Today

Boosting and Experts.
Routing and Experts.

Learning.
Learning just a bit.
Example: set of labelled points, find hyperplane that separates.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.
Useless. A bit more than 1/2
Weak Learner: Classify \(\geq \frac{1}{2} + \epsilon \) points correctly.
Not really important but ...

Weak Learner/Strong Learner

Input: \(n \) labelled points.
Weak Learner:
produce hypothesis correctly classifies \(\frac{1}{2} + \epsilon \) fraction

Strong Learner:
produce hypothesis correctly classifies \(1 + \mu \) fraction
That's a really strong learner!
produce hypothesis correctly classifies \(1 - \mu \) fraction

Same thing?
Can one use weak learning to produce strong learner?
Boosting: use a weak learner to produce strong learner.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.
Can we do this?

(A) Yes
(B) No

If yes. How?
Multiplicative Weights!
The endpoint to a line of research.

Experts Picture

Experts are points. “Adversary” weak learner.
Points want to be misclassified.
Learner wants to maximize probability
of classifying random point correctly.
Strong learner algorithm will come from adversary.

Do \(T = \frac{2}{\gamma} \log \frac{1}{\mu} \) rounds
1. Row player: multiplicative weights(\(1 - \gamma \)) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis \(h(x) \): majority of \(h_1(x), h_2(x), \ldots, h_T(x) \).

Claim: \(h(x) \) is correct on \(1 - \mu \) of the points ! ! !
Cool!
Really? Proof?

Boosting/MW Framework
Some intuition

Intuition 1: Each point classified correctly independently in each round with probability $\frac{1}{2} + \varepsilon$. After enough rounds, majority rule correct for almost all points.

Intuition 2: Say some point classified correctly $\leq 1/2$ of time. High probability of choosing such point in distribution in limit, whole distribution becomes such point. This subset will be classified correctly with probability $1/2 + \varepsilon$.

Adaboost proof.

Claim: $h(x)$ is correct on $1 - \mu$ of the points !

Let S_{bad} be the set of points where $h(x)$ is incorrect. Majority of $h(x)$ are wrong for $x \in S_{bad}$.

$x \in S_{bad}$ is a good expert -- loses less than $\frac{1}{2}$ the time.

$W(T) \geq (1 - \varepsilon)^2|S_{bad}|$

Each day, weak learner gets $\geq \frac{1}{2} + \gamma$ payoff.

$\rightarrow L_T \geq \frac{1}{2} + \gamma$

$\rightarrow W(T) \leq n(1 - \varepsilon)^T \leq ne^{-\varepsilon t} \leq ne^{-\varepsilon(T\gamma + \gamma)^T}$

Combining

$|S_{bad}|(1 - \varepsilon)^{T/2} \leq W(T) \leq ne^{(\frac{1}{2} + \gamma)T}$

Calculation..

$|S_{bad}|(1 - \varepsilon)^{T/2} \leq ne^{(\frac{1}{2} + \gamma)T}$

Set $\varepsilon = \gamma$, take logs.

$\ln\left(\frac{|S_{bad}|}{n}\right) + \frac{T}{2}\ln(1 - \gamma) \leq -\gamma T\left(\frac{1}{2} + \gamma\right)$

Again, $-\gamma - \gamma^2 \leq \ln(1 - \gamma)$,

$\ln\left(\frac{|S_{bad}|}{n}\right) + \frac{T}{2}(\gamma - \gamma^2) \leq -\gamma T\left(\frac{1}{2} + \gamma\right) \rightarrow \ln\left(\frac{|S_{bad}|}{n}\right) \leq -\frac{\gamma T}{2}$

And $T = \frac{\varepsilon}{\gamma} \log \frac{n}{\|H\|}$.

$\rightarrow \ln\left(\frac{|S_{bad}|}{n}\right) \leq \log \mu - \frac{|S_{bad}|}{n} \leq \mu$.

The misclassified set is at most μ fraction of all the points.

The hypothesis correctly classifies $1 - \mu$ of the points ! ! !

Claim: Multiplicative weights: $h(x)$ is correct on $1 - \mu$ of the points ! ! !

