Lecture 15

1 Streaming Algorithms: Frequent Items

Recall the streaming setting where we have a data stream \(x_1, x_2, \ldots, x_n \) with \(x_i \in [m] \), the available memory is \(O(\log^c n) \). Today we will see algorithms for finding frequent items in a stream. We first present a deterministic algorithm that approximates frequencies for the top \(k \) items. We then introduce more efficient randomized algorithms that can handle insertions as well as deletions.

1.1 Deterministic algorithm

The following algorithm estimates item frequencies \(f_j \) within an additive error of \(n/k \) using \(O(k \log n) \) memory,

1. Maintain set \(S \) of \(k \) counters, initialize to 0. For each element \(x_i \) in stream:
 1. If \(x_i \in S \) increment the counter for \(x_i \).
 2. If \(x_i \notin S \) add \(x_i \) to \(S \) if space is available, else decrement all counters in \(S \).

An item in \(S \) whose count falls to 0 can be removed, the space requirement for storing \(k \) counters is \(k \log n \) and the update time per item is \(O(k) \). The algorithm estimates the count of an item as the value of its counter or zero if it has no counter.

Claim 1

The frequency estimate \(n_j \) produced by the algorithm satisfies \(f_j - n/k \leq n_j \leq f_j \).

Proof: Clearly, \(n_j \) is less than the true frequency \(f_j \). Differences between \(f_j \) and the value of the estimate are caused by one of the two scenarios: (i) The item \(j \notin S \), each counter in \(S \) gets decremented, this is the case when \(x_j \) occurs in the stream but the counter for \(j \) is not incremented. (ii) The counter for \(j \) gets decremented due to an element \(j' \) that is not contained in \(S \).

Both scenarios result in \(k \) counters getting decremented hence they can occur at most \(n/k \) times, showing that \(n_j \geq f_j - n/k \). \(\square \)

1.2 Count min sketch

The turnstile model allows both additions and deletions of items in the stream. The stream consists of pairs \((i, c_i)\), where the \(i \in [m] \) is an item and \(c_i \) is the number of items to be added or deleted. The count of an item can not be negative at any stage, the frequency \(f_j \) of item \(j \) is \(f_j = \sum c_j \).

The following algorithm estimates frequencies of all items up to an additive error of \(\epsilon |f|_1 \) with probability \(1 - \delta \), the \(\ell_1 \) norm \(|f|_1 \) is the number of items present in the data set. The two parameters \(k \) and \(t \) in the algorithm are chosen to be \((\frac{2}{\epsilon}, \log(1/\delta))\).
1. Maintain t arrays $A[i]$ each having k counters, hash function $h_i : U \rightarrow [k]$ drawn from a 2-wise independent family \mathcal{H} is associated to array $A[i]$.

2. For element (j, c_j) in the stream, update counters as follows:

$$A[i, h_i(j)] \leftarrow A[i, h_i(j)] + c_j \quad \forall i \in [t]$$

3. The frequency estimate for item j is $\min_{i \in [t]} A[i, h(j)]$.

The output estimate is always more than the true value of f_j as the count of all the items in the stream is non negative.

1.2.1 Analysis

To bound the error in the estimate for f_j we need to analyze the excess X where $A[1, h_1(j)] = f_j + X$. The excess X can be expressed as a sum of random variables $X = \sum_i Y_i$ where the indicator random variable $Y_i = f_i$ if $h_1(j) = h_1(i)$ and 0 otherwise. As $h_1 \in \mathcal{H}$ is chosen uniformly at random from a 2-wise independent hash function family, $E[Y_i] = f_i/k$.

$E[X] = |f|_1/k = \epsilon |f|_1/2$

Applying Markov’s inequality, we have

$$Pr[X > \epsilon |f|_1] \leq \frac{1}{2}$$

The probability that all the excesses at $A[i, h_i(x_j)]$ are greater than $\epsilon |f|_1$ is at most $1/2^t \leq \delta$ as t was chosen to be $\log(1/\delta)$. The algorithm estimates the frequency of item x_j up to an additive error $\epsilon |f|_1$ with probability $1 - \delta$.

The memory required for the algorithm is the sum of the space for the array and the hash functions, $O(kt \log n + t \log m) = O(\frac{1}{\epsilon} \log(1/\delta) \log n)$. The update time per item in the stream is $O(\log \frac{1}{\delta})$.

1.3 Count Sketch

We present another sketch algorithm with error in terms of the ℓ_2 norm $|f|_2 = \sqrt{\sum_j f_j^2}$. The relation between the ℓ_1 and ℓ_2 norms is $\frac{1}{\sqrt{n}} |f|_1 \leq |f|_2 \leq |f|_1$, the ℓ_2 norm is less than the ℓ_1 norm so the guarantee for this algorithm is better than that for the previous one.

1. Maintain t arrays $A[i]$ each having k counters, hash functions $g_i : U \rightarrow \{-1, 1\}$ and $h_i : U \rightarrow [k]$ drawn uniformly at random from a 2-wise independent families are associated to array $A[i]$.

2. For element (j, c_j) in the stream, update counters as follows:

$$A[i, h_i(j)] \leftarrow A[i, h_i(j)] + g_i(j)c_j \quad \forall i \in [t]$$

3. The frequency estimate for item j is the median over the t arrays of $g_i(x_j)A[i, h(j)]$.
1.3.1 Analysis

Again, the entry $A[1, h_1(j)] = g_1(j)f_j + X$, we examine the contribution X from the other items by writing $X = \sum Y_i$ where the indicator variable Y_i is $\pm f_i$ if $h_1(i) = h_1(j)$ and 0 otherwise. Note that $E[Y_j] = 0$, so the expected value of $g_1(j)A[1, h(j)]$ is f_j.

The random variables Y_i are pairwise independent as h_1 is a 2-wise independent hash function, so the variance of X can be expressed as,

$$\text{Var}(X) = \sum_{i \in [m]} \text{Var}(Y_i) = \sum_{i \in [m]} \frac{f_i^2}{k} \frac{|f|^2}{k}$$

We will use Chebyshev’s inequality to bound the deviation of X from its expected value,

$$Pr[|X - \mu| > \Delta] \leq \frac{\text{Var}(X)}{\Delta^2}$$

The mean $\mu = f_j$ and the variance is $\frac{|f|^2}{k}$, choosing $\delta = \epsilon|f|_2$ and $k = 4/\epsilon^2$ we have,

$$Pr[|X - \mu| > \epsilon|f|_2] \leq \frac{1}{\epsilon^2 k} \leq \frac{1}{4}$$

For $t = \theta(\log(1/\delta))$, the probability that the median value deviates from μ by more than $\epsilon|f|_2$ is less than δ by a Chernoff bound. That is, the probability that there are fewer than $t/2$ success in a series of t tosses of a coin with success probability $3/4$ is smaller than δ for $t = O(\log(1/\delta))$.

Arguing as in the count min sketch the space required is $O(\frac{1}{\epsilon^2} \log \frac{1}{3} \log n)$ and the update time per item is $O(\log \frac{1}{\delta})$.

1.4 Remarks

The count sketch approximates f_j within $\epsilon|f|_2$ but requires $\tilde{O}(\frac{1}{\epsilon^2})$ space, while the count min sketch approximates f_j within $\epsilon|f|_1$ and requires $\tilde{O}(\frac{1}{\epsilon})$ space. The approximation provided by the sketch algorithms is meaningful only for items that occur with high frequency.