Last Time:

Path Routing Problem. (Min)
Toll Problem. (Max)
Toll \leq Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.

"Near" optimal solution
Last Time:
 Path Routing Problem. (Min)
Last Time:
 Path Routing Problem. (Min)
 Toll Problem. (Max)
Last Time:
 Path Routing Problem. (Min)
 Toll Problem. (Max)
Toll \leq Path.
CS270: Lecture 3.

Last Time:
 Path Routing Problem. (Min)
 Toll Problem. (Max)
Toll \leq Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
Last Time:
 Path Routing Problem. (Min)
 Toll Problem. (Max)
Toll \leq\text{ Path.}

Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution
Last Time:
 Path Routing Problem. (Min)
 Toll Problem. (Max)
Toll \leq Path.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution s!
CS270: Lecture 3.

Last Time:
 Path Routing Problem. (Min)
 Toll Problem. (Max)
Toll \leq \text{Path}.
Algs: Exp. Weights for Tolls/Shortest Paths for Path.
“Near” optimal solution

Today: continuous view.
CS270: Lecture 3.

Last Time:

- Path Routing Problem. (Min)
- Toll Problem. (Max)

Toll ≤ Path.

Algs: Exp. Weights for Tolls/Shortest Paths for Path.

“Near” optimal solution

Today: continuous view.

And: Strategic Games
Gradient Descent.

Give differentiable $f(x)$, find minimum.
Gradient Descent.

Give differentiable \(f(x) \), find minimum.

Alg:
 While “not good enough”:
 \[x^{i+1} = x^i - \varepsilon_i \nabla f(x^i). \]
Gradient Descent.

Give differentiable $f(x)$, find minimum.

Alg:

\[
\text{While "not good enough":} \\
x^{i+1} = x^i - \varepsilon_i \nabla f(x^i).
\]

\[
\nabla (f(x^i)) = 0 \implies \text{Optimal.}
\]
Gradient Descent.

Give differentiable $f(x)$, find minimum.

Alg:
 While “not good enough”:

 \[x^{i+1} = x^i - \varepsilon_i \nabla f(x^i). \]

\[\nabla(f(x^i)) = 0 \implies \text{Optimal.} \]

Constrained: project gradient into affine space.
Gradient Descent.

Give differentiable $f(x)$, find minimum.

Alg:
While “not good enough”:
$$x^{i+1} = x^i - \varepsilon_i \nabla f(x^i).$$

$$\nabla (f(x^i)) = 0 \implies \text{Optimal.}$$

Constrained: project gradient into affine space.

Projected($\nabla (f(x^i)) = 0 \implies \text{Optimal.}$
Gradient Descent.

Give differentiable $f(x)$, find minimum.

Alg:
While “not good enough”:
$$x^{i+1} = x^i - \varepsilon_i \nabla f(x^i).$$

$$\nabla (f(x^i)) = 0 \implies \text{Optimal.}$$

Constrained: project gradient into affine space.

Projected($\nabla (f(x^i)) = 0 \implies \text{Optimal.}$

Dumber: just move to $x^{(i+1)}$ with smaller $f(x^{(i)})$ in affine subspace.
Routing and Function minimization.

Simple Version of Routing problem.

Route X units of flow between s and t.

Minimize congestion.

$$\min \max e \cdot c(e).$$

Not smooth.

Smoothing functions: minimize max

$$\max e \cdot c(e).$$

$$f(R) = \sum e^2 \cdot c(e).$$

$$f'(R) = \sum e \cdot c(e)^2.$$

Good smoothing?

Thm: Routing R that minimizes $f(R)$ has max $e \cdot c(e) = c(R) \leq c_{opt} + \log m$.

Proof:

Max Congestion Optimal routing, R^*, has $f(R^*) \leq m^2 \cdot c_{opt}$.

Why?

m edges each with congestion at most c_{opt}.

This routing has $f(R) \geq 2 \cdot c(R)$.

$\rightarrow m^2 \cdot c_{opt} \geq f(R) \geq 2 \cdot c(R)$.

$\rightarrow c_{opt} + \log m \geq c(R)$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.

Minimize congestion.

$$\min \max e c(e).$$

Not smooth.

Smoothing functions: minimize max

$$\max e c(e).$$

$$f(R) = \sum e^2 c(e)$$

$$f'(R) = \sum e c(e)^2 c(e)$$

Good smoothing?

Thm: Routing R that minimizes $f(R)$ has max $e c(e) = c(R) \leq c_{opt} + \log m$.

Proof: Max Congestion Optimal routing, R^*, has $f(R^*) \leq m^2 c_{opt}$.

Why?
m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2 c(R)$.

$\rightarrow m^2 c_{opt} \geq f(R) \geq 2 c(R)$.

$\rightarrow c_{opt} + \log m \geq c(R)$.

Satish Rao (UC Berkeley) CS270: Games February 12, 2017 3 / 30
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

$\min \max e c(e)$.

Not smooth.

Smoothing functions: $\min \max e c(e)$.

$f(R) = \sum e^2 c(e)$
$f'(R) = \sum e c(e)^2 c(e)$

Good smoothing?

Thm: Routing R that minimizes $f(R)$ has $\max e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m^2 c_{opt}$.

Why?
m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2 c(R)$.
$\rightarrow m^2 c_{opt} \geq f(R) \geq 2 c(R)$.
$\rightarrow c_{opt} + \log m \geq c(R)$.

Satish Rao (UC Berkeley)
CS270: Games
February 12, 2017
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e)2^{c(e)}$$

Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m^2 c_{opt}$.
Why?
m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2c(R)$.
$\rightarrow m^2 c_{opt} \geq f(R) \geq 2c(R)$.
$\rightarrow c_{opt} + \log m \geq c(R)$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.
\[
f(R) = \sum_e 2^{c(e)}
\]
\[
f'(R) = \sum_e c(e)2^{c(e)}
\]

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e)2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.
Proof:
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

\[
f(R) = \sum_e 2^{c(e)}
\]
\[
f'(R) = \sum_e c(e)2^{c(e)}
\]

Good smoothing?
Theorem: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m2^{c_{opt}}$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e) 2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m^{2^{c_{opt}}}$.
Why?
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e)2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m2^{c_{opt}}$.
Why? m edges each with congestion at most c_{opt}.
Routing and Function minimization.

