
Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.

x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.

x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fixing ‖v‖2, sparse vectors have small ‖v‖1 norm, dense ones have
big ‖v‖1 norm.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program!

Exercise.

Compressed Sensing.

Find x with small number of non-zeros using linear measurements.

Ax = b.

Application: MRI.

Find x with k -sparse x , i.e., supp(x)≤ k .

`0-minimization.

Extremely “non-convex”.

Find solution to min‖w‖1,Ax = b.

Linear Program! Exercise.

Restricted Isometry Property (RIP) matrices.

Definition: A matrix A is RIP for δk if any k -sparse vector x
(1−δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2.

Theorem [Candes-Tao]: For any matrix RIP matrix A with
δ2k + δ3k < 1, for Ax = b with a k -sparse solution, then the solution to
min‖y‖1,Ay = b, has y = x .

Restricted Isometry Property (RIP) matrices.

Definition: A matrix A is RIP for δk if any k -sparse vector x
(1−δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2.

Theorem [Candes-Tao]: For any matrix RIP matrix A with
δ2k + δ3k < 1, for Ax = b with a k -sparse solution, then the solution to
min‖y‖1,Ay = b, has y = x .

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.

x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.

x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Fun with `1 and `2

‖x‖1 ≤
√

n‖x‖2.

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
‖x‖2

‖x‖1 = x ·sgn(x)≤ ‖x‖2‖sgn(x)‖2 ≤
√
|supp(x)|‖x‖2

supp(x) is non-zero indices of x .

If concentrated mass, ‖x‖1 = ‖x‖2.
x = (1,0,0, . . . ,0).

If spreadout,
√

n‖x‖2 ≤ ‖x‖1.
x = (1,1,1, . . . ,1).

If kind of spread out, ‖x‖2 ≤ 1√
k
‖x‖1.

x has k 1’s.

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.

Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).

For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).

A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.

There are < X = 2
(n

k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.

=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Almost Euclidean Nullspace.

Theorem: For a random ±1, d ×n matrix A, and for any x in ker(A)
some d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖x‖2 <

√
1√

16k
‖x‖1. (∗)

Intuition: “Mass in x is spread out over k entries.”

The nullspace of A, is almost euclidean.
Typical vectors are spread out: every vector is kind of spread out.

The `1 ball is closer to scaling of `2 ball for vectors in the null-space.

Idea: Consider random r ×n matrix A over GF (2).
For a vector x in GF (2).
A ·x = 0, with probability (1/2)r if r rows.
There are < X = 2

(n
k

)
vectors x with fewer than k zeros.

If r > log(2
(n

k

)
) = Θ(k log n

k), plus union bound.
=⇒ Ax 6= 0 for all vectors that are k -sparse.

That is, random A has no sparse vectors in null-space.

Note: Parity check matrix of linear code!

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2

≤
√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2

≤
√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1

< 1
4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:

For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Small projection onto small set of coordinates.

Consider A with property, x ∈ ker(A), has ‖x‖2 < 1
16
√

k
‖x‖1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T |< k ,
‖vT ‖1 < ‖v‖1

4 .

Proof:
‖vT ‖1 ≤

√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

√
|T | 1√

16k
‖v‖1 < 1

4‖v‖1

Intuition:
For any v ∈ ker(A), the amount of mass in any small, k , set of
coordinates is small, 1

4v1.

Mass is spread out over more than k coordinates.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w .

w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x .

Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction

? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ?

Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.

Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1

= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒
≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1

‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒
≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖

=⇒
≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖

≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1

≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.
If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1

> ‖x‖1.
If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Optimum is correct!

Want to find: k -sparse solution to Ax = b.

Recall: minimize ‖w‖1 with Aw = b.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k ,
‖vT ‖1 < ‖v‖1

4 .

Idea: any nonzero vector, v ∈ ker(A) has small projection onto any k
coordinates.

Consider solution w . w = x + v where v ∈ ker(A).

