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Lecture 9

1 Sparse cuts and Cheeger’s inequality

Consider the problem of partitioning a given graph G(V,E) into two or more ‘large’ pieces
by deleting a ‘few’ edges. If edges in the graph represent some notion of similarity or
closeness between the vertices, then such a decomposition yields a good clustering of the
vertices in the graph. The quality of such a decomposition can be quantified in terms of
the edge expansion which is defined next.

For simplicity we assume that G is a d-regular graph, let (S, V − S) be a partition of
the vertex set V . The edge expansion of the partition (S, V − S) is,

h(S) =
|E(S, V − S)|

dmin(|S|, |V − S|)
(1)

The edge expansion of the graph G is the minimum expansion over all partitions of V ,

h(G) = min
S⊆V

h(S) (2)

Another way to describe the edge expansion is the following: We wish to break off a large
part of the graph G by cutting only a small number of edges. Given that we get to keep
the smaller of the two pieces, the edge expansion is the ratio of the number of edges cut to
the number of edges that we get to keep. (including the cut edges).

The conductance φ(S) of a partition (S, V − S) is a measure closely related to the edge
expansion h(S). The conductance of G is the minimum conductance over all partitions of
V ,

φ(G) = min
S⊆V

n|E(S, V − S)|
d|S||V − S|

(3)

The conductance of a partition (S, V − S) is the edge expansion h(S) multiplied by n/|S|
where |S| ≥ n/2 is the size of the larger piece.

The conductance approximates the edge expansion within a factor of 2 for all partitions,
so reasoning about the two measures is equivalent.

h(S) ≤ φ(S) ≤ 2h(S) (4)

The edge expansion of a graph is closely related to the second largest eigenvalue of its
adjacency matrix. The connection was first discovered by Cheeger in differential geometry,
relating the isoperimetric properties of Riemannian manifolds to the second eigenvalue of
Laplacian operators defined on them. The results were introduced to computer science
by Alon, and have found several applications since then including work by Jerrum and
Sinclair on bounding the mixing time of Markov chains and by Malik and Shi on image
segmentation.
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1.1 The spectrum of a graph

The adjacency matrix of G is the n × n matrix with entry Aij = 1 if (i, j) is an edge and
0 otherwise. The adjacency matrix is normalized to M = A/d such that all the rows of M
sum to 1. The matrix M is real and symmetric so it has an orthonormal set of eigenvectors
vi with corresponding eigenvalues λi for i ∈ [n] by the spectral theorem. Wlog we can
assume that the eigenvectors are real i.e. vi ∈ Rn.

Claim 1
If v, v′ are eigenvectors of a real symmetric matrix M with distinct eigenvalues λ, λ′ then
vtv′ = 0.

Proof: The proof follows by evaluating the expression vtMv′ in two different ways using
the fact that MT = M ,

vtMv′ = λ′vtv′

vtMv′ = MT vtv′ = λvtv′

As λ, λ′ are distinct, the vectors v, v′ must be orthogonal. 2

The claim says that there is a basis of eigenvectors vi in which the action of M is to
shrink or expand the basis vectors. The matrix M is diagonal in the basis of eigenvectors,

M =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 (5)

The basis of eigenvectors is uniquely determined if all the eigenvalues are distinct. If an
eigenvalue λi has multiplicity d the space of vectors with eigenvalue λi has dimension d.
A basis of eigenvectors can be defined by choosing any orthonormal basis for each of the
eigenspaces.

1.2 Action of the adjacency matrix

It is useful to visualize the action of M as follows: A vector v ∈ Rn can be though of as
assigning a weight vi to vertex i in G. The action of M maps v to Mv, which replaces vi by
1
d

∑
j∼i vj . Therefore M acts by replacing the weight of each vertex by the average weight

of its neighbors.
We have introduced three different concepts so far: sparse cuts in G, eigenvectors and

eigenvalues of the normalized adjacency matrix M and the action of the normalized adja-
cency matrix. We will relate the three views, drawing on the different perspectives to prove
results.

The vector v1 with all entries equal to 1√
n

is an eigenvector for a d regular graph with

eigenvalue 1. The second largest eigenvalue λ2 is strictly less than 1 if G is connected,
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Claim 2
λ1 = 1, v1 = 1√

n
~1 and |λk| ≤ 1 for a d regular graph G. If the graph G is connected, λ2 < 1.

Proof: The vector v1 = 1√
n
~1 has unit length and Mv = v by the averaging interpretation

of the the action of M , showing that λ1 = 1.
The coordinates of the k-th eigenvector vk scale by a factor of λk under averaging over

neighbors,

(λkvk)i = (Mvk)i =
1

d

∑
j∼i

vkj (6)

Let i be a coordinate of vk having the maximum absolute value, by the triangle inequality
we have,

|λk||vki| ≤
1

d

∑
j∼i
|vkj | ≤ |vki| (7)

It follows that |λk| ≤ 1 for all k ∈ [n]. Suppose v is an eigenvector with eigenvalue 1 for a
connected graph G. Equality holds in (7) for v, so vj = vi for all vertices j adjacent to i.
All vertices can be reached by paths starting at i as G is a connected graph so vk = vi for
all k. It follows that a connected graph has a unique eigenvector with eigenvalue 1, hence
λ2 < 1.

