > 0$ only if $p_u + p_v = w_e$. Eventually match all vertices.

The Engine that pulls the train: Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

 $∀$ *v* : $\sum_{e=(u,v)} x_e = 1$. So any p_u can be non-zero.

The "play" indicates game playing. Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental? Are things as easy or as hard as $0, 1, 2, \ldots$?

Duality.

Geometric View, Linear Equation, and Combinatorial.

Geometric View, Linear Equation, and Combinatorial. Today: Strong Duality from Geometry.

max*c* · *x*.

 $maxC \cdot X$. $Ax \leq b$ $x \ge 0$

 $maxC \cdot X$. $Ax \leq b$ *x* ≥ 0

Start at feasible point where *n* equations are satisfied.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

 $max C \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy *n*−1 ind. equations.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation: Points on line satisfy *n*−1 ind. equations. Intersection of *n*−1 hyperplanes.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy *n*−1 ind. equations. Intersection of *n*−1 hyperplanes.

Move in direction that increases objective.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy *n*−1 ind. equations. Intersection of *n*−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

 $maxC \cdot X$. *Ax* ≤ *b x* ≥ 0

Start at feasible point where *n* equations are satisfied.

E.g., $x = 0$. This is a point. Another view: intersection of *n* hyperplanes.

Drop one equation:

Points on line satisfy *n*−1 ind. equations. Intersection of *n*−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

 $x + y + z \leq 1$

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane?

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why?

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane.

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane. (a, b, c) where $a + b + c = 1$.

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal: $u \cdot (v - w) = 0$ for any v, w in hyperplane. (a, b, c) where $a + b + c = 1$. (a', b', c') where $a' + b' + c' = 1$.

 $x + y + z \le 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal: $u \cdot (v - w) = 0$ for any $v \cdot w$ in hyperplane. (a, b, c) where $a + b + c = 1$. (a', b', c') where $a' + b' + c' = 1$. $(a' - a, b' - b, c' - c) \cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0.$

 $x + y + z \le 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal: $u \cdot (v - w) = 0$ for any $v \cdot w$ in hyperplane. (a, b, c) where $a + b + c = 1$. (a', b', c') where $a' + b' + c' = 1$. $(a' - a, b' - b, c' - c) \cdot (1, 1, 1) = (a' + b' + c' - (a + b + c)) = 0.$

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal:
$$
u \cdot (v - w) = 0
$$
 for any v, w in hyperplane.
\n(a, b, c) where $a+b+c=1$.
\n(a', b', c') where $a'+b'+c'=1$.
\n(a'-a, b'-b, c'-c) \cdot (1, 1, 1) = (a'+b'+c'-(a+b+c)) = 0.

Normal to $mx + ny + pz = C$?

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal:
$$
u \cdot (v - w) = 0
$$
 for any v, w in hyperplane.
\n(a, b, c) where $a+b+c=1$.
\n(a', b', c') where $a' + b' + c' = 1$.
\n(a' - a, b' - b, c' - c) \cdot (1, 1, 1) = (a' + b' + c' - (a+b+c)) = 0.

Normal to $mx + ny + pz = C$? (m, n, p)

 $x + y + z \leq 1$

On one side of hyperplane defined by $x + y + z = 1$.

Normal to hyperplane? (1,1,1).

Why? Normal:
$$
u \cdot (v - w) = 0
$$
 for any v, w in hyperplane.
\n(a, b, c) where $a+b+c=1$.
\n(a', b', c') where $a' + b' + c' = 1$.
\n(a' - a, b' - b, c' - c) · (1, 1, 1) = (a' + b' + c' - (a+b+c)) = 0.

Normal to $mx + ny + pz = C$? (m, n, p)

Points in hyperplane are related by nullspace of row.

Blue constraints intersect.

Blue constraints intersect.

Blue constraints redundant.

$$
\bigcirc ^{+1} \bigcirc ^{-1} \bigcirc ^{+1} \bigcirc
$$

Augmenting Path.

Blue constraints tight.

