Strategic Games.

N players.

Each player has strategy set:

$\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example: 2 players

Player 1: $\{\text{Defect, Cooperate}\}$.

Player 2: $\{\text{Defect, Cooperate}\}$.

Payoff:

$\begin{align*}
\text{CD} & : (3, 3) \\
\text{DC} & : (0, 5) \\
\text{DD} & : (5, 0) \\
\text{CC} & : (1, 1)
\end{align*}$
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Example:

2 players
Player 1: {Defect, Cooperate}.
Player 2: {Defect, Cooperate}.

Payoff: CD $\begin{cases} (3,3) \\ (0,5) \\ (5,0) \\ (1,1) \end{cases}$
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:
Player 1: \{Defect, Cooperate\}.
Player 2: \{Defect, Cooperate\}.
Payoff:
\[
\begin{align*}
C & \rightarrow (3,3) \\
D & \rightarrow (5,0) (1,1)
\end{align*}
\]
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).
Example:
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).
Example:
2 players
Strategic Games.

N players.
Each player has strategy set. \(\{ S_1, \ldots, S_N \} \).
Vector valued payoff function: \(u(s_1, \ldots, s_n) \) (e.g., \(\in \mathbb{R}^N \)).
Example:
2 players
Player 1: \{ Defect, Cooperate \}.
Player 2: \{ Defect, Cooperate \}.
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players

Player 1: $\{\text{Defect}, \text{Cooperate}\}$.

Player 2: $\{\text{Defect}, \text{Cooperate}\}$.

Payoff:
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players

Player 1: $\{\text{Defect, Cooperate}\}$.
Player 2: $\{\text{Defect, Cooperate}\}$.

Payoff:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?
Famous because?

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>
What is the best thing for the players to do?

Both cooperate. Payoff \((3,3)\).

If player 1 wants to do better, what does she do?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
What is the best thing for the players to do?

Both cooperate. Payoff (3, 3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5, 0)

What does player 2 do now?
Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>
Famous because?

What is the best thing for the players to do?
Both cooperate. Payoff (3, 3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5, 0)

What does player 2 do now?
Defects! Payoff (.1, .1).
What is the best thing for the players to do?
Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5,0)

What does player 2 do now?
Defects! Payoff (.1,.1).

Stable now!
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,.1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium:
What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.
Proving Nash.

n players.
Proving Nash.

\[n \text{ players.} \]

Player \(i \) has strategy set \(\{1, \ldots, m_i\} \).
n players.

Player i has strategy set $\{1, \ldots, m_i\}$.

Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Proving Nash.

n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Proving Nash.

n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
\[\forall i \forall x'_i, u_i(x'_i; x_i') \leq u_i(x). \]
n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
\[\forall i \forall x_i', u_i(x_{-i}; x_i') \leq u_i(x). \]
What is x?
Proving Nash.

n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
\[\forall i \forall x'_i, u_i(x_{-i}; x'_i) \leq u_i(x). \]
What is x? A vector of vectors: vector i is length m_i.
What is $x_{-i}; z$?
n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
$$\forall i \forall x'_i, u_i(x_{-i}; x'_i) \leq u_i(x).$$
What is x? A vector of vectors: vector i is length m_i.
What is $x_{-i} ; z$? x with x_i replaced by z.
What does say?
Proving Nash.

n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
\[\forall i \forall x_i', u_i(x_{-i}; x_i') \leq u_i(x). \]
What is x? A vector of vectors: vector i is length m_i.
What is $x_{-i}; z$? x with x_i replaced by z.
What does say? No new strategy for player i that is better!
n players.
Player i has strategy set $\{1, \ldots, m_i\}$.
Payoff function for player i: $u_i(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^n$).
Mixed strategy for player i: x_i is vector over strategies.
Nash Equilibrium: $x = (x_1, \ldots, x_N)$ where
\[\forall i \forall x'_i, u_i(x_{-i}; x'_i) \leq u_i(x). \]
What is x? A vector of vectors: vector i is length m_i.
What is $x_{-i}; z$? x with x_i replaced by z.
What does say? No new strategy for player i that is better!
Theorem: There is a Nash Equilibrium.
Brouwer Fixed Point Theorem.

Theorem: Every continuous function from a closed compact convex (c.c.c.) set to itself has a fixed point.

![Diagram](image_url)

What is the closed convex set here? The unit square? Or the unit interval?
Brouwer Fixed Point Theorem.

Theorem: Every continuous function from a closed compact convex (c.c.c.) set to itself has a fixed point.

What is the closed convex set here?
Brouwer Fixed Point Theorem.

