First order optimization.

min f(x)

Convexity: f(x) + (V£(x)) - (¥ — x) < f(y).

Lipschitz: [|V(f(x)) = V(F(y))Il < LIx =yl
Vf(x) - gradient or subgradient.

Gradient Descent:
Xtp1 = Xt — avf(X[) )

One bound: f(x;) — f(xi1) > IYIE | ipschitz.

“Mirror” Descent:
X1 = Xt — aVf(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
Sl V() 2 + M.
No Lipschitz condition. Works for subgradients.
Idea: average lower bound is average of linear lower bounds.
R(u) - w(x) = ,(VF(x))(x — u) — w(u).
What is w(x)? One option: Euclidean norm of x.
Another, w(x) = 3, x;log x;. Get multiplicative weight update!!!!

Last time.

Gradient Descent:
Xer1 = Xt — aVI(X;) .
One bound: f(x;) — f(Xe+1) > Y9I | ipschitz.
“Mirror” Descent:
Xer1 = Xt — aVF(x;) for “euclidean proximity function”
Output: Average point.
One bound: Total Difference from optimal or “regret.”
ol VI0x) 2 + *2.
Accelerated Gradient Descent:
Xtp1 = X + ai(Xt — Xt—1) — BiVE(xt).
Momentum term: (x; — x11) = >_; % V(fx)).
where 3 v = 1.
Mirror Descent point!

Idea of Analysis:
Benefit for gradient cancels some of regret term of MD.

Other scenarios.

Don’t you dual norm me!
Norm: ||x||. Dual Norm: [|y||..
Iy [l = maxxj=1(x,y).
For Euclidean norm, what is dual norm?

For ¢4 or hamming norm, what is dual norm?
lIx[[+ =32, xil-

[[Xlloe = max; [xi|.
Can be Lipschitz in different norms:
IVi(x) = Vi(y)l.« = Llix = yll.
Gradient Step:
Xty1 = X — aargmaxy—1(V(f(x)), y).
Lipschitz in ¢4, when optimizing ", |x;|.
E.g. Max Flow or tolls.

Next Topic

Streaming.
Frequent ltems.

Streaming

Stream: X1, X2, X3, , ... Xp
Resources: O(log® n) storage.
Today’s Goal: find frequent items.

Frequent ltems: deterministic.

Additive { error.

Accurate count for k + 1th item?

Yes?

No?

k + 1st most frequent item occurs < ¢
Off by 100%. 0 estimate is fine.

No item more frequent than £?
0 estimate is fine.

Only reasonable for frequent items.




Deteministic Algorithm.

Alg:
If x; € Sincrement x;’s counter.
fx; ¢ S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters. Delete zero count elts.

9
(1) Set, S, of k counters, initially 0.
(2
3

Example:
State: k =3

Stream

(1. 4{t-2)(. Bf2- 2B Bfpstam?

1,2,812 dam7 .
122288332 Previous State

[(1, 2)(+ #H(2{j2)(2; +)(3, 0)]

Deterministic Algorithm.

Alg:

(1) Set, S, of k counters, initially 0.

(2) If x; € Siincrement x;’s counter.

B)Ifx ¢S
If S has space, add x; to S w/value 1.
Otherwise decrement all counters.

Estimate for item:
if in S, value of counter.
otherwise 0.
Underestimate clearly.

Increment once when see an item, might decrement.

Total decrements, T? n? n/k? k?

decrement k counters on each decrement.
Tk total decremting
nitems. n total incrementing.
= T<4
Off by at most £

Space?O(k log n)

Turnstile Model and Randomization

Stream: ..., (i,c),...
item i, count ¢; (possibly negative.)
Positive total for each item!

Estimate frequency of item: f; = " ¢;.
Ifls =32 1f] Smaller than 3=, |ci.
Approximation:
Additive ¢|f|1 with probability 1 — &
Space O(? log  log n).

Count Min Sketch

Sketch — Summary of stream.

(1) t arrays, A[i], of k counters.
hy, ..., h; from 2-wise ind. family.
(2) Process elt (j, ¢;),
AhG) += G
(3) Item j estimate: min; A[{][h;(j)].
Intuition:|f|1/k other “counts” in same bucket.
— Additive |f|1/k error on average for each of t arrays.

Why t buckets? To get high probability.

Count min sketch:analysis
(1) t arrays, A[i], of k counters.
hy, ..., ht from 2-wise ind. family.
(2) Process elt (j, ¢;),
AlhiDI+ = g;.
(8) ltem j estimate: min; A[i][hi(j)].

Al[k;(j)] = £ + X, where X is a random variable.
Y; - item hi (i) = hy(j)

X =25 Yifi
EX] =X E[Vifi =%, 1 =1

Markov: PriX > 2] < 1
Exercise: proof of Markov. (All above average?)

t independent trials, pick smallest.

PrIX > 21t in all t trials] < (3)!
<dwhent=logi.

Error e|f|; if e = 2.

Space? O(klog1logn)  O(1log!logn)

Count sketch.

Error in terms of |flo = />, 2.

f
W <fla < Ifls.

Could be much better. E.g., uniform frequency
Alg:

(1) t arrays, Ai]:
t hash functions h; : U — [k]
t hash functions g; : U — [—1,+1]
(2) Elt (j, ;)
AI[AG)) = AP + aii) G
(3) Item j estimate: median of gi(j)A[/][hi(})]-

Buckets contains signed count (estimate cancels sign.)

f
H=1fl

Other items cancel each other out!
Tight! (Not an asymptotic statement.)

Do t times and average?
No! Median! Two ideas! One simple algorithm!




Analysis
1) gi:U—=[-1,+1],hi: U— [K]
(@EtGe)
AlLA(DT = AT + giti) ¢

(3) ltem j estimate: median of g;(j)A[][hi(j)].
Notice: A[1][m1(/)] = g1())fi + X
X=23Y

Y, = +f; if item hy (i) =

ELY] =0 Var(Y) = 1.
E[X]=0 Expected drift is 0!
Var[X] = Xjeim Var(¥) = ¥, % = 12

i Var(X)?

Cheybshev: Pr[|X — u| > A] < ? i
Choose k = 4: Pr[|X| > ¢|f|z] < Lg‘zf/lz < 1‘2“;‘/ <1
Each trial is close with probability 3/4.

If > half tosses close, median is close!
Exists t = ©(log 1) where > } are correct with probability > 1 — §

hi(j) Yi = 0, otherwise

Total Space: O(“’?—Q% log n)

Sum up

Deterministic:
stream has items
Count within additive 7
O(klog n) space.

Within en with O(? log n) space.

Count Min:
stream has + counts
Count within additive ¢|f|
with probability at least 1 — ¢
O( log n:og 1 )
Count Sketch:
stream has + counts
Count within additive ¢|f|>
with probability at least 1 — ¢
o(lankaiy

See you on Thurday.