Simple Version of Routing problem.
Route \(X \) units of flow between \(s \) and \(t \).
Minimize congestion.

\[
\text{minimize } \max_e c(e). \quad \text{Not smooth.}
\]

Smoothing functions: minimize \(\max_e c(e) \).
\[
f(R) = \sum_e 2^{c(e)} \\
f'(R) = \sum_e c(e)2^{c(e)}
\]

Good smoothing?
Thm: Routing \(R \) that minimizes \(f(R) \) has \(\max_e c(e) = c(R) \leq c_{opt} + \log m \).

Proof:
Max Congestion Optimal routing, \(R^* \), has \(f(R^*) \leq m2^{c_{opt}} \).
Why? \(m \) edges each with congestion at most \(c_{opt} \).
This routing has \(f(R) \geq 2^{c(R)} \).
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e)2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m2^{c_{opt}}$.
Why? m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2^{c(R)}$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

Minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e)2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m2^{c_{opt}}$.
Why? m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2^{c(R)}$.

$\rightarrow m2^{c_{opt}} \geq f(R) \geq 2^{c(R)}$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e) 2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m 2^{c_{opt}}$.
Why? m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2^{c(R)}$.

$\rightarrow m 2^{c_{opt}} \geq f(R) \geq 2^{c(R)}$.
$\rightarrow c_{opt} + \log m \geq c(R)$.
Routing and Function minimization.

Simple Version of Routing problem.
Route X units of flow between s and t.
Minimize congestion.

minimize $\max_e c(e)$. Not smooth.

Smoothing functions: minimize $\max_e c(e)$.

$$f(R) = \sum_e 2^{c(e)}$$
$$f'(R) = \sum_e c(e)2^{c(e)}$$

Good smoothing?
Thm: Routing R that minimizes $f(R)$ has $\max_e c(e) = c(R) \leq c_{opt} + \log m$.

Proof:
Max Congestion Optimal routing, R^*, has $f(R^*) \leq m^{2c_{opt}}$.
Why? m edges each with congestion at most c_{opt}.
This routing has $f(R) \geq 2^{c(R)}$.

$\rightarrow m^{2c_{opt}} \geq f(R) \geq 2^{c(R)}$.
$\rightarrow c_{opt} + \log m \geq c(R)$.
Optimization Setup: continued.

R “routes” F units of flow for one pair (s, t).

$\nabla f(R) = c'(e) \log_2 c(e)$. With respect to what? What are the variables? What choices do we have?
R “routes” a F units of flow for one pair (s, t).
\[\nabla f(R) = c'(e)2^{c(e)} \log 2. \]
R "routes" a F units of flow for one pair (s, t).

$\nabla f(R) = c'(e)2^{c(e)} \log 2$.

With respect to what?
Optimization Setup: continued.

\(R \) “routes” a \(F \) units of flow for one pair \((s, t)\).

\[
\nabla f(R) = c'(e)2^{c(e)} \log 2.
\]

With respect to what?
What are the variables?
R "routes" a F units of flow for one pair (s, t).

$$\nabla f(R) = c'(e)2^{c(e)} \log 2.$$

With respect to what?
What are the variables?
What choices do we have?
Optimization Setup: continued.

\[R \text{ “routes” a } F \text{ units of flow for one pair } (s, t). \]
\[\nabla f(R) = c'(e)2^{c(e)} \log 2. \]

With respect to what?
What are the variables?
What choices do we have?
As optimization: continued

R “routes” a unit flow for one pair (s, t).
As optimization: continued

\(R \) “routes” a unit flow for one pair \((s, t)\).
“Decision Variable”.

\[
x(p) \text{ flow along } p.
\]

Constraint: sum of \(x(p) \) is 1.

What is \(c(e) \) in terms of \(x(p) \)?

\[
A[e, p] = 1 \text{ if } e \in p \text{ and } 0 \text{ otherwise}.
\]

Now, we have:

\[
c = Ax, \text{ minimize max } c(e) \text{ where } \sum_p x(p) = 1.
\]
As optimization: continued

\(R \) “routes” a unit flow for one pair \((s, t)\).

“Decision Variable”.
For an \(s - t \) path \(p \), \(x(p) \) flow along \(p \).
As optimization: continued

*R “routes” a unit flow for one pair \((s, t)\).

“Decision Variable”.

For an \(s – t\) path \(p\), \(x(p)\) flow along \(p\).

Exponential number!
As optimization: continued

R “routes” a unit flow for one pair \((s, t)\).

“Decision Variable”.
 For an \(s – t\) path \(p\), \(x(p)\) flow along \(p\).

Exponential number! Uh oh?
As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
 For an $s – t$ path p, $x(p)$ flow along p.

Exponential number! Uh oh?

Constraint: sum of $x(p)$ is 1.
As optimization: continued

\(R \) “routes” a unit flow for one pair \((s, t)\).

“Decision Variable”.
For an \(s - t \) path \(p \), \(x(p) \) flow along \(p \).

Exponential number! Uh oh?

Constraint: sum of \(x(p) \) is 1.

What is \(c(e) \) in terms of \(x(p) \)?
As optimization: continued

R “routes” a unit flow for one pair (s, t).

“Decision Variable”.
 For an $s - t$ path p, $x(p)$ flow along p.

Exponential number! Uh oh?

Constraint: sum of $x(p)$ is 1.

What is $c(e)$ in terms of $x(p)$?

