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Lecture 8

1 The Perceptron Algorithm

The perceptron algorithm solves the classical problem of online learning of halfspaces. There
are m examples (xi, l(xi)) where xi ∈ Rn are feature vectors and l(xi) = ±1 are labels. The
examples are correctly classified by a halfspace, that is l(xi) = sign(w ·x+ b) for some w, b.
An online algorithm is given xi in some order, asked to predict l(xi) and then the correct
label is revealed. The goal is to minimize the number of classification mistakes.

Wlog we can assume that the separating halfspace passes through the origin and is of
form w.x as a sign(

∑
wixi + b) can be simulated by adding an extra feature (coordinate)

that is always equal to 1. We can further assume that |xi| = 1 as scaling xi does not change
sign(w.x). Let w∗ be the unit vector in the direction w.

The angular margin γ for a set of normalized feature vectors is the minimum distance
of the xi from the halfspace w∗.x = 0.

γ = min
i∈[m]

|xi.w∗| (1)

A large γ indicates that the classifier is robust, that is perturbing the examples does not
change the label, see Figure 1 for an illustration.

1.1 Algorithm:

The perceptron algorithm starts with an initial guess w1 = 0 for the halfspace, and does
the following on receiving example xi:

1. Predict sign(wi · x) as the label for example xi.

2. If incorrect, update wi+1 = wi + l(xi)xi else wi+1 = wi.

Claim 1
The perceptron algorithm makes at most 1/γ2 mistakes if the points xi are separated with
angular margin γ.

Proof: The proof relies on two geometric observations illustrated in Figure 1. If the
algorithm makes a mistake on x∗, the unit vector l(x∗)x∗ added to wi has projection at
least γ on w∗. This follows as we updating using labels l(xixi and the points are separated
by margin γ. If the algorithm makes M mistakes. The length of

|wm| ≥ |wm.w∗| ≥ γM (2)
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Positive + and negative − examples are
separated by a halfspace w∗.x with angu-
lar margin γ. On making mistake x∗, the
perceptron algorithm updates weights by
adding l(x∗)x∗ to the current weight wi.
The analysis of perceptron relies on the
following observations:

1. The projection of l(x∗)x∗ onto w∗

is at least γ.

2. The unit vector l(x∗)x∗ makes an
obtuse angle with wi.

Figure 1: The analysis of the Percepton algorithm in pictures.

Secondly note that the unit vector l(x∗)x∗ makes an obtuse angle with wi for every update,
using the law of cosines |wi|2 + 1 ≥ |wi+1|2. The length of vector wm is at most

√
M ,

combining the bounds we have,
√
M ≥ |wm| ≥ γ.M (3)

It follows that the the perceptron algorithm makes at most 1/γ2 mistakes. 2

1.2 Hinge loss

The notion of the hinge loss TDγ is introduced to handle the case where there is no sepa-
rating hyperplane. The hinge loss TDγ is the minimum total distance through which points
xi must be moved in order to make them separable by an angular margin γ.

The distance TDγ is parallel to w∗ as it is the minimum distance moved, the bound on
the projection of wm onto w∗ changes to,

|wm.w∗| ≥ γM − TDγ

The l(x∗)x∗ continues to make an obtuse angle with wi for all cases, so we have the modified
bound

√
M ≥ γM −TDγ . Squaring and dropping the positive term TD2

γ on the right hand
side,

M ≥ γ2M2 − 2γMTDγ ⇒ 1

γ2
+

2TDγ

γ
≥ M (4)

The number of mistakes made by the perceptron algorithm can therefore be bounded in
terms of the hinge loss.

1.3 Large margin separators:

Consider the variant of the perceptron algorithm that carries out updates when the current
hypothesis fails to separate xi with margin more than γ/2. For example in Figure 1, the −
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point located close to the boundary of the current hypothesis will be treated as a mistake
by this algorithm.

Update for the modified perceptron continue to increase the value of wi.w
∗ by at least γ

as points xi are separated by an angular margin γ. The observation that l(x∗)x∗ makes an
obtuse angle with wi does not hold any more, instead we have that moving x∗ by distance
γ/2 along wi produces a vector making an obtuse angle with wi.

The obtuse angle condition can be written as |wi+1|2 ≤ |wi|2+1 ⇒ |wi+1| ≤ |wi|+ 1
2|wi| .

Moving x∗ by distance γ/2 produces a vector making an obtuse angle with wi, so we can
apply the triangle inequality to obtain |wi+1| < |wi| + 1

2|wi| +
γ
2 . If |wi| ≥ 2/γ we have

|wi+1| ≤ |wi|+ 3γ
4 , summing over all mistakes that occur after |wi| ≥ 2

γ ,

Mγ ≤ |wm| ≤ 2

γ
+

3γM

4
⇒ M ≤ 8

γ2
(5)

1.4 Kernelization:

There are good algorithms for classifying data separated by halfspaces. If the data is not
separated by a halfspace, the kernel trick described in the homework may be used to reduce
to the problem to learning halfspaces in an implicit high dimensonal space.
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