Claim: Weak learning \rightarrow strong learning!

not so weak after all.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if

there is a hyperplane, H, that separates all the points.

and find $\frac{1}{2} + \varepsilon$ weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!

$\frac{1}{2} + \varepsilon$ separating hyperplane?

Assumption: margin γ.

Random hyperplane?

Not likely to be exactly normal to H.

Should get $\frac{1}{2} + \gamma/\sqrt{d}$

Or $\left(\frac{|S_{bad}|}{n}\right)$ to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Better weak learner?

Hyperplane that separates weighted average of +/- points?

Change loss a bit, and get better results.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1), \ldots, (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.
Matrix:
row for each routing: r
column for each edge: e
$A[r, e]$ is congestion on edge e by routing r

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Better setup.
Runtime: $O(km)$ to route in each step.
$O(k \log n \frac{1}{\varepsilon^2})$ steps
→ $O(k^2m \log n)$ to get a constant approximation.
Homework: $O(km \log n)$ algorithm.

Two person game.
Row for every routing. $(A[r, e])$
An exponential number of rows!
Two person game with experts won’t be so easy to implement.
Version with row and column flipped may work.
$A[e, r]$ - congestion of edge e on routing r.
m rows. Exponential number of columns.
Multiplicative Weights only maintains m weights.
Adversary only needs to provide best column each day.
Runtime only dependent on m and T (number of days.)

Congestion minimization and Experts.
Will use gain and $[0, \rho]$ version of experts:
$G \geq (1 - \varepsilon)G^* - \frac{\log n}{\varepsilon^2}$.
Let $T = \frac{\log n}{\varepsilon^2}$
1. Row player runs multiplicative weights:
 $w_i = w_i(1 + \varepsilon)^{T}\varepsilon^{k}$.
2. Route all paths along shortest paths.
3. Output the average of all routings: $\frac{1}{T} \sum f(t)$.
Claim: The congestion, c_{max} is at most $(1 + \varepsilon)C^* + \varepsilon$.
Proof:
$G \geq G^*(1 - \varepsilon) - \frac{k \log n}{\varepsilon^2}$
$G^* = c_{\text{max}} T$ — Best row payoff against average routing.
$G \leq C^* T$ — each day, gain is average congestion $\leq C^*$
since each day cost is toll solution which is at most C^*
$C^* T \geq c_{\text{max}} T(1 - \varepsilon)$
For $T = \frac{\log n}{\varepsilon^2}$
$\rightarrow C^* \frac{1}{1 + \varepsilon} + \varepsilon \geq c_{\text{max}}$ plus $\frac{1}{1 + \varepsilon} \leq 1 + \varepsilon \rightarrow c_{\text{max}} - \varepsilon C \leq \varepsilon C + \varepsilon$ \hfill \square

Randomized Rounding
For each s_i, t_i, choose path p_i with probability $f(p_i)$.
Congestion $c(e)$ edge rounds to $\tilde{c}(e)$.
Edge e.
used by paths p_1, \ldots, p_m.
Let $X_i = 1$,
if path p_i is chosen.
otherwise, $X_i = 0$.
Rounded congestion, $\tilde{c}(e)$, is $\sum X_i$.
Expected Congestion: $\sum X_i E(X_i)$.$E(X_i) = 1 Pr[X_i = 1] + 0 Pr[X_i = 0] = f(p_i)$
$\rightarrow \sum X_i E(X_i) = \sum f(p_i) = c(e)$.
$\rightarrow E(\tilde{c}(e)) = \tilde{c}(e)$.
Concentration (law of large numbers)
$c(e)$ is relatively large ($\Omega(\log n)$)
$\rightarrow \tilde{c}(e) \approx c(e)$.
Concentration results? later.

Fractional versus Integer.
Did we solve path routing?
Yes? No?
No! Average of T routings.
We approximately solved fractional routing problem.
No solution to the path routing problem that is $(1 + \varepsilon)$ optimal!
Homework 2. Problem 1.
Decent solution to path routing problem?
See you on Thursday.