$A[e, p] = 1$ if $e \in p$ and 0 otherwise.
As optimization: continued

R “routes” a unit flow for one pair \((s, t)\).

“Decision Variable”.

For an \(s - t\) path \(p\), \(x(p)\) flow along \(p\).

Exponential number! Uh oh?

Constraint: sum of \(x(p)\) is 1.

What is \(c(e)\) in terms of \(x(p)\)?

\(A[e, p] = 1\) if \(e \in p\) and 0 otherwise.

Now, we have:

\[c = Ax, \quad \text{minimize} \max_e c(e) \quad \text{where} \sum_p x(p) = 1. \]
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]
...and smoothing: continued.

Now, we have:

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)}. \)
...and smoothing: continued.

Now, we have:

\[c = Ax, \quad \text{minimize} \max_e c(e) \quad \text{where} \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \)
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\Rightarrow \)
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize} \max_e c(e) \quad \text{where} \quad \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.
Better?: \(F \) to \(2F \) \(\implies \) error divides by two.
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.

\(F \) to \(F/\delta \)
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.
Better?: \(F \) to \(2F \) \(\implies \) error divides by two.
\(F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize} \ max_e c(e) \quad \text{where} \ \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.

\(F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential!
...and smoothing: continued.

Now, we have:
\[c = Ax, \text{ minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.
\(F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)} \).
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.
F to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)} \).

Best possible: a factor of two off.
...and smoothing: continued.

Now, we have:

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\rightarrow \) error divides by two.

\(F \) to \(F/\delta \) \(\rightarrow \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)} \).

Best possible: a factor of two off.

Oscillates if move when length of path not smaller by factor of 2.
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \[\sum_e 2^{c(e)}. \]

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.
\(F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)}. \)

Best possible: a factor of two off.

Oscillates if move when length of path not smaller by factor of 2.
\[\sum_e 2^{c(e)} \to \sum_e (1 + \varepsilon)^{c(e)}. \]
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.
\(\quad F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)} \).

Best possible: a factor of two off.

Oscillates if move when length of path not smaller by factor of 2.

\[\sum_e 2^{c(e)} \rightarrow \sum_e (1 + \varepsilon)^{c(e)}. \]

Approximate Equilibrium: \((1 + 2\varepsilon)C_{opt} + \delta \log n/\varepsilon. \)
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.

\(F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)} \).

Best possible: a factor of two off.

Oscillates if move when length of path not smaller by factor of 2.

\[\sum_e 2^{c(e)} \rightarrow \sum_e (1 + \varepsilon)^{c(e)}. \]

Approximate Equilibrium: \((1 + 2\varepsilon)C_{opt} + \delta \log n/\varepsilon \).

Convergence time:

Potential drop: \(\geq \varepsilon \sum_{e \in p} 2^{c(e)} \)

Move Size: \(\delta \).
...and smoothing: continued.

Now, we have:
\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: minimize \(\sum_e 2^{c(e)} \).

Minimum gives solution within additive \(\log m \) of optimal.

Better?: \(F \) to \(2F \) \(\implies \) error divides by two.

\(F \) to \(F/\delta \) \(\implies \) additive error is \(\delta \log m \).

Algorithm: reduce potential! \(\sum_e 2^{c(e)} \).

Best possible: a factor of two off.

Oscillates if move when length of path not smaller by factor of 2.

\[\sum_e 2^{c(e)} \to \sum_e (1 + \varepsilon)^{c(e)}. \]

Approximate Equilibrium: \((1 + 2\varepsilon) C_{opt} + \delta \log n/\varepsilon \).

Convergence time:

Potential drop: \(\geq \varepsilon \sum_{e \in p} 2^{c(e)} \)

Move Size: \(\delta \).

Time: \(\text{Poly}(1/\varepsilon, 1/\delta, n, m) \).
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]
Continuous view: calculus.

c = Ax, minimize \(\max_e c(e) \) where \(\sum_p x(p) = F \).

\(A[e, p] = 1 \) if \(e \in p \), 0 otherwise.

c is indexed by \(e \) or has dimension \(m \).
x is indexed by \(p \) or has dimension total number of \(s-t \) paths.
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise}. \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_{p} x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_{e} 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] = 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

\((A) \ \nabla (f(x)) = A^t 2^{c(e)} \ln 2? \)
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).

\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla (f(x)) = A^t \overset{\rightarrow}{2^{c(e)} \ln 2} \) or (B) \(\nabla (f(x)) = A \overset{\rightarrow}{2^{c(e)} \ln 2} \)
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

A[e, p] - 1 if \(e \in p \), 0 otherwise.

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla (f(x)) = A^t 2^{c(e)} \ln 2 \) or (B) \(\nabla (f(x)) = A 2^{c(e)} \ln 2 \)?
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]
\[A[e, p] = 1 \text{ if } e \in p, \ 0 \text{ otherwise}. \]

c is indexed by \(e \) or has dimension \(m \).
x is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2c(e) \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla (f(x)) = A^t 2c(e) \ln 2 \) or (B) \(\nabla (f(x)) = A 2c(e) \ln 2 \)?

(A).
Continuous view: calculus.

\[c = Ax, \text{ minimize } \max_e c(e) \text{ where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla(f(x)) = A^t \overrightarrow{2^{c(e)} \ln 2} \) or (B) \(\nabla(f(x)) = A \overrightarrow{2^{c(e)} \ln 2} \)?

(A). Produces a vector of same dimension as \(x \)!
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] = 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).

\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla(f(x)) = A^t \overrightarrow{2^{c(e)} \ln 2} \) or (B) \(\nabla(f(x)) = A \overrightarrow{2^{c(e)} \ln 2} \)?

(A). Produces a vector of same dimension as \(x \)!
Continuous view: calculus.

\[c = Ax, \quad \text{minimize} \ \max_e c(e) \quad \text{where} \ \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla(f(x)) = A^t 2^{c(e)} \ln 2 \) \(\text{or} \) (B) \(\nabla(f(x)) = A 2^{c(e)} \ln 2 \)?