Theorem: Every continuous function from a closed and compact convex (c.c.c.) set to itself has a fixed point.

What is the closed convex set here? The unit square?
Brouwer Fixed Point Theorem.

Theorem: Every continuous from a closed compact convex (c.c.c.) set to itself has a fixed point.

What is the closed convex set here? The unit square? Or the unit interval?
Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
Brouwer implies Nash.

The set of mixed strategies \(x \) is closed convex set. That is, \(x = (x_1, \ldots, x_n) \) where \(|x_i|_1 = 1 \).
Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.
Brouwer implies Nash.

The set of mixed strategies x is closed convex set. That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$
Brouwer implies Nash.

The set of mixed strategies x is closed convex set. That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$ where $z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z_i') - \|z_i - x_i\|_2^2 \right]$.

Unique minimum as quadratic. z_i is continuous in x. Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix. $\phi(\cdot)$ is continuous on the closed convex set.

Brouwer: Has a fixed point: $\phi(\hat{z}) = \hat{z}$.
Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$
where $z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z'_i) - \|z_i - x_i\|^2 \right]$.

Unique minimum as quadratic.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$

where $z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z'_i) - \|z_i - x_i\|_2^2 \right]$.

Unique minimum as quadratic.

z_i is continuous in x.

Brouwer implies Nash.

The set of mixed strategies x is closed convex set. That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$ where $z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z') - \|z_i - x_i\|_2^2 \right]$.

Unique minimum as quadratic. z_i is continuous in x.

Mixed strategy utilities is polynomial of entries of x
Brouwer implies Nash.

The set of mixed strategies \(x \) is closed convex set.

That is, \(x = (x_1, \ldots, x_n) \) where \(|x_i|_1 = 1 \).

\(\alpha x' + (1 - \alpha)x'' \) is a mixed strategy.

Define \(\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \)

where \(z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) - \|z_i - x_i\|_2^2 \right] \).

Unique minimum as quadratic.

\(z_i \) is continuous in \(x \).

Mixed strategy utilities is polynomial of entries of \(x \)

with coefficients being payoffs in game matrix.
Brouwer implies Nash.

The set of mixed strategies x is closed convex set. That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$ where $z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z'_i) - \|z_i - x_i\|_2^2 \right]$.

Unique minimum as quadratic. z_i is continuous in x.

Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix.

$\phi(\cdot)$ is continuous on the closed convex set.
Brouwer implies Nash.

The set of mixed strategies x is closed convex set. That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$

where $z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z'_i) - \|z_i - x_i\|_2^2 \right]$.

Unique minimum as quadratic.

z_i is continuous in x.

Mixed strategy utilities is polynomial of entries of x with coefficients being payoffs in game matrix.

$\phi(\cdot)$ is continuous on the closed convex set.

Brouwer:
The set of mixed strategies x is closed convex set.

That is, $x = (x_1, \ldots, x_n)$ where $|x_i|_1 = 1$.

$\alpha x' + (1 - \alpha)x''$ is a mixed strategy.

Define $\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n)$

where $z_i = \arg\max_{z'_i} \left[u_i(x_i; z'_i) - \|z_i - x_i\|^2_2 \right]$.

Unique minimum as quadratic.

z_i is continuous in x.

Mixed strategy utilities is polynomial of entries of x
with coefficients being payoffs in game matrix.

$\phi(\cdot)$ is continuous on the closed convex set.

Brouwer: Has a fixed point: $\phi(\hat{z}) = \hat{z}$.
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \] where
\[z_i = \arg \max_{z'_i} \left[u_i(x - i; z'_i) + \|z_i - x_i\|^2 \right]. \]
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where } \]
\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \|z_i - x_i\|_2^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]
\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \| z_i - x_i \|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]

\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \| z_i - x_i \|_2^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where

\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{(z)}) + \delta. \]
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]
\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \|z_i - x_i\|_2^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i) \).
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]

\[z_i = \arg\max_{z_i'} \left[u_i(x_{-i}; z_i') + \|z_i - x_i\|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where

\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat(z)) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i). \)

\[u_i(z_{-i}; \hat{y}_i) + \|\hat{z}_i - y_i\|^2? \]
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]

\[z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z'_i) + \|z_i - x_i\|^2_2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where

