
Linear Program.
How? From lecture warmup.

Linear program: maxcx ,Ax ≤ b,x ≥ 0
Dual: minyT b,yT A ≥ c,y ≥ 0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:

yT b ≥ yT Ax ≥ cx

First inequality from b ≥ Ax and second from yA ≥ c.

Complementary slackness:
(1) xj > 0 =⇒ a(j)y = cj
(2) yi > 0 =⇒ aix = bi

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) =⇒ yT b = ∑i yibi = ∑i yi(aix) = yT Ax .

Similarly: (1) =⇒ yT Ax = cx .

Complementary slackness conditions imply optimality.

Perfect Matching
Linear program: max∑e wexe, ∀v : ∑e=(u,v) xe ≤ 1, xe ≥ 0

xe = 1 if e ∈ M, xe = 0 otherwise. (Note: integer solution.)
Dual: min∑v pv , ∀e = (u,v) : pu +pv ≥ we, pu ≥ 0.

Dual feasible at start: pu ≥maxe=(u,v) we
Maintain feasibility: adjust prices by δ .

Maintain Primal feasibility.
Maintain complementary slackness (2).

xe > 0 only if pu +pv = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
∀v : ∑e=(u,v) xe = 1. So any pu can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2, . . . ...?

Duality.

Geometric View, Linear Equation, and Combinatorial.

Today: Strong Duality from Geometry.

Simplex Algorithm

maxc ·x .

Ax ≤ b
x ≥ 0

Start at feasible point where n equations are satisfied.

E.g., x = 0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n−1 ind. equations.
Intersection of n−1 hyperplanes.

Move in direction that increases objective.

Until new tight constraint.

No direction increases objective.

Hyperplane View

x +y +z ≤ 1

On one side of hyperplane defined by x +y +z = 1.

Normal to hyperplane? (1,1,1).

Why? Normal: u · (v −w) = 0 for any v ,w in hyperplane.
(a,b,c) where a+b+c = 1.
(a′,b′,c′) where a′+b′+c′ = 1.
(a′−a,b′−b,c′−c) · (1,1,1) = (a′+b′+c′− (a+b+c)) = 0.

Normal to mx +ny +pz = C? (m,n,p)

Points in hyperplane are related by nullspace of row.

Maximum matching and simplex.
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Augmenting Path. Via Gaussian Elimination!



Strong Duality

Convex Separator.

Farkas

Strong Duality!!!!! Maybe.

Linear Equations.
Ax = b

A is n×n matrix...

..has a solution.

If rows of A are linearly independent.
yT A ̸= 0 for any y

..or if b in subspace of columns of A.

If no solution, yT A = 0 and y ·b ̸= 0.

x1

x2

x3

ok b

bad b

Convex body.

A a set of points P is convex if x ,y ∈ P implies that

αx +(1−α)y ∈ P

for α ∈ [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax ≤ b,x ≥ 0

defines a convex set of points.

Convex Body and point.

For a convex body P and a point b,
either b ∈ P
or there is a hyperplane that separates P from b.

Separating hyperplace: v , where v ·x < v ·b, for all x ∈ P

point p where (x −p)T (b−p)≤ 0

bp
x

Take v = (b−p).

(x ·v) = x · (b−p)≤ p · (b−p) = p ·v < b ·v .
p · (b−p)< b · (b−p)?

pb−p2 < b2 −bp iff b2 −2pb+p2 > 0.

That is, if (b−p)2 > 0. Is this always true?

Proof.

For a convex body P and a point b,
either b ∈ A
or there is point p where (x −p)T (b−p)≤ 0 ∀x ∈ P.

bp
x

Proof: Choose p to be closest point to b in P.

Done or ∃ x ∈ P with (x −p)T (b−p)> 0

bp

xx

P

(x −p)T (b−p)≥ 0
→ ≤ 90◦ angle between −−−→x −p and

−−−→
b−p.

Must be closer point b on line from p to x .

All points on line to x are in polytope.

Contradicts choice of p as closest point to b in
polytope.

More formally.

bp

xx
P

b
|p−b|− ℓcosθ

Distance to new point.

p

θ

p+µ(x −p)

ℓ= µ|x −p| ℓsinθ

ℓcosθ

x

Squared distance to b from p+(x −p)µ
point between p and x
(|p−b|−µ|x −p|cosθ)2 +(µ|x −p|sinθ)2

θ is the angle between x −p and b−p.

Simplify:
|p−b|2 −2µ|p−b||x −p|cosθ +(µ|x −p|)2.

Derivative with respect to µ ...
−2|p−b||x −p|cosθ +2(µ|x −p|2).

which is negative for a small enough value of µ (for positive cosθ .)



Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0̂ ·x = 0 ̸= 5.
That is, find y where yT A = 0̂ and yT b ̸= 0.
Space is image of A. Affine subspace is columnspan of A.

y is normal. y in nullspace for column span.
yT b ̸= 0 =⇒ b not in column span.

There is a separating hyperplane between any two convex bodies.

Idea: Let closest pair of points in two bodies define direction.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

][
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3 Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0
(2) yT A ≥ 0,yT b < 0.

Farkas B: Solution for exactly one of:
(1) Ax ≤ b
(2) yT A = 0,yT b < 0,y ≥ 0.

Strong Duality

(From Goemans notes.)

Primal P z∗ =mincT x
Ax = b
x ≥ 0

Dual D :w∗ =maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0

Strong duality If P or D is feasible and bounded then z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)

Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ ]≥ 0.
(
A −b

)(x
λ

)
= 0

(
cT −z∗)

(
x
λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A( x
λ ) = b, cT ( x

λ )< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0.
Feasible x̃ for Primal.

(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞
Primal unbounded!

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

See you on Thursday.