(A). Produces a vector of same dimension as \(x \! \)

\[c = Ax \]
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of \(s-t \) paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla (f(x)) = A^t \overset{\rightarrow}{2^{c(e)}} \ln 2 \)? or (B) \(\nabla (f(x)) = A \overset{\rightarrow}{2^{c(e)}} \ln 2 \)?

(A). Produces a vector of same dimension as \(x \)!

\[c = Ax \implies \frac{\partial c(e)}{\partial (x(p))} = A[e, p] \]
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise}. \]

c is indexed by e or has dimension m.
x is indexed by p or has dimension total number of s-t paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

(A) \(\nabla(f(x)) = A^t \underbrace{2^{c(e)} \ln 2}_? \) or (B) \(\nabla(f(x)) = A \underbrace{2^{c(e)} \ln 2}_? \)

(A). Produces a vector of same dimension as \(x \)!

\[c = Ax \implies \frac{\partial c(e)}{\partial (x(p))} = A[e, p] \implies \frac{\partial \sum_e 2^{c(e)}}{\partial (x(p))} \propto \sum_e 2^{c(e)} \frac{\partial c(e)}{\partial (x(p))} \]
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

\[A[e, p] = 1 \text{ if } e \in p, \quad 0 \text{ otherwise.} \]

\(c \) is indexed by \(e \) or has dimension \(m \).
\(x \) is indexed by \(p \) or has dimension total number of s-t paths.

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

\((A) \nabla(f(x)) = A^t 2^{c(e)} \ln 2 \) or \((B) \nabla(f(x)) = A 2^{c(e)} \ln 2 \)?

(A). Produces a vector of same dimension as \(x \)!

\[c = Ax \implies \frac{\partial c(e)}{\partial (x(p))} = A[e, p] \implies \frac{\partial \sum_e 2^{c(e)}}{\partial (x(p))} \propto \sum_e 2^{c(e)} \frac{\partial c(e)}{\partial (x(p))} = (A^t)(p) \cdot 2^{c(e)} \]
Continuous view: calculus.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]
\[A[e, p] - 1 \text{ if } e \in p, \ 0 \text{ otherwise.} \]
\[c \text{ is indexed by } e \text{ or has dimension } m. \]
\[x \text{ is indexed by } p \text{ or has dimension total number of } s-t \text{ paths.} \]

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

Variables are vector \(x \), indexed by path \(p \).

So what is gradient?

\[(A) \ \nabla (f(x)) = A^t \overrightarrow{2^{c(e)} \ln 2} \text{ or } (B) \ \nabla (f(x)) = A \overrightarrow{2^{c(e)} \ln 2}? \]

(A). Produces a vector of same dimension as \(x \)!

\[c = Ax \implies \frac{\partial c(e)}{\partial (x(p))} = A[e, p] \implies \frac{\partial \sum_e 2^{c(e)} }{\partial (x(p))} \propto \sum_e 2^{c(e)} \frac{\partial c(e)}{\partial (x(p))} = (A^t)(p) \cdot \overrightarrow{2^{c(e)}} \]

\[\implies \nabla_x (f(R)) \propto A^t \overrightarrow{2^{c(e)}}. \]
Projection.

\[c = Ax, \quad \text{minimize} \max_e c(e) \quad \text{where} \sum_p x(p) = F. \]
Projection.

\[c = Ax, \text{ minimize } \max_e c(e) \text{ where } \sum_p x(p) = F. \]

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)
Projection.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

\[\nabla_x (f(R)) \propto A^t 2^{c(e)}. \]
Projection.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

\[\nabla_x (f(R)) \propto A^t 2^{c(e)}. \]

We also have: \(\sum_p x(p) = F \)
Projection.

\[c = Ax, \quad \text{minimize } \max_e c(e) \quad \text{where } \sum_p x(p) = F. \]

Smooth version: \(x \) that minimizes \(\sum_e 2^{c(e)} \)

\[\nabla_x(f(R)) \propto A^t 2^{c(e)}. \]

We also have: \(\sum_p x(p) = F \)

Affine subspace: so can project!
\[c = Ax \]

e space isocline.

\[c(e_2) \]

\[c(e_1) \]

\[\leftarrow A = I \rightarrow \]

x space feasibility.

\[x(p_2) \]

\[F \]

\[x(p_1) \]
Strategic Games.

N players.
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Strategic Games.

N players.

Each player has strategy set. \{(S_1, \ldots, S_N)\}.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players

Player 1: \{ Defect, Cooperate \}.

Player 2: \{ Defect, Cooperate \}.
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players

Player 1: $\{\text{Defect, Cooperate}\}$.

Player 2: $\{\text{Defect, Cooperate}\}$.

Payoff:
Strategic Games.

N players.

Each player has strategy set. \{ S_1, \ldots, S_N \}.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players

Player 1: \{ Defect, Cooperate \}.
Player 2: \{ Defect, Cooperate \}.

Payoff:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,.1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?
What is the best thing for the players to do?

Both cooperate. Payoff $\langle 3, 3 \rangle$.

<table>
<thead>
<tr>
<th>C</th>
<th>(3,3)</th>
<th>D</th>
<th>(0,5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(5,0)</td>
<td>D</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

If player 1 wants to do better, what does she do?
Defects! Payoff $\langle 5, 0 \rangle$.

What does player 2 do now?
Defects! Payoff $\langle .1, .1 \rangle$.

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
What is the best thing for the players to do?
Both cooperate. Payoff \((3,3)\).
If player 1 wants to do better, what does she do?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>((3,3))</td>
<td>((0,5))</td>
</tr>
<tr>
<td>D</td>
<td>((5,0))</td>
<td>((0.1,0.1))</td>
</tr>
</tbody>
</table>

Nash Equilibrium: neither player has incentive to change strategy.
What does player 2 do now?
Defects! Payoff (.1, .1)
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5,0)

What does player 2 do now?
Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
What is the best thing for the players to do?
Both cooperate. Payoff $(3,3)$.

