Load balancing.
Today

Load balancing.
Balls in Bins.
Today

Load balancing.
Balls in Bins.
Power of two choices.
Today

Load balancing.
Balls in Bins.
Power of two choices.
Cuckoo hashing.
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{ne}{k} \right)^k
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{ne}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{ne}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n(n-1)\ldots(n-k+1)}{k(k-1)\ldots1} = \frac{n}{k} \cdot \frac{n-1}{k-1} \ldots \frac{n-k+1}{1}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{ne}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{n}{k} \cdot \frac{n-1}{k-1} \cdots \frac{n-k+1}{1} \geq \frac{n}{k} \cdot \frac{n}{k} \cdots \frac{n}{k}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{ne}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{n}{k} \cdot \frac{n-1}{k-1} \cdots \frac{n-k+1}{1} \geq \frac{n}{k} \cdot \frac{n}{k} \cdots \frac{n}{k}
\]

\[
n(n-1)\cdots(n-k+1) \leq n^k
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{ne}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} = \frac{n}{k} \cdot \frac{n-1}{k-1} \cdots \frac{n-k+1}{1} \geq \frac{n}{k} \cdot \frac{n}{k} \cdots \frac{n}{k}
\]

\[
n(n-1)\cdots(n-k+1) \leq n^k
\]

\[
k! \geq \left(\frac{k}{e} \right)^k
\]
Simplest..

Load balance: m balls in n bins.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Simplest..

Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin:
Simplest..

Load balance: \(m \) balls in \(n \) bins.

For simplicity: \(n \) balls in \(n \) bins.

Round robin: load 1
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Simplest..

Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized!
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Load balance: \(m \) balls in \(n \) bins.

For simplicity: \(n \) balls in \(n \) bins.

Round robin: load 1!

Centralized! Not so good.

Uniformly at random?
Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1 !
Centralized! Not so good.
Uniformly at random? Average load 1.
Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
n.
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 n. Uh Oh!
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 n. Uh Oh!
Max load with probability $\geq 1 - \delta$?
Simplest..

Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 \(n \). Uh Oh!
Max load with probability \(\geq 1 - \delta \)?:
 \(\delta = \frac{1}{n^c} \) for today.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
n. Uh Oh!
Max load with probability $\geq 1 - \delta$?
$\delta = \frac{1}{n^c}$ for today. c is 1 or 2.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
n. Uh Oh!
Max load with probability $\geq 1 - \delta$?
$\delta = \frac{1}{n^c}$ for today. c is 1 or 2.
Balls in bins.

For each of \(n \) balls, choose random bin:

\[
\Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound:

\[
\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i]
\]

\[
\Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \binom{n}{k}
\]

Choose \(k \), so that \(\Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
\Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \max \text{ load} \leq k \text{ w.p. } \geq 1 - \frac{1}{n^k} \geq n^2 \text{ for } k = 2 e \log n \text{ (Recall } k! \geq (ke)^k).)
\]

Lemma: Max load is \(\Theta(\log n) \) with probability \(\geq 1 - \frac{1}{n^k} \).

Much better than \(n \).

Actually Max load is \(\Theta(\log n / \log \log n) \) w.h.p. (W.h.p. - means with probability at least 1 - \(O(1/n^c) \) for today.)
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

Pr $[X_i \geq k] \leq \sum_{S \subseteq \{1, 2, \ldots, n\}, |S| = k} Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \binom{n}{k} \leq n \cdot \left(\frac{1}{n}\right)^2 = \frac{1}{n}$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

Pr any $X_i \geq k \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load} \leq k$ w.p. $\geq 1 - \frac{1}{n}$.

Much better than n.

Actually max load is $\Theta(\log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O\left(\frac{1}{n^c}\right)$ for today.)
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$\Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]$$
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n} \right)^k
\]
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n} \right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.
\]
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.
\]

\[
Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k
\]

\[
\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}
\]

Choose \(k \), so that \(Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load} \leq k \text{ w.p. } \geq 1 - \frac{1}{n}.
\]

Lemma: Max load is \(\Theta(\log n) \) with probability \(\geq 1 - \frac{1}{n} \).