Will prove: v = 0 or w = x . Contradiction ? Hmmm.
Let T be non-zero coordinates of x .

‖w‖1 = ‖x + v‖1
= ‖xT + vT ‖1 +‖vT ‖1 ‖v‖ ≥ ‖vT ‖−‖vT ‖ =⇒

≥ ‖xT ‖1−‖vT ‖1 +‖vT ‖
≥ ‖xT ‖1−‖vT ‖1−‖vT ‖1 +‖v‖1
≥ ‖x‖1−2‖vT ‖1 +‖v‖1 > ‖x‖1.

If v is nonzero.

Imperfect Case.

What if x is mostly sparse?

σk (x) = min
supp(z)≤k

‖x−z‖1

“Amount of x outside of k coordinates.”

Theorem: If v ∈ ker(A) =⇒ ‖v‖2 ≤ 1
16k ‖v‖1, then solution to

min‖w‖1,Ax = b, has ‖x−w‖1 ≤ 4σk (x).

Still have.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 ,

‖vT ‖1 < ‖v‖1
4 .

Imperfect Case.

What if x is mostly sparse?

σk (x) = min
supp(z)≤k

‖x−z‖1

“Amount of x outside of k coordinates.”

Theorem: If v ∈ ker(A) =⇒ ‖v‖2 ≤ 1
16k ‖v‖1, then solution to

min‖w‖1,Ax = b, has ‖x−w‖1 ≤ 4σk (x).

Still have.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 ,

‖vT ‖1 < ‖v‖1
4 .

Imperfect Case.

What if x is mostly sparse?

σk (x) = min
supp(z)≤k

‖x−z‖1

“Amount of x outside of k coordinates.”

Theorem: If v ∈ ker(A) =⇒ ‖v‖2 ≤ 1
16k ‖v‖1, then solution to

min‖w‖1,Ax = b, has ‖x−w‖1 ≤ 4σk (x).

Still have.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 ,

‖vT ‖1 < ‖v‖1
4 .

Imperfect Case.

What if x is mostly sparse?

σk (x) = min
supp(z)≤k

‖x−z‖1

“Amount of x outside of k coordinates.”

Theorem: If v ∈ ker(A) =⇒ ‖v‖2 ≤ 1
16k ‖v‖1, then solution to

min‖w‖1,Ax = b, has ‖x−w‖1 ≤ 4σk (x).

Still have.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 ,

‖vT ‖1 < ‖v‖1
4 .

Imperfect Case.

What if x is mostly sparse?

σk (x) = min
supp(z)≤k

‖x−z‖1

“Amount of x outside of k coordinates.”

Theorem: If v ∈ ker(A) =⇒ ‖v‖2 ≤ 1
16k ‖v‖1, then solution to

min‖w‖1,Ax = b, has ‖x−w‖1 ≤ 4σk (x).

Still have.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 ,

‖vT ‖1 < ‖v‖1
4 .

Imperfect Case.

What if x is mostly sparse?

σk (x) = min
supp(z)≤k

‖x−z‖1

“Amount of x outside of k coordinates.”

Theorem: If v ∈ ker(A) =⇒ ‖v‖2 ≤ 1
16k ‖v‖1, then solution to

min‖w‖1,Ax = b, has ‖x−w‖1 ≤ 4σk (x).

Still have.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 ,

‖vT ‖1 < ‖v‖1
4 .

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .

Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1

≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1

≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on
‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖

‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖

‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1

≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.

‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1

≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1

‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1
≤ 2 ‖(x−w)‖

4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Proof of ‖w −x‖ ≤ 4σ(x).

Again: σk (x) = minsupp(z)≤k |x−z|1.

Lemma: For v ∈ ker(A), T ⊂ [n], |T | ≤ k
16 , ‖vT ‖1 < ‖v‖1

4 .
Proof of Theorem: T be k largest in magnitude coordinates of x .