2

The above claim was proved using the averaging interpretation of the action of M . The
diagonal representation of M in the spectral basis (5) yields another characterization of the
eigenvalues,

Claim 3

λ1 = sup
x∈Rn

xTMx

xtx

Proof: The matrix M is diagonal in the spectral basis (5) so xTMx can be evaluated
easily if x is represented in the spectral basis,

xtMx =
∑
i

λix
2
i ≤ λ1

∑
i

x2i = λ1x
tx (8)

The inequality is tight for x1 = e1 i.e. when x is the first eigenvector. 2

The quantity xTMx
xT x

is called the Rayleigh quotient in the literature. An argument similar
to (8) for vectors x such that x1 = 0 in the spectral basis provides a characterization of the
second eigenvalue,

∀x s.t. x1 = 0, xtMx =
∑
i>1

λix
2
i ≤ λ2

∑
i

x2i = λ2x
tx (9)

The inequality is tight for x = e2 i.e. when x is the second eigenvector.
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The first eigenvector for a d regular graph is 1√
n
~1 so x1 = 0 in the spectral basis is

equivalent to saying that x ⊥ ~1 in the standard basis. Substituting in (9) we have the
Rayleigh quotient characterization of the second eigenvalue,

λ2 = sup
x⊥~1

xTMx

xtx
(10)

More generally, all the eigenvalues have a similar characterization given by the Courant
Fischer theorem (the proof relies on a dimension argument in linear algebra, exercise)

λk = max
dim(S)=k

min
x∈S

xTMx

xtx
(11)

1.3 Cheeger’s inequality

The first eigenvector of a d regular graph is 1√
n
~1 and does not reveal information about

the graph structure. The spectral gap µ = λ1 − λ2 is the difference between the first two
eigenvalues. The spectral gap reveals information about the connectivity, for example µ = 0
if and only if G has more than one connected component. Cheeger’s inequality provides the
connection between the spectral gap and edge expansion,

µ

2
=

1− λ2
2

≤ h(G) ≤
√

2(1− λ2) =
√

2µ (12)

We illustrate Cheeger’s inequality with the examples of the d dimensional hypercube and
the cycle, showing that both sides of the inequality are tight. The inequality will be proved
over the next few lectures.

1.4 The hypercube

The d dimensional hypercube has V = {0, 1}d with (x, y) ∈ E if x and y represented as
binary strings differ in exactly one bit. The number of vertices is n = 2d, each vertex has
degree d so the number of edges is d2d−1. A way to picture the hypercube is the following:
The d dimensional hypercube is built by taking two copies of a d−1 dimensional hypercube
and connecting the corresponding vertices.

Edge expansion: The i-th coordinate cut in the hypercube is defined as Si := {x ∈
{0, 1}d | xi = 0}. The coordinate cuts achieve the minimum value for the edge expansion.
This will follow from Cheeger’s inequality once we obtain the spectrum of the hypercube,

h(G) =
|E(Si, Si)|
d|Si|

=
2d−1

d2d−1
=

1

d
=

1

log n
(13)

Vertex expansion: The ball cut S := {x ∈ {0, 1}d |
∑
xi ≤ d/2} consists of strings that

have at most d/2 ones. The cut S achieves the smallest possible vertex expansion: more
generally an isoperimetric theorem for the hypercube says that a cut having 1+

(
n
1

)
+· · ·+

(
n
k

)
vertices must have at least

(
n
k

)
vertices at its boundary.

If the vertices of the hypercube are permuted randomly it turns out that is is difficult to
reconstruct the coordinate cuts, however it is easy to recover good approximations to the
ball cuts. What is the edge expansion achieved by the ball cuts?
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A vertex at the boundary of S has exactly d/2 neighbors in S, so the edge expansion is
given by,

h(S) =
E(S, S)

d|Si|
=
d|S|
d2d
≈ 1√

d
=

1√
log n

(14)

The size of S is equal to
(
d
d/2

)
≈ 2d√

d
where the approximation log d! ≈ d log d − d is used.

[The approximation is known as Stirling’s formula in the literature, exercise if you have not
seen this before].

1.4.1 The spectrum of the hypercube:

Finding the spectrum: Recall that there are
(
d
1

)
coordinate cuts on the hypercube given by

Si = {x ∈ {0, 1}d | xi = 0}. Consider the characteristic vectors vi of the coordinate cuts
where vi(x) = 1 if x ∈ Si and vi(x) = −1 if x ∈ Si. Each vertex in Si has d− 1 neighbors in
Si and one neighbor in Si, the averaging interpretation of the action of the adjacency matrix
shows that Mvi = (1 − 2/d)vi. The coordinate cuts vi are eigenvectors of the hypercube
with eigenvalue 1− 2/d.