Much better than \(n \).

Actually Max load is \(\Theta(\log n / \log \log n) \) w.h.p. (W.h.p. - means with probability at least \(1 - O\left(\frac{1}{n^{c}}\right) \) for today.)
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k$ and $\binom{n}{k}$ subsets S.

$$Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$$

$$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

Much better than n. Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p. (W.h.p. - means with probability at least $1 - O\left(\frac{1}{n^c}\right)$ for today.)
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
\Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i] \)

\[
\Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n} \right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.
\]

\[
\Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n} \right)^k \\
\leq \frac{n^k}{k!} \left(\frac{1}{n} \right)^k = \frac{1}{k!}
\]

Choose \(k \), so that \(\Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
\Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2}
\]
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$\Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i]$.

$\Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k$ and $\binom{n}{k}$ subsets S.

$$\Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k \leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $\Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$$\Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n}$$
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\cup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n} \right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.
\]

\[
Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n} \right)^k
\]

\[
\leq \frac{n^k}{k!} \left(\frac{1}{n} \right)^k = \frac{1}{k!}
\]

Choose \(k \), so that \(Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}
\]
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$\Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i]$.

$\Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k$ and $\binom{n}{k}$ subsets S.

$$\Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$$

$$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $\Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$$\Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}$$

$k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq \left(\frac{k}{e}\right)^k$.)

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

Much better than n.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p. (W.h.p. - means with probability at least $1 - O\left(\frac{1}{n^c}\right)$ for today.)
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \text{ and } \binom{n}{k} \text{ subsets } S.$$

$$Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$$

$$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$$Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \max \text{ load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}$$

$k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq \left(\frac{k}{e}\right)^k$.)

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

Much better than n.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p. (W.h.p. - means with probability at least $1 - O\left(\frac{1}{n^{c}}\right)$ for today.)
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S|=k} Pr[\text{balls in } S \text{ chooses bin } i]
$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$$
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \text{ and } \binom{n}{k} \text{ subsets } S.
$$

$$
Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k
\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}
$$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$$
Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}
$$

$k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq \left(\frac{k}{e}\right)^k$.)

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

Much better than n.

Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$,

From Union Bound: $Pr[\cup_i A_i] \leq \sum_i Pr[A_i]$

$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k$ and $\binom{n}{k}$ subsets S.

$Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$

$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}$

$k! \geq n^2$ for $k = 2e \log n$ (Recall $k! \geq (\frac{k}{e})^k$.)

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

Much better than n.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S|=k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$.

$$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \text{ and } \left(\begin{array}{c} n \\ k \end{array}\right) \text{ subsets } S.$$

$$Pr[X_i \geq k] \leq \left(\begin{array}{c} n \\ k \end{array}\right) \left(\frac{1}{n}\right)^k$$

$$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$$Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}$$

$k! \geq n^2$ for $k = 2e\log n$ (Recall $k! \geq (\frac{k}{e})^k$.)

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

Much better than n.

Actually Max load is $\Theta(\log n / \log\log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)
Power of two..

n balls in n bins.
n balls in n bins.
Choose two bins, pick least loaded.
n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.
Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower?
Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

Is max load lower? Yes?

$O(\log \log n)$!
n balls in n bins.
Choose two bins, pick least loaded.
still distributed, but a bit less than not looking.
Is max load lower? Yes? No?
Power of two..

n balls in n bins.
Choose two bins, pick least loaded.
 still distributed, but a bit less than not looking.
n balls in n bins.

Choose two bins, pick least loaded.
 still distributed, but a bit less than not looking.
 How much lower?

$\log n / 2$?
$\sqrt{\log n}$?
$O(\log \log n)$?