 $+1$ -1 -1

Blue constraints tight.

 $+1$ -1 -1

Blue constraints tight.

 $+1$ -1 -1

Blue constraints tight.

 $+1$ -1 -1

Blue constraints tight.

 $+1$ -1 -1

Blue constraints tight.

Sum: $x + z + y$.

 $+1$ -1 -1

Blue constraints tight.

Sum: $x + z + y$.

 $+1$ -1 -1

Blue constraints tight.

Sum: $x + z + y$.

 $+1$ -1 -1

Blue constraints tight.

Sum: $x + z + y$.

 $+1$ -1 -1

Convex Separator.

Convex Separator.

Farkas

Convex Separator.

Farkas

Strong Duality!!!!!

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Linear Equations.

 $Ax = b$

Linear Equations.

 $Ax = b$

A is $n \times n$ matrix...

Linear Equations.

 $Ax = b$

A is $n \times n$ matrix...

..has a solution.
$Ax = b$

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent.

 $Ax = b$

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^TA \neq 0$ for any y

 $Ax = b$

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^TA \neq 0$ for any y

..or if *b* in subspace of columns of *A*.

 $Ax = b$

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^TA \neq 0$ for any y

..or if *b* in subspace of columns of *A*.

If no solution, $y^T A = 0$ and $y \cdot b \neq 0$.

 $Ax = b$

A is $n \times n$ matrix...

..has a solution.

If rows of *A* are linearly independent. $y^TA \neq 0$ for any y

..or if *b* in subspace of columns of *A*. If no solution, $y^T A = 0$ and $y \cdot b \neq 0$.

A a set of points *P* is *convex* if $x, y \in P$ implies that

A a set of points *P* is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$

A a set of points *P* is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$ for $\alpha \in [0,1]$.

A a set of points *P* is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$ for $\alpha \in [0,1]$. That is, the points in between *x* and *y* are in *P*.

A a set of points *P* is *convex* if $x, y \in P$ implies that $\alpha x + (1 - \alpha)y \in P$ for $\alpha \in [0,1]$. That is, the points in between *x* and *y* are in *P*. Exercise:

$$
Ax\leq b, x\geq 0
$$

defines a convex set of points.

For a convex body *P* and a point *b*, either *b* ∈ *P*

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*. Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*. Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$. $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$. $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v \leq b \cdot v$.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$. $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v < b \cdot v$. *p* ·(*b* −*p*) < *b* ·(*b* −*p*)?

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$. $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v \leq b \cdot v$. *p* ·(*b* −*p*) < *b* ·(*b* −*p*)? $p b - p^2 < b^2 - b p$ iff $b^2 - 2 p b + p^2 > 0.$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$. $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v \leq b \cdot v$. *p* ·(*b* −*p*) < *b* ·(*b* −*p*)? $p b - p^2 < b^2 - b p$ iff $b^2 - 2 p b + p^2 > 0.$

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$. $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v \leq b \cdot v$. *p* ·(*b* −*p*) < *b* ·(*b* −*p*)? $p b - p^2 < b^2 - b p$ iff $b^2 - 2 p b + p^2 > 0.$ That is, if $(b-p)^2 > 0$.

For a convex body *P* and a point *b*, either $b \in P$ or there is a hyperplane that separates *P* from *b*.

Separating hyperplace: *v*, where $v \cdot x < v \cdot b$, for all $x \in P$

Take $v = (b - p)$.

 $(x \cdot v) = x \cdot (b - p) \leq p \cdot (b - p) = p \cdot v \leq b \cdot v$. *p* ·(*b* −*p*) < *b* ·(*b* −*p*)?

 $p b - p^2 < b^2 - b p$ iff $b^2 - 2 p b + p^2 > 0.$

That is, if $(b-p)^2 > 0$. Is this always true?