\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i). \)

\[u_i(z_{-i}; \hat{y}_i) + \|\hat{z}_i - y_i\|^2? \]

\[u_i(\hat{z}) + \alpha(u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \|\hat{z}_i - y_i\|^2 \]
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]
\[z_i = \arg \max_{z_i'} \left[u_i(x_{-i}; z_i') + \|z_i - x_i\|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i) \).
\[u_i(\hat{z}_{-i}; \hat{y}_i) + \|\hat{z}_i - y_i\|^2? \]
\[u_i(\hat{z}) + \alpha(u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \|\hat{z}_i - y_i\|^2 \]
\[= u_i(\hat{z}) + \alpha \delta - \alpha^2 \|y_i - \hat{z}_i\|^2 \]
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]
\[z_i = \arg\max_{z'_i} \left[u_i(x_{-i}; z'_i) + \|z_i - x_i\|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i). \)
\[u_i(\hat{z}_{-i}; \hat{y}_i) + \|\hat{z}_i - y_i\|^2? \]
\[u_i(\hat{z}) + \alpha(u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \|\hat{z}_i - y_i\|^2 \]
\[= u_i(\hat{z}) + \alpha\delta - \alpha^2 \|y_i - \hat{z}_i\|^2 > u_i(\hat{z}). \]
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]
\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \| z_i - x_i \|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i). \)
\[u_i(\hat{z}_{-i}; \hat{y}_i) + \| \hat{z}_i - y_i \|^2? \]
\[u_i(\hat{z}) + \alpha(u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \| \hat{z}_i - y_i \|^2 \]
\[= u_i(\hat{z}) + \alpha \delta - \alpha^2 \| y_i - \hat{z}_i \|^2 > u_i(\hat{z}). \]

The last inequality true when \(\alpha < \frac{\delta}{\| y_i - z_i \|^2}. \)
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \] where

\[z_i = \arg \max_{z_i'} \left[u_i(x_{-i}; z_i') + \| z_i - x_i \|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where

\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}(z)) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i) \).

\[u_i(z_{-i}; \hat{y}_i) + \| \hat{z}_i - y_i \|^2? \]

\[u_i(\hat{z}) + \alpha(u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \| \hat{z}_i - y_i \|^2 \]

\[= u_i(\hat{z}) + \alpha \delta - \alpha^2 \| y_i - \hat{z}_i \|^2 \]

\[> u_i(\hat{z}). \]

The last inequality true when \(\alpha < \frac{\delta}{\| y_i - z_i \|^2} \).

Thus, \(\hat{z} \) not a fixed point!
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where } \\
\quad z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \|z_i - x_i\|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where

\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}(z)) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha (y_i - z_i) \).

\[u_i(\hat{z}_{-i}; \hat{y}_i) + \|\hat{z}_i - y_i\|^2? \]

\[u_i(\hat{z}) + \alpha (u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \|\hat{z}_i - y_i\|^2 \]
\[= u_i(\hat{z}) + \alpha \delta - \alpha^2 \|y_i - \hat{z}_i\|^2 > u_i(\hat{z}). \]

The last inequality true when \(\alpha < \frac{\delta}{\|y_i - z_i\|^2} \).

Thus, \(\hat{z} \) not a fixed point!
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \] where
\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \|z_i - x_i\|^2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
\[u_i(\hat{z}_{-i}; y_i) > u_i((\hat{z})) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i) \).
\[u_i(\hat{z}_{-i}; \hat{y}_i) + \|\hat{z}_i - y_i\|^2? \]
\[u_i(\hat{z}) + \alpha(u_i(\hat{z}) + \delta - u_i(\hat{z})) - \alpha^2 \|\hat{z}_i - y_i\|^2 \]
\[= u_i(\hat{z}) + \alpha \delta - \alpha^2 \|y_i - \hat{z}_i\|^2 > u_i(\hat{z}). \]

The last inequality true when \(\alpha < \frac{\delta}{\|y_i - z_i\|^2} \).

Thus, \(\hat{z} \) not a fixed point!

Thus, fixed point is Nash.
Fixed Point is Nash.

\[\phi(x_1, \ldots, x_n) = (z_1, \ldots, z_n) \text{ where} \]
\[z_i = \arg \max_{z'_i} \left[u_i(x_{-i}; z'_i) + \| z_i - x_i \|^2_2 \right]. \]

Fixed point: \(\phi(\hat{z}) = \hat{z} \)

If \(\hat{z} \) not Nash, there is \(i, y_i \) where
\[u_i(\hat{z}_{-i}; y_i) > u_i(\hat{z}) + \delta. \]

Consider \(\hat{y}_i = \hat{z}_i + \alpha(y_i - z_i) \).
\[u_i(\hat{z}_{-i}; \hat{y}_i) + \| \hat{z}_i - y_i \|^2 \]
\[= u_i(\hat{z}) + \alpha \delta - \alpha^2 \| y_i - \hat{z}_i \|^2 > u_i(\hat{z}). \]

The last inequality true when \(\alpha < \frac{\delta}{\| y_i - z_i \|^2}. \)

Thus, \(\hat{z} \) not a fixed point!