Exponentially better!
Old bound is exponential of new bound.
Power of two..

n balls in n bins.
Choose two bins, pick least loaded.
still distributed, but a bit less than not looking.
How much lower?
log $n/2$?
Power of two..

n balls in n bins.
Choose two bins, pick least loaded.
 still distributed, but a bit less than not looking.
 How much lower?
 $\log n/2$? $\sqrt{\log n}$?
n balls in n bins.
Choose two bins, pick least loaded.
still distributed, but a bit less than not looking.
How much lower?
$\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?
\(n \) balls in \(n \) bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

\(\log n/2? \sqrt{\log n}? O(\log \log n)? \)

\(O(\log \log n) \)
n balls in n bins.
Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

$\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

$O(\log \log \log n)$!
n balls in n bins.
Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

$\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

$O(\log \log n)$!!
n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

$\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

$O(\log \log n)$! ! !
Power of two..

n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

$log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

$O(\log \log n)$!!!!
n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

$\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

$O(\log \log n)$! ! ! !

Exponentially better!
n balls in n bins.

Choose two bins, pick least loaded.

still distributed, but a bit less than not looking.

How much lower?

$\log n/2$? $\sqrt{\log n}$? $O(\log \log n)$?

$O(\log \log n)$! ! ! ! !

Exponentially better! Old bound is exponential of new bound.
Analysis.

$n/8$ balls in n bins.
Analysis.

\(n/8\) balls in \(n\) bins.

Each ball chooses two bins at random.
Analysis.

\(\frac{n}{8} \) balls in \(n \) bins.

Each ball chooses two bins at random.
 picks least loaded.
Analysis.
n/8 balls in n bins.
Each ball chooses two bins at random.
 picks least loaded.
View as graph.
Analysis.

$n/8$ balls in n bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
Bin is vertex.
Analysis.

$n/8$ balls in n bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.
Analysis.

$n/8$ balls in n bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint's "count."
Max load is max vertices count.
If max count is k.
neighbors with counts $\geq k - 1$,
$k - 2$,
$k - 3$,...
and so on!
No cycles and max-load $k \rightarrow \geq 2k/2$ nodes in tree.
No connected component of size X and no cycles \Rightarrow max load $O(\log X)$.

Will show:
Max conn. comp is $O(\log n)$ w.h.p.
Average induced degree is small. (E.g.: cycle degree 2)
Extend tree intuition.
Analysis.

\[\frac{n}{8} \text{ balls in } n \text{ bins.} \]

Each ball chooses two bins at random.
- picks least loaded.

View as graph.
- Bin is vertex.
- Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint's "count."
Max load is max vertices count.
If max count is \(k \):
- neighbors with counts \(\geq k - 1 \), \(k - 2 \), \(k - 3 \),... and so on!

No cycles and max-load \(k \rightarrow \geq \frac{2k}{2} \) nodes in tree.

No connected component of size \(X \) and no cycles \(\Rightarrow \max \text{ load } O(\log X) \).

Will show:
- Max conn. comp is \(O(\log n) \) w.h.p.
- Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.

- picks least loaded.

View as graph.

- Bin is vertex.
- Each ball is edge.

Analysis Intuition:

Add edge, add one to lower endpoint's "count."

- Max load is max vertices count.

If max count is \(k \),

- neighbors with counts \(\geq k - 1 \),
- \(k - 2 \),
- \(k - 3 \),...

and so on!

No cycles and max-load \(k \rightarrow \geq 2 \frac{k}{2} \) nodes in tree.

No connected component of size \(X \) and no cycles \(\Rightarrow \) max load \(O(\log X) \).

Will show:

- Max conn. comp is \(O(\log n) \) w.h.p.

Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
 If max count is \(k \).

\[\text{Max load} \geq \frac{k}{2} \]

No connected component of size \(X \) and no cycles \(\Rightarrow \) max load \(O(\log n) \).

Will show:
Max connected comp is \(O(\log n) \) w.h.p.

Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.
Analysis.

$n/8$ balls in n bins.
Each ball chooses two bins at random.
 picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k.
 neighbors with counts $\geq k-1, k-2, k-3, \ldots$.

=\text{max load} \leq 2k / 2 = k.$$
Analysis.

$n/8$ balls in n bins.

Each ball chooses two bins at random. picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k.
neighbors with counts $\geq k-1, k-2, k-3, \ldots$ and so on!
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
 If max count is \(k \).
 neighbors with counts \(\geq k - 1, k - 2, k - 3, \ldots \)
 and so on!

