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Fun with ¢4 and /5

X[+ < v/nllx]l2.

Ix]l1 = x-sgn(x) < [Ix[l2llsgn(x)]l2 < V/IIxll

Ix]l1 = x - sgn(x) < [[x|[2]lsgn(x)ll2 < /Isupp(x)][x]l
supp(x) is non-zero indices of x.
If concentrated mass, ||x||1 = ||x]|2-
x=(1,0,0,...,0).
If spreadout, v/nl|x||2 < ||x]|1-
x=01,1,1,...,1).
If kind of spread out, || x]l2 < |1 x]l1-
X has k 1’s.

Fixing ||v||2, sparse vectors have small ||v|y norm, dense ones have
big ||v||y norm.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.
Application: MRI.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.

Application: MRI.

Find x with k-sparse x, i.e., supp(x) < k.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.

Application: MRI.

Find x with k-sparse x, i.e., supp(x) < k.

£o-minimization.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.

Application: MRI.

Find x with k-sparse x, i.e., supp(x) < k.

£o-minimization.

Extremely “non-convex”.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.

Application: MRI.

Find x with k-sparse x, i.e., supp(x) < k.

£o-minimization.
Extremely “non-convex”.

Find solution to min ||w||1,Ax = b.



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.
Application: MRI.
Find x with k-sparse x, i.e., supp(x) < k.
£o-minimization.
Extremely “non-convex”.
Find solution to min ||w||{, Ax = b.
Linear Program!



Compressed Sensing.

Find x with small number of non-zeros using linear measurements.
Ax =b.
Application: MRI.
Find x with k-sparse x, i.e., supp(x) < k.
£o-minimization.
Extremely “non-convex”.
Find solution to min ||w||{, Ax = b.
Linear Program! Exercise.
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Definition: A matrix A is RIP for & if any k-sparse vector x
(1 =8 )lIxll2 < | Axl[2 < (14 &) Ix]l2-

Theorem [Candes-Tao]: For any matrix RIP matrix A with
Ook + 03 < 1, for Ax = b with a k-sparse solution, then the solution to
min||y|l1,Ay = b, has y = x.



Fun with ¢4 and /5

X[+ < v/nllx]l2.



Fun with ¢4 and /5

X[+ < v/nllx]l2.

[Ix[ly = x- sgn(x) <[x|[2llsgn(x)ll2 < V/IIx]l



Fun with ¢4 and /5

X[+ < v/nllx]l2.

[Ix[ly = x- sgn(x) <[x|[2llsgn(x)ll2 < V/IIx]l

Ix[ly = x- sgn(x) < |[x|[2llsgn(x)ll2 < v/|supp(x)]l|x]l2



Fun with ¢4 and /5

X[+ < v/nllx]l2.

[Ix[ly = x- sgn(x) <[x|[2llsgn(x)ll2 < V/IIx]l

Ix[ly = x- sgn(x) < |[x|[2llsgn(x)ll2 < v/|supp(x)]l|x]l2

supp(x) is non-zero indices of x.



Fun with ¢4 and /5

Xl < V/nllx]|2-
[Ix[ly = x- sgn(x) <[x|[2llsgn(x)ll2 < V/IIx]l
IxIlt = x- sgn(x) < ||x]2llsgn(x)l2 < v/Tsupp(x)T |l
supp(x) is non-zero indices of x.
If concentrated mass, ||x||1 = ||X]|2-



Fun with ¢4 and /5

x|+ < V/nllx]|2.
[x[l1 = x-sgn(x) < [[x[l2llsgn(x)]l2 < /I x|l
[x[l1 = x-sgn(x) < [[x[|l2llsgn(x) |2 < v/Isupp(x)|[| x|
supp(x) is non-zero indices of x.

If concentrated mass, ||x||1 = ||x]|2-
x=(1,0,0,...,0).



Fun with ¢4 and /5

x|+ < V/nllx]|2.
[x[l1 = x-sgn(x) < [[x[l2llsgn(x)]l2 < /I x|l
[x[l1 = x-sgn(x) < [[x[|l2llsgn(x) |2 < v/Isupp(x)|[| x|
supp(x) is non-zero indices of x.

If concentrated mass, ||x||1 = ||x]|2-
x=(1,0,0,...,0).