Thus, fixed point is Nash. \(\square \)
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1,\ldots, n+1\}$.
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.
Sperner’s Lemma

For any \(n + 1 \)-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored \(\{1, \ldots, n + 1\} \).

The coloring is proper if the extremal vertices are differently colored. Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

![Diagram of a triangle with colored vertices]
Sperner’s Lemma

For any $n + 1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n + 1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.
Sperner’s Lemma

For any \(n+1 \)-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored \(\{1, \ldots, n+1\} \).

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Sperner’s Lemma

For any \(n + 1 \)-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored \(\{1, \ldots, n + 1\} \).

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.

Where is multicolored?
Where is multicolored?
Sperner’s Lemma

For any $n+1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored? And now?
Sperner’s Lemma

For any $n + 1$-dimensional simplex which is subdivided into smaller simplices.

All vertices are colored $\{1, \ldots, n+1\}$.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.

Where is multicolored?

Where is multicolored? And now?

By induction!
Proof of Sperner’s.

One dimension:
Proof of Sperner’s.

One dimension: Subdivision of [0, 1].
Proof of Sperner’s.

One dimension: Subdivision of \([0, 1]\).
Endpoints colored differently.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
Endpoints colored differently.
Odd number of multicolored edges.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Proof of Sperner’s.

One dimension: Subdivision of $[0,1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1,2)$ edges.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.

Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider $(1, 2)$ edges.
Separates two regions.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
Consider $(1, 2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.

Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider $(1, 2)$ edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1, 2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
 one more $(1, 2)$ than $(2, 1)$.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1, 2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
 one more $(1, 2)$ than $(2, 1)$.
There exist a region with excess in-degree.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1, 2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.

Exterior region has excess out-degree:
 one more $(1, 2)$ than $(2, 1)$.

There exist a region with excess in-degree.
 $(1, 2, 1)$ triangle has in-degree=out-degree.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1, 2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
 one more $(1, 2)$ than $(2, 1)$.
There exist a region with excess in-degree.
 $(1, 2, 1)$ triangle has in-degree= outgoing.
 $(2, 1, 2)$ triangle has in-degree= outgoing.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1, 2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.

Exterior region has excess out-degree:
 one more $(1, 2)$ than $(2, 1)$.

There exist a region with excess in-degree.
 $(1, 2, 1)$ triangle has in-degree=out-degree.
 $(2, 1, 2)$ triangle has in-degree=out-degree.

Must be $(1, 2, 3)$ triangle.
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.

Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider $(1, 2)$ edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1, 2)$ than $(2, 1)$.
There exist a region with excess in-degree.
$(1, 2, 1)$ triangle has in-degree=out-degree.
$(2, 1, 2)$ triangle has in-degree=out-degree.
Must be $(1, 2, 3)$ triangle.
Must be odd number!
Proof of Sperner’s.

One dimension: Subdivision of $[0, 1]$.
Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider $(1, 2)$ edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more $(1, 2)$ than $(2, 1)$.
There exist a region with excess in-degree.
$(1, 2, 1)$ triangle has in-degree=out-degree.
$(2, 1, 2)$ triangle has in-degree=out-degree.

Must be $(1, 2, 3)$ triangle.
Must be odd number!
Proof of Sperner’s.

One dimension: Subdivision of $[0,1]$.
 Endpoints colored differently.
 Odd number of multicolored edges.

Two dimensions.
 Consider $(1,2)$ edges.
 Separates two regions.
 Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
 one more $(1,2)$ than $(2,1)$.
There exist a region with excess in-degree.

$(1,2,1)$ triangle has in-degree=out-degree.
$(2,1,2)$ triangle has in-degree=out-degree.

Must be $(1,2,3)$ triangle.
Must be odd number!
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.
Q: counts “almost rainbow” cells;
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.

Note: exactly one color in $\{1, \ldots, n\}$ used twice.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.

Number of Face-Rainbow Cell Adjacencies:

$$R + 2Q = X + 2Y$$

Rainbow faces on one face of big simplex.

Induction \Rightarrow Odd number of rainbow faces.
\rightarrow X is odd \rightarrow $X + 2Y$ is odd

R is odd.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
 Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.
 X: number of boundary rainbow faces.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
 Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.
 X: number of boundary rainbow faces.
 Y: number of internal rainbow faces.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
 Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.
 X: number of boundary rainbow faces.
 Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies:
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1,\ldots,n\}$.