Consider the
(
d
2

)
cuts on the hypercube given by Sij = {x ∈ {0, 1}d | (xi ⊕ xj) = 1}.

These cuts are obtained by considering the 4 hypercubes of dimension d − 2 contained
in the d dimensional hypercube. Each vertex in Sij has d − 2 neighbors in Sij and two
neighbors in Sij , the averaging interpretation of the action of the adjacency matrix shows
that Mvij = (1 − 4/d)vij , where vij is the characteristic vector of Sij . The vectors vij
are mutually orthogonal, showing that there are

(
d
2

)
eigenvectors for the hypercube with

eigenvalue 1− 4/d.
Similarly by looking at the dimension d− k hypercubes inside the d dimensional hyper-

cube we find
(
d
k

)
eigenvectors with eigenvalue 1−2k/d. The sum of the binomial coefficients∑(

d
i

)
= 2n, so we have found the complete spectrum of the hypercube.

A histogram of the spectral profile of the hypercube looks like a plot of the binomial
distribution scaled to lie in [−1, 1]. A cleaner way to obtain the spectrum of the hypercube
is to observe that the hypercube is a Cayley graph for the group Zd2, the spectra of Cayley
graphs can be determined easily as the eigenvectors are the Fourier basis vectors (exercise
for theorists).

The second eigenspace: The second eigenspace of the hypercube has dimension d and is
spanned by the coordinate cuts. If the hypercube is randomly permuted so that the vertex
labels are lost, an eigenvalue finding program will output some linear combination of the
coordinate cuts as the second eigenvector. The ball cut in (14) is a linear combination of
the coordinate cuts with coefficients 1/2. A random linear combination of the coordinate
cuts has expansion similar to the ball cuts.

Tightness of Cheeger’s inequality: The hypercube is an example for which the left side
of Cheeger’s inequality is tight. We showed that 1−λ2

2 = 1
d and equation (13) shows that

the edge expansion of the coordinate cuts is h(Si) = 1
d . Equality holds in the left side of

Cheeger’s inequality for the hypercube. It follows that the coordinate cuts are the sparsest
cuts for the hypercube.
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1.5 The cycle

The n cycle has vertex set [n] and edges (i, i + 1) mod n for i ∈ [n]. The edge expansion
of the cycle h(C) = 2/n and the sparsest cut is the partition of the cycle into two equal
halves. We will show that λ2 ≥ 1 − O( 1

n2 ) for the cycle, implying that the right side of

Cheeger’s inequality h(C) ≤
√

2(1− λ2) is tight for the cycle.
Proof of the tightness of Cheeger: A quick way to show that the second eigenvector

for the cycle is large is to find a vector x ⊥ 1 having a high Rayleigh quotient. A vector
with high Rayleigh quotient will be approximately invariant under averaging over neighbors.
Consider the following vector,

xi =

{
i− n/4 if i ≤ n/2
3n/4− i if i > n/2

The vector x is chosen to be orthogonal to ~1 and the coordinates of x are approximately
invariant under averaging over neighbors,

(Mx)i =


−n/4 + 1/2 if i = 1, n

n/4− 1 if i = n/2

xi otherwise

Using xtx =
∑

i∈[n/4] 16i2 = O(n3) the value of the Rayleigh quotient can be computed as
follows,

xtMx

xtx
=
xtx−O(n)

xtx
= 1−O

(
1

n2

)
The second eigenvalue λ2 must be greater than the Rayleigh quotient of x, showing that
the right side of Cheeger’s inequality is tight for the cycle.

Alternative proof by computing the spectrum: We will write down the eigenvalues and
eigenvectors for the n cycle explicitly. A cleaner way to obtain the spectrum of the n cycle
is to observe that it is a Cayley graph for Zn and the eigenvectors are Fourier basis vectors.

The eigenvalues of the n cycle are cos(2πk/n) for 0 ≤ k ≤ n − 1. The vector v with
coordinates vi = cos(2πki/n) is an eigenvector of the cycle with eigenvalue cos(2πk/n).
This follows from the trigonometric identity cos(A+B) = cosA cosB − sinA sinB,

cos

(
2πk(i+ 1)

n

)
+ cos

(
2πk(i− 1)

n

)
= 2 cos

(
2πk

n

)
cos

(
2πki

n

)
The vector w with coordinates wi = sin(2πki/n) is also an eigenvector of the cycle with
eigenvalue cos(2πk/n), this can be seen using the identity sin(A + B) = sinA cosB +
cosA sinB.

The eigenspaces of the cycle corresponding to non ±1 eigenvalues are two dimensional,
this also follows from the fact that the eigenvectors of the cycle are the Fourier basis vec-
tors. More generally graphs with symmetries have degenerate eigenspaces, the standard
embedding of the cycle has a reflection symmetry about the x axis.

Tightness of Cheeger’s inequality: As n → ∞, the spectral gap for the cycle tends to
1 − 2 cos(2π/n) = O(1/n2) using the Taylor series expansion cos(δ) = 1 − δ2

2 + o(δ2) for
δ → 0.