For a convex body *P* and a point *b*, either *b* ∈ *A*

For a convex body *P* and a point *b*, either $b \in A$ or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

For a convex body *P* and a point *b*,

either *b* ∈ *A*

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x - p)^T (b - p) > 0$

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

 $(x-p)^{T}$ (*b*−*p*) ≥ 0

Proof: Choose *p* to be closest point to *b* in *P*.

```
Done or \exists x \in P with (x - p)^T (b - p) > 0
```


For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x - p)^T (b - p) > 0$

$$
(x-p)^T(b-p) \ge 0
$$

\n $\rightarrow \le 90^\circ$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

Done or $\exists x \in P$ with $(x - p)^T (b - p) > 0$

$$
(x-p)^T(b-p) \ge 0
$$

\n $\rightarrow \le 90^\circ$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.

Must be closer point *b* on line from *p* to *x*.

For a convex body *P* and a point *b*,

either *b* ∈ *A*

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

 $(x-p)^{T}$ (*b*−*p*) ≥ 0 $\rightarrow \leq 90^{\circ}$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$. Must be closer point *b* on line from *p* to *x*. All points on line to *x* are in polytope.

For a convex body *P* and a point *b*,

either $b \in A$

or there is point *p* where $(x - p)^T (b - p) \leq 0 \ \forall x \in P$.

Proof: Choose *p* to be closest point to *b* in *P*.

$$
(x-p)^T(b-p) \ge 0
$$

\n $\rightarrow \le 90^\circ$ angle between $\overrightarrow{x-p}$ and $\overrightarrow{b-p}$.

Must be closer point *b* on line from *p* to *x*.

All points on line to *x* are in polytope.

Contradicts choice of *p* as closest point to *b* in polytope.

More formally.

More formally.

Squared distance to *b* from $p + (x - p)\mu$

point between *p* and *x*

Simplify:

Derivative with respect to μ ...

 $-2|p-b||x-p|\cos\theta+2(\mu|x-p|^2).$

which is negative for a small enough value of μ

which is negative for a small enough value of µ (for positive *cos*θ.)

Theorems of Alternatives.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*. Affine subspace is columnspan of *A*.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*. Affine subspace is columnspan of *A*. *y* is normal.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*. Affine subspace is columnspan of *A*. *y* is normal. *y* in nullspace for column span.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*. Affine subspace is columnspan of *A*. *y* is normal. *y* in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*. Affine subspace is columnspan of *A*. *y* is normal. *y* in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

There is a separating hyperplane between any two convex bodies.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point and an affine subspace not containing it.

From $Ax = b$ use row reduction to get, e.g., $\hat{0} \cdot x = 0 \neq 5$. That is, find *y* where $y^TA = \hat{0}$ and $y^Tb \neq 0.$ Space is image of *A*. Affine subspace is columnspan of *A*. *y* is normal. *y* in nullspace for column span. $y^T b \neq 0 \implies b$ not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

 x_3 Coordinates $s = b - Ax$. $x \ge 0$ where $s = 0$?

 x_3 Coordinates $s = b - Ax$. $x \ge 0$ where $s = 0$?

 $x > 0$ where $s = 0$?

Farkas A: Solution for exactly one of:

Farkas A: Solution for exactly one of:

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of:

Farkas A: Solution for exactly one of:

(1) $Ax = b, x > 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of: (1) *Ax* ≤ *b*

Farkas A: Solution for exactly one of:

(1) $Ax = b, x > 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of:

(1) *Ax* ≤ *b* (2) $y^T A = 0, y^T b < 0, y \ge 0.$

Strong Duality

(From Goemans notes.)

Primal P

\n
$$
z^* = \min c^T x
$$
\n
$$
Ax = b
$$
\n
$$
x \ge 0
$$

Dual D : $w^* = \max b^T y$ $A^Ty\leq c$

Strong Duality

(From Goemans notes.)

Primal P

\n
$$
z^* = \min c^T x
$$
\n
$$
Ax = b
$$
\nDual D: $w^* = \max b^T y$

\n
$$
A^T y \le c
$$
\n
$$
A^T y \le c
$$

Weak Duality: x, y - feasible P, D: $x^T c \ge b^T y$.