Note: exactly one color in $\{1,\ldots,n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1,\ldots,n\}$.

X: number of boundary rainbow faces.

Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
 Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.
 X: number of boundary rainbow faces.
 Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.

X: number of boundary rainbow faces.
Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1,\ldots,n\}$.
 Note: exactly one color in $\{1,\ldots,n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1,\ldots,n\}$.
 X: number of boundary rainbow faces.
 Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.
 Induction \implies Odd number of rainbow faces.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.

X: number of boundary rainbow faces.

Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.

Induction \implies Odd number of rainbow faces.

\rightarrow X is odd
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1,\ldots,n\}$.

Note: exactly one color in $\{1,\ldots,n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1,\ldots,n\}$.

X: number of boundary rainbow faces.

Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.

Induction \implies Odd number of rainbow faces.

$\implies X$ is odd $\implies X + 2Y$ is odd
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
 Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.
 X: number of boundary rainbow faces.
 Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.
 Induction \implies Odd number of rainbow faces.
 $\rightarrow X$ is odd $\rightarrow X + 2Y$ is odd $R + 2Q$ is odd.
$n + 1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n + 1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.
 Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n - 1$-dimensional, vertices colored with $\{1, \ldots, n\}$.
 X: number of boundary rainbow faces.
 Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.
 Induction \implies Odd number of rainbow faces.
 $\rightarrow X$ is odd $\rightarrow X + 2Y$ is odd $R + 2Q$ is odd.

R is odd.
$n+1$-dimensional Sperner.

R: counts “rainbow” cells; has all $n+1$ colors.

Q: counts “almost rainbow” cells; has $\{1, \ldots, n\}$.

Note: exactly one color in $\{1, \ldots, n\}$ used twice.

Rainbow face: $n-1$-dimensional, vertices colored with $\{1, \ldots, n\}$.

X: number of boundary rainbow faces.

Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: $R + 2Q = X + 2Y$

Rainbow faces on one face of big simplex.

Induction \implies Odd number of rainbow faces.

\rightarrow X is odd \rightarrow $X + 2Y$ is odd $R + 2Q$ is odd.

R is odd.
Sperner to Brouwer

Consider simplex: S.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots
x_j is subdivision of S.
Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of S_j.
Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.
For a vertex at x, Assign smallest i with $f(x)_i < x_i$.
Yes.
Valid?
Simplex face is at $x = 0$ for opposite j.
Thus $f(x)_j$ cannot be smaller and is not colored j.
Rainbow cell, in S_j with vertices $x_j, 1, \ldots, x_j, n + 1$.
Consider simplex S.
Closed compact sets can be mapped to this.
Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \to S$.

Infinite sequence of subdivisions: $S_1, S_2, ...$

S_j is subdivision of S_{j-1}. Size of cell $\to 0$ as $j \to \infty$.
Sperner to Brouwer

Consider simplex S.
Closed compact sets can be mapped to this.
Let $f(x) : S \to S$.

Infinite sequence of subdivisions: $\mathcal{S}_1, \mathcal{S}_2, \ldots$

\mathcal{S}_j is subdivision of \mathcal{S}_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of \mathcal{S}_j.

Consider simplex S. Closed compact sets can be mapped to this. Let $f(x) : S \to S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.

Let $f(x): S \rightarrow S$.

Infinite sequence of subdivisions: $\mathcal{S}_1, \mathcal{S}_2, \ldots$

\mathcal{S}_j is subdivision of \mathcal{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of \mathcal{S}_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let \(f(x) : S \rightarrow S \).

Infinite sequence of subdivisions: \(S_1, S_2, \ldots \)

\(S_j \) is subdivision of \(S_{j-1} \). Size of cell \(\rightarrow 0 \) as \(j \rightarrow \infty \).

A coloring of \(S_j \). Recall \(\sum_i x_i = 1 \) in simplex.

Big simplex vertices \(e_j = (0, 0, \ldots, 1, \ldots, 0) \) get \(j \).

For a vertex at \(x \).
Sperner to Brouwer

Consider simplex S. Closed compact sets can be mapped to this. Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: $\mathcal{S}_1, \mathcal{S}_2, \ldots$

\mathcal{S}_j is subdivision of \mathcal{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of \mathcal{S}_j. Recall $\sum_i x_i = 1$ in simplex. Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.

Assign smallest i with $f(x)_i < x_i$.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \to S$.