If player 1 wants to do better, what does she do?
Defects! Payoff $(5,0)$

What does player 2 do now?
Defects! Payoff $(1,1)$.
Famous because?

\[
\begin{array}{c|cc}
 & C & D \\
\hline
C & (3,3) & (0,5) \\
D & (5,0) & (.1,1) \\
\end{array}
\]

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?
Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5,0)

What does player 2 do now?
Defects! Payoff (.1, .1).

Stable now!
Nash Equilibrium:
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
Digression..

What situations?
Digression..

What situations?

Prisoner’s dilemma:
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.

No Monopoly:
E.G., OPEC, Airlines, .

Should defect.
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .

Should defect.
Why don’t they?
Digression..

What situations?
Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.
Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...
What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance,
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!
What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

Today: simpler version.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function:
$$u(i, j) = (-a, a)$$
(or just a).

"Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.

Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

- (R, R)?
- (R, P)?
- (R, S)?

...
Two Person Zero Sum Games

2 players.

Each player has strategy set:
Two Person Zero Sum Games

2 players.

Each player has strategy set:

m strategies for player 1

Payoff function:

$$u(i, j) = (-a, a) \text{ (or just } a)$$

"Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.

Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

- (R, R)? no.
- (R, P)? no.
- (R, S)? no.

...
Two Person Zero Sum Games

2 players.

Each player has strategy set:

m strategies for player 1

n strategies for player 2

Payoff function:

$u(i,j) = (-a, a)$ (or just a).

"Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.

Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

- (R, R)?
- (R, P)?
- (R, S)?

...
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i,j) = (-a, a)$ (or just a).

"Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.

Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Two Person Zero Sum Games

2 players.

Each player has strategy set:
\(m \) strategies for player 1
\(n \) strategies for player 2

Payoff function: \(u(i,j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”
Two Person Zero Sum Games

2 players.

Each player has strategy set:
- m strategies for player 1
- n strategies for player 2

Payoff function: $u(i,j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i,j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: \(u(i,j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
- *m* strategies for player 1
- *n* strategies for player 2

Payoff function: \(u(i, j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by *m* by *n* matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i,j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
- \(m\) strategies for player 1
- \(n\) strategies for player 2

Payoff function: \(u(i, j) = (-a, a)\) (or just \(a\)).
“Player 1 pays \(a\) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m\) by \(n\) matrix: \(A\).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

\((R, R)\)?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: \(u(i, j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

\[
\begin{array}{ccc}
R & P & S \\
R & 0 & 1 & -1 \\
P & -1 & 0 & 1 \\
S & 1 & -1 & 0 \\
\end{array}
\]

Any Nash Equilibrium?

\((R, R) \)? no.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?
(R, R)? no. (R, P)?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
- m strategies for player 1
- n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

(R, R)? no. (R, P)? no. (R, S)?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: \(u(i,j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.

Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.

Player 2: play each strategy with equal probability.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs?

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs?

Can't just look it up in matrix!

Average Payoff.

Expected Payoff.

Sample space: $\Omega = \{(i, j) : i, j \in [1, \ldots, 3]\}$

Random variable X (payoff).

$$E[X] = \sum_{(i, j)} X(i, j) \Pr[(i, j)]$$

Each player chooses independently:

$$\Pr[(i, j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$

$$E[X] = \frac{1}{9} \sum_{(i, j)} X(i, j) = 0$$

Payoff for other player?

One payoff!

- Row minimizes.
- Column maximizes.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs? Can't just look it up in matrix!

Average Payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff.**
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. Expected Payoff.

Sample space: $\Omega = \{ (i,j) : i,j \in [1,..,3] \}$
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff**.

Sample space: \(\Omega = \{(i,j) : i,j \in [1,\ldots,3]\} \)

Random variable \(X \) (payoff).
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. **Expected Payoff.**

Sample space: $\Omega = \{(i, j) : i, j \in [1, \ldots, 3]\}$

Random variable X (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)]$$
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i,j) : i,j \in [1,\ldots,3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently:
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. Expected Payoff.

Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$

Random variable X (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].$$

Each player chooses independently: $Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. Expected Payoff.

Sample space: $$\Omega = \{(i, j) : i, j \in [1, \ldots, 3]\}$$

Random variable $$X$$ (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)]$$.

Each player chooses independently: $$Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$.

$$E[X]$$
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. Expected Payoff.

Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$

Random variable X (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].$$

Each player chooses independently: $Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$.

$$E[X] = \frac{1}{9} \sum_{(i,j)} X(i,j)$$
Payoffs: Equilibrium.

\[\begin{array}{ccc}
R & P & S \\
\hline
R & .33 & .33 & .33 \\
P & .33 & .33 & .33 \\
S & .33 & .33 & .33 \\
\end{array} \]

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff**.

Sample space: \(\Omega = \{(i,j) : i,j \in [1,..,3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently: \(Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \).

\[
E[X] = \frac{1}{9} \sum_{(i,j)} X(i,j) = 0.
\]
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i,j) : i,j \in [1,..,3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently: \(Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \).

\[
E[X] = \frac{1}{9} \sum_{(i,j)} X(i,j) = 0.
\]

Payoff for other player?
Payoffs: Equilibrium.

\[
\begin{array}{ccc}
R & P & S \\
\hline
R & .33 & .33 & .33 \\
\hline
P & .33 & -1 & 0 & 1 \\
\hline
S & .33 & 1 & -1 & 0 \\
\end{array}
\]

Payoffs? Can’t just look it up in matrix!