No cycles and max-load \(k \rightarrow \geq 2^{k/2} \) nodes in tree.
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.
- picks least loaded.

View as graph.
- Bin is vertex.
- Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
- If max count is \(k \).
 - neighbors with counts \(\geq k - 1, k - 2, k - 3, \ldots \) and so on!

No cycles and max-load \(k \to \geq 2^{k/2} \) nodes in tree.
No connected component of size \(X \) and no cycles
Analysis.

$n/8$ balls in n bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
 If max count is k.
 neighbors with counts $\geq k - 1, k - 2, k - 3, \ldots$ and so on!

No cycles and max-load $k \rightarrow \geq 2^{k/2}$ nodes in tree.
No connected component of size X and no cycles \implies max load $O(\log X)$.
Analysis.

$n/8$ balls in n bins.
Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k.
neighbors with counts $\geq k - 1, k - 2, k - 3, \ldots$ and so on!

No cycles and max-load $k \rightarrow \geq 2^{k/2}$ nodes in tree.
No connected component of size X and no cycles
\implies max load $O(\log X)$.

Will show:
Analysis.

$n/8$ balls in n bins.
Each ball chooses two bins at random.
picks least loaded.

View as graph.
Bin is vertex.
Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
If max count is k.
neighbors with counts $\geq k - 1, k - 2, k - 3, \ldots$ and so on!

No cycles and max-load $k \rightarrow \geq 2^{k/2}$ nodes in tree.
No connected component of size X and no cycles\implies max load $O(\log X)$.

Will show:
Max conn. comp is $O(\log n)$ w.h.p.
Analysis.

\(\frac{n}{8}\) balls in \(n\) bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
 If max count is \(k\).
 neighbors with counts \(\geq k - 1, k - 2, k - 3, \ldots\)
 and so on!

No cycles and max-load \(k \rightarrow \geq 2^{k/2}\) nodes in tree.
No connected component of size \(X\) and no cycles
 \(\implies\) max load \(O(\log X)\).

Will show:
 Max conn. comp is \(O(\log n)\) w.h.p.
 Average induced degree is small. (E.g.: cycle degree 2)
Analysis.

\(n/8 \) balls in \(n \) bins.

Each ball chooses two bins at random.
 picks least loaded.

View as graph.
 Bin is vertex.
 Each ball is edge.

Analysis Intuition:
Add edge, add one to lower endpoint’s “count.”

Max load is max vertices count.
 If max count is \(k \).
 neighbors with counts \(\geq k - 1, k - 2, k - 3, \ldots \)
 and so on!

No cycles and max-load \(k \rightarrow \geq 2^{k/2} \) nodes in tree.
No connected component of size \(X \) and no cycles
\(\implies \) max load \(O(\log X) \).

Will show:
 Max conn. comp is \(O(\log n) \) w.h.p.
 Average induced degree is small. (E.g.: cycle degree 2)

Extend tree intuition.
Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1 - \frac{1}{nc}$.

Proof: Size k component, C, contains $\geq k - 1$ edges.

$$\Pr[|C| \geq k] \leq \binom{n}{k} \left(\frac{n}{8} \right)^{k-1} \left(\frac{k}{n} \right)^{2(k-1)}$$ \hspace{1cm} (1)
Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1 - \frac{1}{n^c}$.

Proof: Size k component, C, contains $\geq k - 1$ edges.

$$\Pr[|C| \geq k] \leq \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n}\right)^{2(k-1)} \quad (1)$$

Possible C.

Connected Component.
Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1 - \frac{1}{nc}$.

Proof: Size k component, C, contains $\geq k - 1$ edges.

$$\Pr[|C| \geq k] \leq \binom{n}{k} \left(\frac{n/8}{k-1} \right) \left(\frac{k}{n} \right)^{2(k-1)}$$

Possible C. Which edges.
Connected Component.

Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1 - \frac{1}{n^c}$.

Proof: Size k component, C, contains $\geq k - 1$ edges.

\[
\Pr[|C| \geq k] \leq \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n} \right)^{2(k-1)}
\]
(1)

Possible C. Which edges. Prob. both endpoints inside C.

Connected Component.