Infinite sequence of subdivisions: $\mathcal{S}_1, \mathcal{S}_2, \ldots$

\mathcal{S}_j is subdivision of \mathcal{S}_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of \mathcal{S}_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0,0,\ldots,1,\ldots,0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists?
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \to S$.

Infinite sequence of subdivisions: $\mathcal{I}_1, \mathcal{I}_2, \ldots$

\mathcal{I}_j is subdivision of \mathcal{I}_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of \mathcal{I}_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes.
Sperner to Brouwer

Consider simplex: S.

Closed compact sets can be mapped to this.

Let $f(x): S \to S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.

Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.

Assign smallest i with $f(x)_i < x_i$.

Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.
Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.

Infinite sequence of subdivisions: $\mathcal{S}_1, \mathcal{S}_2, \ldots$

\mathcal{S}_j is subdivision of \mathcal{S}_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of \mathcal{S}_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid?
Consider simplex: S. Closed compact sets can be mapped to this. Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.

Big simplex vertices $e_j = (0,0,\ldots,1,\ldots,0)$ get j.

For a vertex at x.

Assign smallest i with $f(x)_i < x_i$.

Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_j = 0$ for opposite j.
Sperner to Brouwer

Consider simplex S.
Closed compact sets can be mapped to this.
Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_j = 0$ for opposite j.
Thus $f(x)_j$ cannot be smaller and is not colored j.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \to S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_j = 0$ for opposite j.
Thus $f(x)_j$ cannot be smaller and is not colored j.

Rainbow cell, in S_j with vertices x_j^1, \ldots, x_j^{n+1}.
Consider simplex S.
Closed compact sets can be mapped to this.
Let $f(x) : S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_j = 0$ for opposite j.
Thus $f(x)_j$ cannot be smaller and is not colored j.

Rainbow cell, in S_j with vertices $x^{j,1}, \ldots, x^{j,n+1}$.
Sperner to Brouwer

Consider simplex: S.
Closed compact sets can be mapped to this.
Let $f(x) : S \to S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\to 0$ as $j \to \infty$.

A coloring of S_j. Recall $\sum x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_j = 0$ for opposite j.
Thus $f(x)_j$ cannot be smaller and is not colored j.

Rainbow cell, in S_j with vertices $x^{j,1}, \ldots, x^{j,n+1}$.
Sperner to Brouwer

Consider simplex: S.

Closed compact sets can be mapped to this.
Let $f(x): S \rightarrow S$.

Infinite sequence of subdivisions: S_1, S_2, \ldots

S_j is subdivision of S_{j-1}. Size of cell $\rightarrow 0$ as $j \rightarrow \infty$.

A coloring of S_j. Recall $\sum_i x_i = 1$ in simplex.
Big simplex vertices $e_j = (0, 0, \ldots, 1, \ldots, 0)$ get j.

For a vertex at x.
Assign smallest i with $f(x)_i < x_i$.
Exists? Yes. $\sum_i f(x)_i = \sum_i x_i$.

Valid? Simplex face is at $x_j = 0$ for opposite j.
Thus $f(x)_j$ cannot be smaller and is not colored j.

Rainbow cell, in S_j with vertices $x_j, 1, \ldots, x_j, n+1$.

\[
\begin{array}{c}
\begin{array}{ccc}
\Delta & \Delta \\
& \Delta \\
\end{array}
\end{array}
\]
Rainbow Cells to Brower.

Rainbow cell, in S_j with vertices $x^{j,1}, \ldots, x^{j,n+1}$.
Rainbow Cells to Brower.

Rainbow cell, in S_j with vertices $x_j^{i,1}, \ldots, x_j^{i,n+1}$.

Each set of points x_j^i is an infinite set in S.
Rainbow Cells to Brower.

Rainbow cell, in S_j with vertices $x_j^{i,1}, \ldots, x_j^{i,n+1}$.

Each set of points x_i^j is an infinite set in S.
→ convergent subsequence
Rainbow Cells to Brower.

Rainbow cell, in J_j with vertices x_j^1, \ldots, x_j^{n+1}.

Each set of points x_i^j is an infinite set in S.

\rightarrow convergent subsequence \rightarrow has limit point.

But $f(x_j^i) < x_j^i$ for all j and $\lim_{j \to \infty} x_j^i = x^*$.

Thus, $(f(x^*))^i \leq x^*_i$ by continuity.

Contradiction.
Rainbow Cells to Brower.

Rainbow cell, in S_j with vertices $x_j^{i,1}, \ldots, x_j^{i,n+1}$.

Each set of points x_j^i is an infinite set in S.

\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
Rainbow Cells to Brower.