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i,j) : i,j \in [1,..,3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently: \(Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \).

\[
E[X] = \frac{1}{9} \sum_{(i,j)} X(i,j) = 0.
\]

Payoff for other player? One payoff!
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i,j) : i,j \in [1,..,3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j)Pr[(i,j)].
\]

Each player chooses independently: \(Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \).

\[
E[X] = \frac{1}{9} \sum_{(i,j)} X(i,j) = 0.
\]

Payoff for other player? One payoff!
- row minimizes.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i, j) : i, j \in \{1, \ldots, 3\}\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently: \(Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \).

\[
E[X] = \frac{1}{9} \sum_{(i,j)} X(i,j) = 0.
\]

Payoff for other player? One payoff!
- row minimizes. column maximizes.
Will Player 1 change strategy?

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Will Player 1 change strategy? Mixed strategies uncountable!
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock?

Mixed strategy payoff is weighted average of payoffs of pure strategies.

Mixed strategy can't be better than the best pure strategy.

Player 1 has no incentive to change!

Same for player 2.

Equilibrium!

Satish Rao (UC Berkeley)
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper?
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0. \)

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0. \)
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \[\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0. \]

Expected payoff of Paper? \[\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0. \]

Expected payoff of Scissors?
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

- Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
- Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).
- Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$.

Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.

Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$.

No better pure strategy. \implies No better mixed strategy!
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$.

Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.

Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$.

No better pure strategy. \implies No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$.
Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.
Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$.

No better pure strategy. \implies No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

$E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j)$
Equilibrium

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$.
Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.
Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$.

No better pure strategy. \implies No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

$$E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))$$
Equilibrium

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0. \)

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0. \)

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0. \)

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))
\]
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times (-1) = 0$.

Expected payoff of Paper? $\frac{1}{3} \times (-1) + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.

Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times (-1) + \frac{1}{3} \times 0 = 0$.

No better pure strategy. \implies No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

$$E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))$$

Mixed strategy can’t be better than the best pure strategy.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0\).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0\).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0\).

No better pure strategy. \(\implies\) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j]) X(i,j) = \sum_i Pr[i] (\sum_j Pr[j] \times X(i,j))
\]

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change!
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock?
\[\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0. \]

Expected payoff of Paper?
\[\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0. \]

Expected payoff of Scissors?
\[\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0. \]

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.
\[E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i] (\sum_j Pr[j] \times X(i,j)) \]

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

- Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
- Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).
- Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum (i,j)(Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))
\]

Mixed strategy can’t be better than the best pure strategy.
Player 1 has no incentive to change! Same for player 2.

Equilibrium!
Another example plus notation.

Rock, Paper, Scissors, prEempt.

Payoffs.

\[
\begin{array}{cccc}
R & P & S & E \\
\hline
R & 0 & 1 & -1 & 1 \\
P & -1 & 0 & 1 & 1 \\
S & 1 & -1 & 0 & 1 \\
E & -1 & -1 & -1 & 0 \\
\end{array}
\]

Equilibrium? \((E,E)\).

Pure strategy equilibrium.

Notation:

Rock is 1, Paper is 2, Scissors is 3, prEempt is 4.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? \((E,E)\).

Pure strategy equilibrium.

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium?
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? \((E,E)\).
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? \((E,E)\). Pure strategy equilibrium.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? \((E,E)\). Pure strategy equilibrium.

Notation:
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? \((E,E)\). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.

Payoff Matrix.

\[
A = \begin{bmatrix}
0 & 1 & -1 & 1 \\
-1 & 0 & 1 & 1 \\
1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0 \\
\end{bmatrix}
\]
Playing the boss...

Row has extra strategy: Cheat.
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
\begin{pmatrix}
0 & 1 & -1 & -1 \\
-1 & 0 & 1 & -1 \\
-1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
\end{pmatrix}
\]

Note: column knows row cheats.

Why play?
Row is column's advisor. ... boss.
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\]

Note: column knows row cheats.
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.
Why play?
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\]

Note: column knows row cheats.
Why play?
Row is column’s advisor.
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.
Equilibrium: play the boss...

\[A = \begin{bmatrix}
 0 & 1 & -1 \\
 -1 & 0 & 1 \\
 1 & -1 & 0 \\
 0 & 0 & -1 \\
\end{bmatrix} \]

Equilibrium:
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\).
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Payoff?
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1\)
Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
 0 & 1 & -1 \\
 -1 & 0 & 1 \\
 1 & -1 & 0 \\
 0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)

Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)

Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)

Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \[\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\]
Strategy 2: \[\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\]
Strategy 3: \[\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\]
Strategy 4: \[\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\]
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)

Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)

Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6})\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times (-1) = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times (-1) + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times (-1) + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times (-1) = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)

Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)

Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).
Equilibrium: play the boss...

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies!
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
 0 & 1 & -1 \\
-1 & 0 & 1 \\
 1 & -1 & 0 \\
 0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)

Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)

Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies! Complementary slackness.
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)

Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)

Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies! Complementary slackness. Why play more than one?
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium: Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is 0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies! Complementary slackness.

Why play more than one? Limit opponent payoff!
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.

Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_{i} x_i (\sum_{j} a_{i,j} y_j) = \sum_{i} \sum_{j} x_i a_{i,j} y_j = \sum_{j} (\sum_{i} x_i a_{i,j}) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$x^* y^* t Ay = \min_{x} x^t Ay = \max_{y} (x^* y) t Ay$$

(No better column strategy, no better row strategy.)
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t A y$$

That is,

$$\sum_{i,j}(x_i y_j) a_{ij} = \sum_i x_i (\sum_j a_{ij} y_j) = \sum_i \sum_j x_i a_{ij} y_j = \sum_j (\sum_i x_i a_{ij}) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$x^t A y^* = \max_y (x^t A y) = \min_x x^t A y^*.$$

(No better column strategy, no better row strategy.)
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t A y$$
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j}$$
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_{i} x_i \left(\sum_{j} a_{i,j} y_j \right)$$
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_i \sum_j x_i a_{i,j} y_j$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$(x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*$.