Strong Duality

(From Goemans notes.)

Primal P

\n
$$
z^* = \min c^T x
$$
\n
$$
Ax = b
$$
\nDual D: $w^* = \max b^T y$

\n
$$
A^T y \le c
$$
\n
$$
A^T y \le c
$$

Weak Duality: x, y - feasible P, D: $x^T c \ge b^T y$.

$$
xTc-bTy = xTc-xTATy
$$

= x^T(c-A^Ty)
\ge 0

Strong duality If P or D is feasible and bounded then $z^* = w^*$. Primal feasible, bounded, minimum value *z* ∗ .

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

∃*y*,*y ^TA* ≤ *c*,*b ^T y* ≥ *z* ∗ .

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

∃*y*,*y ^TA* ≤ *c*,*b ^T y* ≥ *z* ∗ .

Want *y* where

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *^y* where

$$
\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}.
$$

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus

Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$.

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done,

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $\left| \right|$ $\sqrt{ }$ *x* \setminus

$$
(A -b)\begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad \qquad (c^T - z^*)\begin{pmatrix} x \\ \lambda \end{pmatrix} < 0
$$

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $\sqrt{ }$ *x* \setminus ∗ $\sqrt{ }$ *x* \setminus

$$
(A - b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0
$$

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ λ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ λ $\Big) <$ 0

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$.

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $\Big) <$ 0

λ λ $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < z^* .

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ λ $\Big) <$ 0

λ $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ λ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ λ $\Big) <$ 0

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$ Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!! Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$.

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ λ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ λ $\Big) <$ 0

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$ Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$. Feasible *x*˜ for Primal.

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ λ $\Big) <$ 0

λ $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$. Feasible *x*˜ for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$.

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $\Big) <$ 0

λ λ $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$. Feasible *x*˜ for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$.

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $\Big) <$ 0

λ λ

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$. Feasible *x*˜ for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $\Big) <$ 0

λ λ

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Case 2:
$$
\lambda = 0
$$
. $Ax = 0$, $c^T x < 0$.
Feasible \tilde{x} for Primal.
(a) $\tilde{x} + \mu x \ge 0$ since $\tilde{x}, x, \mu \ge 0$.
(b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible
 $c^T(\tilde{x} + \mu x) = x^T \tilde{x} + \mu c^T x \rightarrow -\infty$ as $\mu \rightarrow \infty$

Primal feasible, bounded, minimum value *z* ∗ .

Claim: Exists a solution to dual of value at least *z* ∗ .

$$
\exists y, y^T A \leq c, b^T y \geq z^*.
$$

Want *y* where $\begin{pmatrix} A^T \\ A^T \end{pmatrix}$ $-b^7$ $y \leq \begin{cases} c$ −*z* ∗). Let $A' = \begin{pmatrix} A^T \\ B \end{pmatrix}$ $-b^7$ \setminus Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \geq 0$. $(A \quad -b)\begin{pmatrix} x \\ 3 \end{pmatrix}$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ $\Big) <$ 0

λ λ

 $\exists x, \lambda$ with $Ax - b\lambda = 0$ and $c^t x - z^* \lambda < 0$

Case 1: λ > 0. *A*(*x* $\frac{x}{\lambda}$) = b, $c^{\mathcal{T}}(\frac{x}{\lambda})$ $\frac{x}{\lambda}$) < *z*^{*}. Better Primal!!

Case 2: $\lambda = 0$. $Ax = 0, c^T x < 0$. Feasible *x*˜ for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^\mathcal{T}(\tilde{x}+\mu x)=x^\mathcal{T}\tilde{x}+\mu c^\mathcal{T}x\to -\infty$ as $\mu\to\infty$ Primal unbounded!

Today:

Today: Matching and simplex.

Today: Matching and simplex. Convex separator.

Today: Matching and simplex. Convex separator. Farkas.

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Exercise:
Done

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Exercise: Is there an algorithm there?

Done

Today: Matching and simplex. Convex separator. Farkas. Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.