Rainbow cell, in \mathcal{S}_j with vertices $x_j^{i,1}, \ldots, x_j^{i,n+1}$.

Each set of points x_i^j is an infinite set in S.

\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.

x^* is limit point.
Rainbow Cells to Brower.

Rainbow cell, in \mathcal{S}_j with vertices x_j^1, \ldots, x_j^{n+1}.

Each set of points x_j^i is an infinite set in S.

→ convergent subsequence → has limit point.
→ All have same limit point as they get closer together.
x^* is limit point.

$f(x)$ has no fixed point $\implies f(x)_i \geq x_i$ for some i. ($\sum_i x_i = 1$).
Rainbow cell, in \(S \) with vertices \(x^j, 1, \ldots, x^j, n+1 \).

Each set of points \(x^j \) is an infinite set in \(S \).

\(\rightarrow \) convergent subsequence \(\rightarrow \) has limit point.

\(\rightarrow \) All have same limit point as they get closer together.

\(x^* \) is limit point.

\(f(x) \) has no fixed point \(\implies f(x)_i \geq x_i \) for some \(i \). \((\sum_i x_i = 1)\).

But \(f(x^j)_i < x^j, i \) for all \(j \) and
Rainbow Cells to Brower.

Rainbow cell, in S_j with vertices x_j^1, \ldots, x_j^{n+1}.

Each set of points x_j^i is an infinite set in S.

→ convergent subsequence → has limit point.
→ All have same limit point as they get closer together.

x^* is limit point.

$f(x)$ has no fixed point $\iff f(x)_i \geq x_i$ for some i. ($\sum_i x_i = 1$).

But $f(x_j^i)_i < x_j^i$ for all j and

$\lim_{j \to \infty} x_j^i = x^*$.
Rainbow Cells to Brower.

Rainbow cell, in \mathcal{S}_j with vertices $x^j, x^j, 1, \ldots, x^j, n+1$.

Each set of points x^j_i is an infinite set in S.

→ convergent subsequence → has limit point.
→ All have same limit point as they get closer together.
x^* is limit point.

$f(x)$ has no fixed point $\implies f(x)_i \geq x_i$ for some i. ($\sum_i x_i = 1$).

But $f(x^j,i)_i < x^j,i$ for all j and
$\lim_{j \to \infty} x^j,i = x^*$.
Rainbow Cells to Brower.

Rainbow cell, in S_j with vertices $x_j^{i,1}, \ldots, x_j^{i,n+1}$.

Each set of points x_j^i is an infinite set in S.

\rightarrow convergent subsequence \rightarrow has limit point.

\rightarrow All have same limit point as they get closer together.

x^* is limit point.

$f(x)$ has no fixed point $\implies f(x)_i \geq x_i$ for some i. ($\sum_i x_i = 1$).

But $f(x_j^{i,i})_i < x_j^{i,i}$ for all j and

$\lim_{j \to \infty} x_j^{i,i} = x^*$.

Thus, $(f(x^*))_i \leq x_i^*$ by continuity.
Rainbow Cells to Brower.

Rainbow cell, in \mathcal{S}_j with vertices $x^{j,1}, \ldots, x^{j,n+1}$.

Each set of points x^j_i is an infinite set in S.

\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^* is limit point.

$f(x)$ has no fixed point $\implies f(x)_i \geq x_i$ for some i. ($\sum_i x_i = 1$).

But $f(x^{j,i})_i < x^{j,i}_i$ for all j and
$\lim_{j \rightarrow \infty} x^{j,i}_i = x^*$.

Thus, $(f(x^*))_i \leq x^*_i$ by continuity. Contradiction.
Rainbow cells to Brower.

Rainbow cell, in S_j with vertices $x^{j,1}_i, \ldots, x^{j,n+1}_i$.

Each set of points x^{j}_i is an infinite set in S.

\rightarrow convergent subsequence \rightarrow has limit point.
\rightarrow All have same limit point as they get closer together.
x^* is limit point.

$f(x)$ has no fixed point $\implies f(x)_i \geq x_i$ for some i. ($\sum_i x_i = 1$).

But $f(x^{j,i})_i < x^{j,i}_i$ for all j and
$\lim_{j \to \infty} x^{j,i} = x^*$.

Thus, $(f(x^*))_i \leq x^*_i$ by continuity. Contradiction.
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with an unbalanced node (indegree \(\neq\) outdegree) must have another.”
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with an unbalanced node (indegree \neq outdegree) must have another.”

Exponentially large graph with vertex set $\{0, 1\}^n$.
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”
“Graph with an unbalanced node (indegree ≠ outdegree) must have another.”