(No better column strategy, no better row strategy.)
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_i \sum_j x_i a_{i,j} y_j = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_i \sum_j x_i a_{i,j} y_j = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_i \sum_j x_i a_{i,j} y_j = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_i \sum_j x_i a_{i,j} y_j = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$(x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*.$$
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x,y):

$$p(x,y) = x^t Ay$$

That is,

$$\sum_{i,j} (x_i y_j) \cdot a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_i \sum_j x_i a_{i,j} y_j = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$(x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*.$$

(No better column strategy,
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^tAy$$

That is,

$$\sum_{i,j}(x_iy_j)a_{i,j} = \sum_i x_i \left(\sum_j a_{i,j}y_j \right) = \sum_i \sum_j x_i a_{i,j}y_j = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$(x^*)^tAy^* = \max_y (x^*)^tAy = \min_x x^tAy^*.$$
(No better column strategy, no better row strategy.)
Equilibrium pair: \((x^*, y^*)\)?

\[p(x, y) = (x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*. \]

(No better column strategy, no better row strategy.)

\(^1\) \(A^{(i)}\) is \(i\)th row.
Equilibrium.

Equilibrium pair: \((x^*, y^*)\)?

\[
p(x, y) = (x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*.
\]

(No better column strategy, no better row strategy.)

No row is better:

\[
\min_i A^{(i)} \cdot y = (x^*)^t Ay^*. \quad ^1
\]

\[
^1 A^{(i)} \text{ is } i\text{th row.}
\]
Equilibrium.

Equilibrium pair: \((x^*, y^*)\)?

\[p(x, y) = (x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay*. \]

(No better column strategy, no better row strategy.)

No row is better:

\[\min_i A^{(i)} \cdot y = (x^*)^t Ay^* . \]

No column is better:

\[\max_j (A^t)^{(j)} \cdot x = (x^*)^t Ay^*. \]

\[A^{(i)} \] is \(i\)th row.
Column goes first:

Find y, where best row is not too low.

$$ R = \max_y \min_x (x^t A y) $$

Note: x can be $(0,0,\ldots,1,\ldots)$. Example: Roshambo.

Row goes first:

Find x, where best column is not high.

$$ C = \min_x \max_y (x^t A y) $$

Again: y of form $(0,0,\ldots,1,\ldots)$. From Texas. Example: Roshambo.

Value of C?
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots)$.

Example: Roshambo.

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t Ay).$$

Again: y of form $(0, 0, \ldots, 1, \ldots)$.

From Texas.

Example: Roshambo.

Value of R?
Best Response

Column goes first:
Find y, where best row is not too low..

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.
Best Response

Column goes first:
Find y, where best row is not too low.

$$ R = \max_y \min_x (x^t A y). $$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo.
Best Response

Column goes first:
Find y, where best row is not too low..

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0,0,\ldots,1,\ldots,0)$.
Example: Roshambo. Value of R?
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t Ay).$$
Best Response

Column goes first:
Find y, where best row is not too low..

$$R = \max_y \min_x (x^tAy).$$

Note: x can be $(0,0,\ldots,1,\ldots0)$.

Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^tAy).$$

Agin: y of form $(0,0,\ldots,1,\ldots0)$.
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t A y).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t A y).$$

Again: y of form $(0, 0, \ldots, 1, \ldots 0)$. From Texas.
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t Ay).$$

Again: y of form $(0, 0, \ldots, 1, \ldots 0)$. From Texas.

Example: Roshambo.
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0,0,\ldots,1,\ldots0)$.

Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t Ay).$$

Again: y of form $(0,0,\ldots,1,\ldots0)$. From Texas.

Example: Roshambo. Value of C?
Duality.

\[R = \max_y \min_x (x^t Ay). \]

Weak Duality: \(R \leq C \).

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v^* \):
- Row payoffs \((Ay^*)\) all \(\geq v \Rightarrow R \geq v \).
- Column payoffs \(((x^*)^t A)\) all \(\leq v \Rightarrow v \geq C \).

\(\Rightarrow R \geq C \).

Equilibrium \(\Rightarrow R = C \)!

Strong Duality: There is an equilibrium point! and \(R = C \)!

Doesn't matter who plays first!
Duality.

\[R = \max_{y} \min_{x} (x^t Ay). \]

\[C = \min_{x} \max_{y} (x^t Ay). \]

Weak Duality: \[R \leq C. \]

Proof:

At Equilibrium \((x^*, y^*)\), payoff \(v\):

Row payoffs \((Ay^*)\) all \(\geq v\) \(\Rightarrow R \geq v\).

Column payoffs \((x^* A)\) all \(\leq v\) \(\Rightarrow v \geq C\).

\[\Rightarrow R \geq C \]

Equilibrium \(\Rightarrow R = C\)!

Strong Duality: There is an equilibrium point!

... Doesn't matter who plays first!
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):
row payoffs \((Ay^*)\) all \(\geq v\)
Duality.

\[R = \max_y \min_x (x^t A y). \]
\[C = \min_x \max_y (x^t A y). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):
row payoffs \((Ay^*)\) all \(\geq v\) \(\implies R \geq v.\)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):

row payoffs \((Ay^*)\) all \(\geq v \) \(\implies \) \(R \geq v. \)
column payoffs \((x^*)^t A\) all \(\leq v \)

Strong Duality: There is an equilibrium point! Doesn't matter who plays first!
Duality.

\[R = \max_y \min_x (x^t Ay) \]
\[C = \min_x \max_y (x^t Ay) \]

Weak Duality: \(R \leq C \).