If spreadout, /nl|x||2 < ||x]|1-



Fun with ¢4 and /5

x|+ < V/nllx]|2.
[x[l1 = x-sgn(x) < [[x[l2llsgn(x)]l2 < /I x|l
[x[l1 = x-sgn(x) < [[x[|l2llsgn(x) |2 < v/Isupp(x)|[| x|
supp(x) is non-zero indices of x.

If concentrated mass, ||x||1 = ||x]|2-
x=(1,0,0,...,0).

If spreadout, /nl|x||2 < ||x]|1-
x=(1,1,1,...,1).



Fun with ¢4 and /5

x|+ < V/nllx]|2.
[x[l1 = x-sgn(x) < [[x[l2llsgn(x)]l2 < /I x|l
[x[l1 = x-sgn(x) < [[x[|l2llsgn(x) |2 < v/Isupp(x)|[| x|
supp(x) is non-zero indices of x.

If concentrated mass, ||x||1 = ||x]|2-
x=(1,0,0,...,0).

If spreadout, /nl|x||2 < ||x]|1-
x=(1,1,1,...,1).

If kind of spread out, || x]l2 < |Ixl1-



Fun with ¢4 and /5

x|+ < V/nllx]|2.
[x[l1 = x-sgn(x) < [[x[l2llsgn(x)]l2 < /I x|l
[x[l1 = x-sgn(x) < [[x[|l2llsgn(x) |2 < v/Isupp(x)|[| x|
supp(x) is non-zero indices of x.

If concentrated mass, ||x||1 = ||x]|2-
x=(1,0,0,...,0).

If spreadout, /nl|x||2 < ||x]|1-
x=(1,1,1,...,1).

If kind of spread out, || x]l2 < |Ixl1-
x has k 1’s.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T c [n] that

Ixll2 < 2 lx1- ()



Almost Euclidean Nullspace.
Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T c [n] that
Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T c [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”
The nullspace of A, is almost euclidean.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.
Idea: Consider random r x n matrix A over GF(2).



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.
There are < X = 2(}/) vectors x with fewer than k zeros.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.
There are < X = 2(}/) vectors x with fewer than k zeros.
If r > log(2(})) = ©(klog £), plus union bound.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.
There are < X = 2(}/) vectors x with fewer than k zeros.
If r > log(2(})) = ©(klog £), plus union bound.
= Ax # 0 for all vectors that are k-sparse.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.
There are < X = 2(}/) vectors x with fewer than k zeros.
If r > log(2(})) = ©(klog £), plus union bound.
= Ax # 0 for all vectors that are k-sparse.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.
There are < X = 2(}/) vectors x with fewer than k zeros.
If r > log(2(})) = ©(klog £), plus union bound.
= Ax # 0 for all vectors that are k-sparse.

That is, random A has no sparse vectors in null-space.



Almost Euclidean Nullspace.

Theorem: For a random +1, d x n matrix A, and for any x in ker(A)
some d = Q(klog #) rows, has for any T C [n] that

Ixll2 < 2 lx1- ()
Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The ¢4 ball is closer to scaling of ¢» ball for vectors in the null-space.

Idea: Consider random r x n matrix A over GF(2).
For a vector x in GF(2).
A-x =0, with probability (1/2)" if r rows.
There are < X = 2(}/) vectors x with fewer than k zeros.
If r > log(2(})) = ©(klog £), plus union bound.
= Ax # 0 for all vectors that are k-sparse.

That is, random A has no sparse vectors in null-space.
Note: Parity check matrix of linear code!
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vrl < 5.
Proof:
[vrlle < VITHvrllz < VITIlvI2 < \/\TIﬁI\VIh < zlvlls
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Small projection onto small set of coordinates.

Consider A with property, x € ker(A), has || x|l2 < 757 I x]l1-
Lemma: For v € ker(A), T C [n], |T| <k,

lurls < L.
Proof:
lvrlly < VITHlvrllz < VITHIVI2 < VT Az VI < 21Vl
Intuition:

For any v € ker(A), the amount of mass in any small, k, set of
coordinates is small, Jv;.

Mass is spread out over more than k coordinates.
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See Jame Lee, TCS Blog, May 2008 for proof of Almost Euclidean
Nature of random subspaces.
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