Exponentially large graph with vertex set \(\{0, 1\}^n \).

Circuit given name of graph finds previous, \(P(v) \), and next, \(N(v) \).
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”
“Graph with an unbalanced node (indegree \neq outdegree) must have another.”

Exponentially large graph with vertex set $\{0, 1\}^n$.

Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$.

Sperner: local information gives neighbor.
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with an unbalanced node (indegree ≠ outdegree) must have another.”

Exponentially large graph with vertex set \(\{0, 1\}^n \).

Circuit given name of graph finds previous, \(P(v) \), and next, \(N(v) \).

Sperner: local information gives neighbor.

END OF THE LINE. Given circuits \(P \) and \(N \) as above, if \(O^n \) is unbalanced node in the graph, find another unbalanced node.
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with an unbalanced node (indegree \(\neq \) outdegree) must have another.”

Exponentially large graph with vertex set \(\{0, 1\}^n \).

Circuit given name of graph finds previous, \(P(v) \), and next, \(N(v) \).

Sperner: local information gives neighbor.

END OF THE LINE. Given circuits \(P \) and \(N \) as above, if \(O^n \) is unbalanced node in the graph, find another unbalanced node.

PPAD is search problems poly-time reducible to END OF LINE.
Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”
“Graph with an unbalanced node (indegree \neq outdegree) must have another.”

Exponentially large graph with vertex set $\{0, 1\}^n$.
Circuit given name of graph finds previous, $P(v)$, and next, $N(v)$.
Sperner: local information gives neighbor.

END OF THE LINE. Given circuits P and N as above, if O^n is an unbalanced node in the graph, find another unbalanced node.

PPAD is search problems poly-time reducible to END OF LINE.

NASH \rightarrow BROUWER \rightarrow SPERNER \rightarrow END OF LINE \in PPAD.
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.”
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps \(n \) elements to \(n - 1 \) elements, it must have a collision.”

All exist: not \(NP!! \)
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!!! Answer is yes.
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!!! Answer is yes. How to find quickly?
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!! Answer is yes. How to find quickly?

Reduction:
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n – 1$ elements, it must have a collision.”

All exist: not NP!!! Answer is yes. How to find quickly?

Reduction:

END OF LINE
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!! Answer is yes. How to find quickly?

Reduction:

END OF LINE → Piecewise Linear Brouwer
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps \(n \) elements to \(n - 1 \) elements, it must have a collision.”

All exist: not \(NP \)!!! Answer is yes. How to find quickly?

Reduction:

END OF LINE \(\rightarrow \) Piecewise Linear Brouwer \(\rightarrow \) 3D–Sperner\(\rightarrow \)
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!!! Answer is yes. How to find quickly?

Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3D–Sperner \rightarrow Nash.
PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!! Answer is yes. How to find quickly?

Reduction:

END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3D–Sperner\rightarrow Nash.

Uh oh.
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.
PLS: “Every directed acyclic graph must have a sink.”
PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”
All exist: not NP!! Answer is yes. How to find quickly?
Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3D–Sperner \rightarrow Nash.
Uh oh. Nash is PPAD-complete.
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps \(n \) elements to \(n - 1 \) elements, it must have a collision.”

All exist: not \(NP!!! \) Answer is yes. How to find quickly?

Reduction:
END OF LINE → Piecewise Linear Brouwer → 3D–Sperner → Nash.

Uh oh. Nash is PPAD-complete.
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps \(n \) elements to \(n-1 \) elements, it must have a collision.”

All exist: not \(NP \)!!! Answer is yes. How to find quickly?

Reduction:
END OF LINE → Piecewise Linear Brouwer → 3D–Sperner→ Nash.

Uh oh. Nash is PPAD-complete.

Who invented?
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!! Answer is yes. How to find quickly?

Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3D–Sperner \rightarrow Nash.

Uh oh. Nash is PPAD-complete.

Who invented? PapaD
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n-1$ elements, it must have a collision.”

All exist: not NP!!! Answer is yes. How to find quickly?

Reduction:
END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3D–Sperner \rightarrow Nash.

Uh oh. Nash is PPAD-complete.

Who invented? PapaD and PPAD.
Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to $n - 1$ elements, it must have a collision.”

All exist: not NP!! Answer is yes. How to find quickly?

Reduction:

END OF LINE \rightarrow Piecewise Linear Brouwer \rightarrow 3D–Sperner \rightarrow Nash.

Uh oh. Nash is PPAD-complete.

Who invented? PapaD and PPAD. Perfect together!