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):

- row payoffs \((Ay^*)\) all \(\geq v \implies R \geq v\).
- column payoffs \(((x^*)^t A)\) all \(\leq v \implies v \geq C\).
Duality.

\[R = \max_y \min_x (x^t A y). \]
\[C = \min_x \max_y (x^t A y). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):
- row payoffs \((Ay^*)\) all \(\geq v \implies R \geq v.\)
- column payoffs \(((x^*)^t A)\) all \(\leq v \implies v \geq C.\)

\(\implies R \geq C\)

Strong Duality: There is an equilibrium point! Doesn't matter who plays first!
Duality.

\[
R = \max_y \min_x (x^t A y).
\]

\[
C = \min_x \max_y (x^t A y).
\]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):

- row payoffs \((Ay^*)\) all \(\geq v \implies R \geq v.\)
- column payoffs \(((x^*)^t A)\) all \(\leq v \implies v \geq C.\)

\(\implies R \geq C\)

Equilibrium \(\implies R = C!\)

Strong Duality: There is an equilibrium point!

And \(R = C!\)

Doesn't matter who plays first!
Duality.

\[R = \max_y \min_x (x^tAy), \]
\[C = \min_x \max_y (x^tAy). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
row payoffs \((Ay^*)\) all \(\geq v \) \(\implies \) \(R \geq v \).
column payoffs \(((x^*)^tA)\) all \(\leq v \) \(\implies \) \(v \geq C \).
\(\implies R \geq C \)

Equilibrium \(\implies R = C! \)

Strong Duality: There is an equilibrium point!
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):
- row payoffs \((Ay^*)\) all \(\geq v \implies R \geq v.\)
- column payoffs \(((x^*)^t A)\) all \(\leq v \implies v \geq C.\)

\[\implies R \geq C \]

Equilibrium \(\implies R = C!\)

Strong Duality: There is an equilibrium point! and \(R = C!\)
Duality.

\[R = \max_y \min_x (x^tAy) \]
\[C = \min_x \max_y (x^tAy) \]

Weak Duality: \(R \leq C \).

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
row payoffs \((Ay^*)\) all \(\geq v \) \(\implies \) \(R \geq v \).
column payoffs \(((x^*)^tA)\) all \(\leq v \) \(\implies \) \(v \geq C \).
\(\implies \) \(R \geq C \)

Equilibrium \(\implies R = C \)!

Strong Duality: There is an equilibrium point! and \(R = C \)!

Doesn’t matter who plays first!
Proof of Equilibrium.

Later. Let’s see some examples.
An “asymptotic” game.

“Catch me.”
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row (“Catch me”): choose path from a to b.

Column (“Catcher”): choose edge.
Row pays if column chooses edge on path.
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row ("Catch me"): choose path from a to b.
Column("Catcher"): choose edge.
An “asymptotic” game.

“Catch me.”

Given: \(G = (V, E) \).
Given \(a, b \in V \).
Row ("Catch me"): choose path from \(a \) to \(b \).
Column ("Catcher"): choose edge.
Row pays if column chooses edge on path.
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row (“Catch me”): choose path from a to b.
Column (“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row (“Catch me”): choose path from a to b.
Column (“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row ("Catch me"): choose path from a to b.
Column("Catcher"): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
Catchme:

Use Blue Path.
Blue with prob. 1/2.
Green with prob. 1/2.
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught!
Caught, sometimes.

\(-\frac{1}{2}\)
Catchme:
Use Blue Path.

Catcher:
Catchme:
Use Blue Path.

Catcher:
Caught!
Catchme:
Blue with prob. 1/2.
Green with prob. 1/2.

Catcher:
Catcher:

Caught!

Catchme:

Blue with prob. 1/2.
Green with prob. 1/2.
Catchme:
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Catchme:
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught, sometimes.
With probability 1/2.
Example.

Offense (Best Response):
Catch me: route along shortest path.
(Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:
Where should “catcher” play to catch any path?

Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?

minimize maximum load on any edge!

Max-Flow Problem.

Note: exponentially many strategies for “catch me”!

Satish Rao (UC Berkeley)
Example.

Edge solution: $Pr[e_1] = 1/2, Pr[e_2] = 1/2$
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)

Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):
Example.

Edge solution: $Pr[e_1] = 1/2, Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.

Defence:
Where should “catcher” play to catch any path?
 Minimum cut allows the maximum toll on any edge!
What should “catch me” do to avoid catcher?
 minimise maximum load on any edge!

Max-Flow Problem.

Note: exponentially many strategies for “catch me”!
Example.

Edge solution: $Pr[e_1] = 1/2, Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher's distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path?
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
Example.

Row solution: \(Pr[p_1] = \frac{1}{2}, \ Pr[p_2] = \frac{1}{3}, \ Pr[p_3] = \frac{1}{6} \).
Edge solution: \(Pr[e_1] = \frac{1}{2}, \ Pr[e_2] = \frac{1}{2} \)

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!
What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!

Max-Flow Problem.

Note: exponentially many strategies for “catch me”!
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e
Toll/Congestion

Given: $G = (V, E)$.

Given $(s_1, t_1) \ldots (s_k, t_k)$.

Row: choose routing of all paths.

Column: choose edge.

Row pays if column chooses edge on any path.

Matrix:

row for each routing: r

column for each edge: e

$A[r, e]$ is congestion on edge e by routing r
Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1), \ldots, (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.
Toll/Congestion

Given: \(G = (V, E) \).
Given \((s_1, t_1) \ldots (s_k, t_k)\).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: \(r \)
column for each edge: \(e \)

\(A[r, e] \) is congestion on edge \(e \) by routing \(r \)

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponential number of paths for route player.
Summary...

You should now know about

- Games
- Nash Equilibrium
- Pure Strategies
- Zero Sum Two Person Games
- Mixed Strategies
- Checking Equilibrium
- Best Response
- Statement of Duality Theorem
You should now know about Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.

Checking Equilibrium.

Best Response.

Statement of Duality Theorem.
You should now know about

Games
Nash Equilibrium
Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
You should now know about
Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.
Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.
Finding Equilibrium.

...see you Tuesday.