Claim: Component size in \(n \) vertex, \(\frac{n}{8} \) edge random graph is \(O(\log n) \) w/ prob. \(\geq 1 - \frac{1}{n^c} \).

Proof: Size \(k \) component, \(C \), contains \(\geq k - 1 \) edges.

\[
\Pr[|C| \geq k] \leq \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n} \right)^{2(k-1)}
\]

Possible \(C \). Which edges. Prob. both endpoints inside \(C \).

\[
\Pr[|C| \geq k] \leq \frac{n}{k} \binom{n}{k} \binom{n/8}{k} \left(\frac{k}{n} \right)^{2k}
\]

pause
Connected Component.

Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1 - \frac{1}{n^c}$.

Proof: Size k component, C, contains $\geq k - 1$ edges.

$$Pr[|C| \geq k] \leq \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n}\right)^{2(k-1)} \tag{1}$$

Possible C. Which edges. Prob. both endpoints inside C.

$$Pr[|C| \geq k] \leq \frac{n}{k} \binom{n}{k} \binom{n/8}{k} \left(\frac{k}{n}\right)^{2k}$$

$$\leq \frac{n}{k} \left(\frac{ne}{k}\right)^k \left(\frac{ne}{8k}\right)^k \left(\frac{k}{n}\right)^{2k}$$
Connected Component.

Claim: Component size in n vertex, $\frac{n}{8}$ edge random graph is $O(\log n)$ w/ prob. $\geq 1 - \frac{1}{n^c}$.

Proof: Size k component, C, contains $\geq k - 1$ edges.

\[
\Pr[|C| \geq k] \leq \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n} \right)^{2(k-1)}
\]

(1)

Possible C. Which edges. Prob. both endpoints inside C.

\[
\Pr[|C| \geq k] \leq \frac{n}{k} \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n} \right)^{2k}
\]

\[
\leq \frac{n}{k} (\frac{ne}{k})^k (\frac{ne}{8k})^k \left(\frac{k}{n} \right)^{2k} = \frac{n}{k} \left(\frac{e^2}{8} \right)^k
\]
Connected Component.

Claim: Component size in \(n \) vertex, \(\frac{n}{8} \) edge random graph is \(O(\log n) \) w/ prob. \(\geq 1 - \frac{1}{n^c} \).

Proof: Size \(k \) component, \(C \), contains \(\geq k - 1 \) edges.

\[
\Pr[|C| \geq k] \leq \binom{n}{k} \binom{n/8}{k-1} \left(\frac{k}{n}\right)^{2(k-1)}
\]

Possible \(C \). Which edges. Prob. both endpoints inside \(C \).

\[
\Pr[|C| \geq k] \leq \frac{n}{k} \binom{n}{k} \binom{n/8}{k} \left(\frac{k}{n}\right)^{2k}
\]
\[
\leq \frac{n}{k} \left(\frac{ne}{k}\right)^k \left(\frac{ne}{8k}\right)^k \left(\frac{k}{n}\right)^{2k} = \frac{n}{k} \left(\frac{e^2}{8}\right)^k \leq \frac{n}{k} (0.93)^k
\]

Choose \(k = -(c+1) \log_{0.93} n \) make probability \(\leq 1/n^c \).
Not dense.

Induced degree of node on subset, S, is degree of internal edges.
Not dense.

Induced degree of node on subset, S, is degree of internal edges.
Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2,
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O\left(\frac{1}{n^2}\right)$.
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O(\frac{1}{n^2})$.

Proof: Induced degree ≥ 8
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O\left(\frac{1}{n^2}\right)$.

Proof: Induced degree ≥ 8
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O\left(\frac{1}{n^2}\right)$.

Proof: Induced degree ≥ 8

$\rightarrow 4k$ internal edges for subset of size k.
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O\left(\frac{1}{n^2}\right)$.

Proof: Induced degree ≥ 8
$\rightarrow 4k$ internal edges for subset of size k.

$$\Pr[\text{dense } S] \leq \binom{n}{k} \binom{n/8}{4k} \left(\frac{k}{n}\right)^{8k} \leq \left(\frac{e^{1.25}}{32}\right)^{4k} \left(\frac{k}{n}\right)^{3k} \leq \left(\frac{k}{n}\right)^{3k}$$
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O\left(\frac{1}{n^2}\right)$.

