Strategic Games.

N players.

Each player has strategy set. {Si,...,Sn}-

Vector valued payoff function: u(sy,...,sn) (e.g., € RN).
Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.

Payoff:
C D
C | (33 | (0,5
D | (50 | (1,1)

Famous because?

c D
c| (33 (05
D| (50) | (.1.1)

What is the best thing for the players to do?
Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?
Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.

Proving Nash.

n players.
Player i has strategy set {1,...,m;}.
Payoff function for player i: uj(s1,...,sn) (e.g., € R").
Mixed strategy for player i: x; is vector over strategies.
Nash Equilibrium: x = (x4,...,xy) Where

Vivx], ui(x_i; x{) < ui(x).

What is x? A vector of vectors: vector i is length m;.
What is x_;; z? x with x; replaced by z.
What does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.

Brouwer Fixed Point Theorem.
Theorem: Every continuous from from a closed compact convex
(c.c.c.) set to itself has a fixed point.

1

Fixed point!

What is the closed convex set here?
The unit square? Or the unit interval?

Brouwer implies Nash.

The set of mixed strategies x is closed convex set.
Thatis, x = (X1,...,Xn) where |xj|; = 1.

ax'+ (1 —a)x” is a mixed strategy.
Define  ¢(x1,...,Xn) = (21,...,2n)

where z; = argmax; |ui(X_j.27) — ||z - x,-Hg] .

Unique minimum as quadratic.
zj is continuous in x.
Mixed strategy utilities is polynomial of entries of x
with coefficients being payoffs in game matrix.

¢(-) is continuous on the closed convex set.
Brouwer: Has a fixed point: ¢(2) = 2.

Fixed Point is Nash.

o(X1,...,Xn) =(21,...,2n) where

Z; = argmaxy [Ui(x—f;z;) +llzi— xill3|-
Fixed point: ¢(2) =2
If Z not Nash, there is i, y; where

ui(2-i:7) > ui((2)) + 6.
Consider j; = 2; + a(y; — z).
U2 9i) + 1z - yillP?
Ui(2)+0¢(ur‘(2)+5*fli(?))*az\\ff*}’fljz .
= ui(2) + a8 — a®|ly; — 2| > ui(2).
The last inequality true when o < ﬁ.
Thus, Z not a fixed point!

Thus, fixed point is Nash.




Sperner’s Lemma
For any n+ 1-dimensional simplex which is subdivided into smaller
simplices.
All vertices are colored {1,...,n+1}.
The coloring is proper if the extremal vertices are differently colored.
Each face only contains the colors of the incident corners.
Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored? And now?

By induction!

Proof of Sperner’s.

One dimension: Subdivision of [0, 1].

Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider (1,2) edges.
Separates two regions.
Dual edge connects regions with 1 on right.
Exterior region has excess out-degree:
one more (1,2) than (2,1).
There exist a region with excess in-degree.

(1,2,1) triangle has in-degree=out-degree. —
(2,1,2) triangle has in-degree=out-degree.

Must be (1,2,3) triangle.

Must be odd number!

n—+ 1-dimensional Sperner.

R: counts “rainbow” cells; has all n+ 1 colors.

Q: counts “almost rainbow” cells; has {1,...,n}.
Note: exactly one color in {1,...,n} used twice.

Rainbow face: n— 1-dimensional, vertices colored with {1,....n}.
X: number of boundary rainbow faces.
Y: number of internal rainbow faces.

Number of Face-Rainbow Cell Adjacencies: R+2Q = X+2Y

Rainbow faces on one face of big simplex.
Induction — Odd number of rainbow faces.
— Xisodd - X+2Y is odd R+2Q is odd.

R is odd.

Sperner to Brouwer

Consider simplex:S.
Closed compact sets can be mapped to this.
Let f(x): S— S.

Infinite sequence of subdivisions: .77,.%%, ...
7} is subdivision of .#;_4.  Size of cell — 0 as j — co.

A coloring of .#;. Recall ¥, x; = 1 in simplex.
Big simplex vertices e; = (0,0,...,1,...,0) get /.

For a vertex at x.
Assign smallest i with f(x); < x;.
Exists? Yes. Y f(x); = ¥; ;.

Valid? Simplex face is at x; = 0 for opposite j.
Thus f(x); cannot be smaller and is not colored j.

Rainbow cell, in .%; with vertices x/1,... x/+1,

/\

Rainbow Cells to Brower.

Rainbow cell, in .%; with vertices X/, X

Each set of points x{ is an infinite setin S.
— convergent subsequence — has limit point.
— All have same limit point as they get closer together.
x* is limit point.
f(x) has no fixed point = f(x); > x; for some i. (L;x; =1).
But f(x/); < x for all j and
limj_, oo X7 = x*.

Thus, (f(x*)); < x; by continuity. Contradiction.

Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with an unbalanced node (indegree # outdegree) must have
another.”

Exponentially large graph with vertex set {0,1}".
Circuit given name of graph finds previous, P(v), and next, N(v).
Sperner: local information gives neighbor.

END OF THE LINE. Given circuits P and N as above, if 0" is
unbalanced node in the graph, find another unbalanced node.

PPAD is search problems poly-time reducibile to END OF LINE.
NASH — BROUWER — SPERNER — END OF LINE < PPAD.




Other classes.

PPA: “If an undirected graph has a node of odd degree, it must have
another.

PLS: “Every directed acyclic graph must have a sink.”

PPP: “If a function maps n elements to n— 1 elements, it must have a
collision.”

All exist: not NPl Answer is yes. How to find quickly?

Reduction:
END OF LINE — Piecewise Linear Brouwer — 3D—Sperner— Nash.

Uh oh. Nash is PPAD-complete.
Who invented? PapaD and PPAD. Perfect together!