‖x−w‖1 = ‖(x−w)T ‖1 +‖(x−w)T ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖wT ‖1
≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖w‖1−‖wT ‖1 triangle inequality on

‖w‖
‖wT ‖1 = ‖w‖1−‖wT ‖1 ≤ ‖x‖1.
‖x−w‖1 ≤ ‖(x−w)T ‖1 +‖xT ‖1 +‖x‖1−‖wT ‖1.

(∗) = 2‖xT ‖1 +‖xT ‖−‖wT ‖1 ≤ 2‖xT ‖1 +‖xT −wT ‖1
‖x−w‖1 ≤ 2‖(x−w)T ‖1 + 2‖xT ‖1

≤ 2 ‖(x−w)‖
4 + 2σ(x)

=⇒ ‖x−w‖1 ≤ 4σ(x).

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors.

=⇒ log
(n

k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.

Discusses distribution of X ·v for a vector v
and random ±1 vector X

Poor Man’s proof:
Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X

Poor Man’s proof:
Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.

ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.

Deviation in group ≤√ni/2 in each group is less than 1/2.
Probability groups cancel is small.

Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.

Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.

“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.

Union bound over those.

Almost Euclidean Matrices Proof.
Theorem:

For a random ±1, d ×n matrix, and for any x in with Ax some
d = Ω(k log n

k) rows, has for any T ⊂ [n] that
‖xT ‖2 <

√
1√

16k
‖xT ‖1. (∗)

Idea in GF(2):
Random dot product is 0 with probability 1/2. All r rows 0: (1/2)r .
Union bound over

(n
k

)
vectors. =⇒ log

(n
k

)
vectors are enough.

Too many vectors. Real proof is fancy.
Discusses distribution of X ·v for a vector v

and random ±1 vector X
Poor Man’s proof:

Group coordinates of v until groups of same size.
ni in each group.
Deviation in group ≤√ni/2 in each group is less than 1/2.

Probability groups cancel is small.
Lots of rows. So, norm is good on average for each group.
“Few” vectors with most of mass in small set of coordinates.
Union bound over those.

Credits

Moitra, MIT,6.854. Roughgarden, CS168, Stanford.

See Jame Lee, TCS Blog, May 2008 for proof of Almost Euclidean
Nature of random subspaces.

Credits

Moitra, MIT,6.854. Roughgarden, CS168, Stanford.

See Jame Lee, TCS Blog, May 2008 for proof of Almost Euclidean
Nature of random subspaces.

Possible Topics.

TODO: Long tailed distributions.

Interior Point Algorithms.

Matrix Concentration/Matrix Experts/Semidefinite Programs.

Coding Theory: Low Density Parity Check Codes or Expander codes.

Auctions. Mechanism Design.

Possible Topics.

TODO: Long tailed distributions.

Interior Point Algorithms.

Matrix Concentration/Matrix Experts/Semidefinite Programs.

Coding Theory: Low Density Parity Check Codes or Expander codes.

Auctions. Mechanism Design.

Possible Topics.

TODO: Long tailed distributions.

Interior Point Algorithms.

Matrix Concentration/Matrix Experts/Semidefinite Programs.

Coding Theory: Low Density Parity Check Codes or Expander codes.

Auctions. Mechanism Design.

Possible Topics.

TODO: Long tailed distributions.

Interior Point Algorithms.

Matrix Concentration/Matrix Experts/Semidefinite Programs.

Coding Theory: Low Density Parity Check Codes or Expander codes.

Auctions. Mechanism Design.

Possible Topics.

TODO: Long tailed distributions.

Interior Point Algorithms.

Matrix Concentration/Matrix Experts/Semidefinite Programs.

Coding Theory: Low Density Parity Check Codes or Expander codes.

Auctions. Mechanism Design.

Possible Topics.

TODO: Long tailed distributions.

Interior Point Algorithms.

Matrix Concentration/Matrix Experts/Semidefinite Programs.

Coding Theory: Low Density Parity Check Codes or Expander codes.

Auctions. Mechanism Design.