Proof: Induced degree ≥ 8

$\rightarrow 4k$ internal edges for subset of size k.

$$\Pr[\text{dense } S] \leq {n \choose k} \left(\frac{n}{4k}\right) \left(\frac{k}{n}\right)^{8k} \leq \left(\frac{e^{1.25}}{32}\right)^{4k} \left(\frac{k}{n}\right)^{3k} \leq \left(\frac{k}{n}\right)^{3k}$$

Starts at $1/n^3$, ...
Not dense.

Induced degree of node on subset, S, is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is ≤ 8 with probability $\geq 1 - O(\frac{1}{n^2})$.

Proof: Induced degree ≥ 8
$\rightarrow 4k$ internal edges for subset of size k.

$$\Pr[\text{dense } S] \leq \binom{n}{k} \left(\frac{n}{4k}\right)^8 \left(\frac{k}{n}\right) \leq \left(\frac{e^{1.25}}{32}\right)^{4k} \left(\frac{k}{n}\right)^{3k} \leq \left(\frac{k}{n}\right)^{3k}$$

Starts at $1/n^3$, decreasing till $k \leq n/8$ (at least)
Not dense.

Induced degree of node on subset, \(S \), is degree of internal edges.

Induced degree of nodes in blue subset is 2, not 5!

Claim: Average induced degree on any subset of nodes is \(\leq 8 \) with probability \(\geq 1 - O(\frac{1}{n^2}) \).

Proof: Induced degree \(\geq 8 \)
\(\rightarrow \) \(4k \) internal edges for subset of size \(k \).

\[
\Pr[\text{dense } S] \leq \binom{n}{k} \left(\frac{n}{4k} \right)^{8k} \leq \left(\frac{e^{1.25}}{32} \right)^{4k} \left(\frac{k}{n} \right)^{3k} \leq \left(\frac{k}{n} \right)^{3k}
\]

Starts at \(1/n^3 \), decreasing till \(k \leq n/8 \) (at least)
\(\rightarrow \) Total \(O(1/n^2) \).
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process:
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 → half nodes with degree ≤ 16.
- Half nodes removed in each iteration.
- $\log X$ iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.

Height of ball, h_i, is load of bin when it is placed in bin.

Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16 r_i$.

Case $r_i = 1$ - only 16 balls incident to bin $\rightarrow h_i \leq 16$.

Induction: Previous removed edges (ball) induce load $\leq 16 (r_i - 1)$.

+ 16 edges/balls this iteration $\rightarrow h_i \leq 16 r_i$.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
 - Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.

Recall edge corresponds to ball. Height of ball, h_i, is load of bin when it is placed in bin. Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16$ r_i.

Case $r_i = 1$ - only 16 balls incident to bin $\rightarrow h_i \leq 16$.

Induction: Previous removed edges (ball) induce load ≤ 16 ($r_i - 1$).+ 16 edges/balls this iteration. $\rightarrow h_i \leq 16$ r_i.

Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball. Height of ball, h_i, is load of bin when it is placed in bin. Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16$ r_i.

Case $r_i = 1$ - only 16 balls incident to bin $\rightarrow h_i \leq 16$.

Induction: Previous removed edges (ball) induce load ≤ 16 ($r_i - 1$).+ 16 edges/balls this iteration. $\rightarrow h_i \leq 16$ r_i.

Max load is $O(\log \log n)$ w.h.p.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow $\log X$ iterations to remove all nodes.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
 \rightarrow half nodes removed in each iteration.
 \rightarrow $\log X$ iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
- Corresponding edge removed in iteration r_i.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
- Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16r_i$.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
- Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16r_i$.
- Case $r_i = 1$
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
- Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16r_i$.
- Case $r_i = 1$ - only 16 balls incident to bin.
Removal Process!

Random Graph: Component size is \(c \log n \) and max-induced degree is 8 w.h.p.

Process: Remove degree \(\leq 16 \) nodes and incident edges. Repeat.
Claim: \(O(\log X) \) iterations where \(X \) is max component size.

For any connected component:
 - Average induced degree 8 \(\rightarrow \) half nodes w/degree \(\leq 16 \).
 - \(\rightarrow \) half nodes removed in each iteration.
 - \(\rightarrow \) \(\log X \) iterations to remove all nodes.

Claim: Max load is \(O(\log \log n) \) w.h.p.

Recall edge corresponds to ball.
 - Height of ball, \(h_i \), is load of bin when it is placed in bin.
 - Corresponding edge removed in iteration \(r_i \).

Property: \(h_i \leq 16r_i \).
 - Case \(r_i = 1 \) - only 16 balls incident to bin \(\rightarrow h_i \leq 16 \).
 - Induction:
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
- \rightarrow half nodes removed in each iteration.
- $\rightarrow \log X$ iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
- Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16r_i$.
- Case $r_i = 1$ - only 16 balls incident to bin $\rightarrow h_i \leq 16$.
- Induction: Previous removed edges(ball) induce load $\leq 16(r_i - 1)$.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
 \rightarrow half nodes removed in each iteration.
 \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
 Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16r_i$.
- Case $r_i = 1$ - only 16 balls incident to bin $\rightarrow h_i \leq 16$.
- Induction: Previous removed edges(ball) induce load $\leq 16(r_i - 1)$.
 $+16$ edges/balls this iteration.
Removal Process!

Random Graph: Component size is $c \log n$ and max-induced degree is 8 w.h.p.

Process: Remove degree ≤ 16 nodes and incident edges. Repeat.

Claim: $O(\log X)$ iterations where X is max component size.

For any connected component:
- Average induced degree 8 \rightarrow half nodes w/degree ≤ 16.
 \rightarrow half nodes removed in each iteration.
 \rightarrow log X iterations to remove all nodes.

Claim: Max load is $O(\log \log n)$ w.h.p.

Recall edge corresponds to ball.
- Height of ball, h_i, is load of bin when it is placed in bin.
 Corresponding edge removed in iteration r_i.

Property: $h_i \leq 16r_i$.

Case $r_i = 1$ - only 16 balls incident to bin \rightarrow $h_i \leq 16$.

Induction: Previous removed edges(ball) induce load $\leq 16(r_i - 1)$.
 $+16$ edges/balls this iteration.

\rightarrow $h_i \leq 16r_i$.
Power of two choices.

Max load: $\log X$ where X is max component size.
Power of two choices.

Max load: $\log X$ where X is max component size.

X is $O(\log n)$ with high probability.
Power of two choices.

Max load: $\log X$ where X is max component size.

X is $O(\log n)$ with high probability.

Max load is $O(\log \log n)$.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Fails if cycle for insert.

C\ell - event of cycle of length \ell at a vertex.

$$\Pr[C_\ell] \leq (m^{\ell} n^{\ell})^{2(\ell n)} \leq (e^{2/8})^{\ell (3)}$$

Probability that an insert hits a cycle of length \ell

Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.)

$O(1)$ time on average.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Probability that an insert hits a cycle of length ℓ:
$\Pr[C_\ell] \leq (m \ell)(n \ell)(\ell n)^2 \leq (e^2 8)^{\ell/3}$

Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.)

$O(1)$ time on average.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.
Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.
Cuckoo hashing.

Hashing with two choices: max load $O(\log\log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.

Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.

Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1, 2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C_ℓ - event of cycle of length ℓ at a vertex.

$$\Pr[C_\ell] \leq (m^{\ell})(n^{\ell})(\ell^n)^2 \leq (e^{2/8})^{\ell}(3)$$

Probability that an insert hits a cycle of length $\ell \leq \ell n (e^{2/8})^{\ell}$
Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.)

$O(1)$ time on average.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.

If go too long.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1, 2]$.

Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
Else bump y' in $h_i(y)$.

If go too long. Fail.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1, 2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1, 2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.
 Fails if cycle for insert.
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.
 Fails if cycle for insert.

C_ℓ - event of cycle of length ℓ at a vertex.
Cuckoo hashing.

Hashing with two choices: max load \(O(\log \log n) \).

Cuckoo hashing:
Array. Two hash functions \(h_1, h_2 \).

Insert \(x \): place in \(h_1(x) \) or \(h_2(x) \) if space.
 Else bump elt \(y \) in \(h_i(x) \) u.a.r. for \(i \in [1,2] \).
Bump \(y, x \): place \(y \) in \(h_j(y) \) where \(j \neq i \) if space.
 Else bump \(y' \) in \(h_i(y) \).

If go too long. Fail. Rehash entire hash table.
 Fails if cycle for insert.

\(C_\ell \) - event of cycle of length \(\ell \) at a vertex.

\[
\Pr[C_\ell] \leq \left(\frac{m}{\ell} \right) \left(\frac{n}{\ell} \right) \left(\frac{\ell}{n} \right)^{2\ell} \leq \left(\frac{e^2}{8} \right)^\ell
\] (3)
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
 Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.

Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
 Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.
 Fails if cycle for insert.

C_ℓ - event of cycle of length ℓ at a vertex.

$$Pr[C_\ell] \leq \binom{m}{\ell} \binom{n}{\ell} \left(\frac{\ell}{n} \right)^{2(\ell)} \leq \left(\frac{e^2}{8} \right)^{\ell} \tag{3}$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n} \left(\frac{e^2}{8} \right)^{\ell}$
Cuckoo hashing.

Hashing with two choices: max load $O(\log \log n)$.

Cuckoo hashing:
Array. Two hash functions h_1, h_2.

Insert x: place in $h_1(x)$ or $h_2(x)$ if space.
Else bump elt y in $h_i(x)$ u.a.r. for $i \in [1,2]$.
Bump y, x: place y in $h_j(y)$ where $j \neq i$ if space.
Else bump y' in $h_i(y)$.

If go too long. Fail. Rehash entire hash table.
Fails if cycle for insert.

C_ℓ - event of cycle of length ℓ at a vertex.

$$\Pr[C_\ell] \leq \left(\binom{m}{\ell} \binom{n}{\ell} \left(\frac{\ell}{n} \right)^{2(\ell)} \leq \left(\frac{e^2}{8} \right)^\ell \right.$$

Probability that an insert hits a cycle of length $\ell \leq \frac{\ell}{n} \left(\frac{e^2}{8} \right)^\ell$

Rehash every $\Omega(n)$ inserts (if $\leq n/8$ items in table.)
Cuckoo hashing.

Hashing with two choices: max load \(O(\log \log n) \).

Cuckoo hashing:
Array. Two hash functions \(h_1, h_2 \).

Insert \(x \): place in \(h_1(x) \) or \(h_2(x) \) if space.
 Else bump elt \(y \) in \(h_i(x) \) u.a.r. for \(i \in [1,2] \).

Bump \(y, x \): place \(y \) in \(h_j(y) \) where \(j \neq i \) if space.
 Else bump \(y' \) in \(h_i(y) \).

If go too long. Fail. Rehash entire hash table.
 Fails if cycle for insert.

\(C_\ell \) - event of cycle of length \(\ell \) at a vertex.

\[
\Pr[C_\ell] \leq \binom{m}{\ell} \binom{n}{\ell} \left(\frac{\ell}{n} \right)^{2(\ell)} \leq \left(\frac{e^2}{8} \right)^\ell
\]

(3)

Probability that an insert hits a cycle of length \(\ell \leq \frac{\ell}{n} \left(\frac{e^2}{8} \right)^\ell \)

Rehash every \(\Omega(n) \) inserts (if \(\leq n/8 \) items in table.)
\(O(1) \) time on average.
Sum up

Balls in bins: $\Theta(\log n / \log \log n)$ load.
Sum up

Balls in bins: \(\Theta(\log n / \log \log n) \) load.

Power of two: \(\Theta(\log \log n) \).
Sum up

Balls in bins: $\Theta(\log n / \log \log n)$ load.
Power of two: $\Theta(\log \log n)$.
Cuckoo hashing.
See you on Thursday...