Welcome back.

Today.
Welcome back.

Today.

Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.
Welcome back.

Today.
Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

Write $1 - \lambda_2$ as a relaxation of $\phi(G)$, Cheeger easy part
Welcome back.

Today.

Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

Write $1 - \lambda_2$ as a relaxation of $\phi(G)$, Cheeger easy part

Cheeger hard part: Sweeping cut Algorithm, Proof, Asymptotic tight example
Welcome back.

Today.
Review: Spectral gap, Edge expansion $h(G)$, Sparsity $\phi(G)$ etc.

Write $1 - \lambda_2$ as a relaxation of $\phi(G)$, Cheeger easy part

Cheeger hard part: Sweeping cut Algorithm, Proof, Asymptotic tight example
Graph $G = (V, E)$,
Edge Expansion/Conductance.

Graph $G = (V, E)$,

Assume regular graph of degree d.

Note $n \geq \max(|S|, |V| - |S|) \geq n/2$.

$\Rightarrow h(G) \leq \phi(G) \leq 2h(S)$.

Edge Expansion/Conductance.

Graph $G = (V, E)$,
Assume regular graph of degree d.

Edge Expansion.
Graph $G = (V, E)$,
Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d \min(|S|, |V - S|)}$$ \hspace{1cm} h(G) = \min_{S \subset V} h(S)$$
Edge Expansion/Conductance.

Graph \(G = (V, E) \),

Assume regular graph of degree \(d \).

Edge Expansion.

\[
h(S) = \frac{|E(S, V - S)|}{d \min(|S|, |V - S|)}, \quad h(G) = \min_{S \subset V} h(S)
\]

Conductance (Sparsity).

\[
\phi(S) = \frac{|E(S, V - S)|}{d |S| |V - S|}, \quad \phi(G) = \min_{S \subset V} \phi(S)
\]

\(n \geq \max(|S|, |V - S|) \geq n/2 \) → \(h(G) \leq \phi(G) \leq 2h(S) \)
Graph $G = (V, E)$,
Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d \min(|S|, |V - S|)}, \quad h(G) = \min_{S \subseteq V} h(S)$$

Conductance (Sparsity).

$$\phi(S) = \frac{n|E(S, V - S)|}{d|S||V - S|}, \quad \phi(G) = \min_{S \subseteq V} \phi(S)$$
Edge Expansion/Conductance.

Graph $G = (V, E)$,

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V - S)|}{d \min(|S|, |V - S|)}, \quad h(G) = \min_{S \subset V} h(S)$$

Conductance (Sparsity).

$$\phi(S) = \frac{n |E(S, V - S)|}{d |S||V - S|}, \quad \phi(G) = \min_{S \subset V} \phi(S)$$

Note $n \geq \max(|S|, |V| - |S|) \geq n/2$
Edge Expansion/Conductance.

Graph $G = (V, E)$,

Assume regular graph of degree d.

Edge Expansion.

$$h(S) = \frac{|E(S, V-S)|}{d \min(|S|,|V-S|)}, \ h(G) = \min_{S \subset V} h(S)$$

Conductance (Sparsity).

$$\phi(S) = \frac{n|E(S, V-S)|}{d |S||V-S|}, \ \phi(G) = \min_{S \subset V} \phi(S)$$

Note $n \geq \max(|S|,|V| - |S|) \geq n/2$

$\rightarrow h(G) \leq \phi(G) \leq 2h(S)$
Spectra of the graph.

\[A \text{: Adjacency Matrix } A_{ij} = 1 \iff (i, j) \in E \]
Spectra of the graph.

A: Adjacency Matrix $A_{ij} = 1 \iff (i, j) \in E$

$M = \frac{1}{d} A$, normalized adjacency matrix,
Spectra of the graph.

\[A: \text{Adjacency Matrix } A_{ij} = 1 \iff (i, j) \in E \]
\[M = \frac{1}{d} A, \text{ normalized adjacency matrix, } M \text{ real, symmetric} \]
Spectra of the graph.

A: Adjacency Matrix $A_{ij} = 1 \Leftrightarrow (i, j) \in E$

$M = \frac{1}{d}A$, normalized adjacency matrix, M real, symmetric

orthonormal eigenvectors: v_1, \ldots, v_n with eigenvalues

$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$
A: Adjacency Matrix $A_{ij} = 1 \iff (i, j) \in E$

$M = \frac{1}{d} A$, normalized adjacency matrix, M real, symmetric

orthonormal eigenvectors: v_1, \ldots, v_n with eigenvalues

$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$

Claim: Any two eigenvectors with different eigenvalues are orthogonal.
Spectra of the graph.

\[A: \text{Adjacency Matrix } A_{ij} = 1 \iff (i, j) \in E \]

\[M = \frac{1}{d} A, \text{ normalized adjacency matrix, } M \text{ real, symmetric} \]

orthonormal eigenvectors: \(\nu_1, \ldots, \nu_n \) with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \)

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: \(\nu, \nu' \) with eigenvalues \(\lambda, \lambda' \).
Spectra of the graph.

A: Adjacency Matrix $A_{ij} = 1 \iff (i, j) \in E$

$M = \frac{1}{d}A$, normalized adjacency matrix, M real, symmetric orthonormal eigenvectors: v_1, \ldots, v_n with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ'.

$v^T M v' = v^T (\lambda' v')$
Spectra of the graph.

A: Adjacency Matrix \(A_{ij} = 1 \iff (i, j) \in E \)

\(M = \frac{1}{d} A \), normalized adjacency matrix, \(M \) real, symmetric

orthonormal eigenvectors: \(v_1, \ldots, v_n \) with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \)

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: \(v, v' \) with eigenvalues \(\lambda, \lambda' \).

\[
\begin{align*}
v^T M v' &= v^T (\lambda' v') = \lambda' v^T v'
\end{align*}
\]
Spectra of the graph.

\[A: \text{Adjacency Matrix } A_{ij} = 1 \iff (i,j) \in E \]

\[M = \frac{1}{d} A, \text{ normalized adjacency matrix, } M \text{ real, symmetric} \]

Orthonormal eigenvectors: \(v_1, \ldots, v_n \) with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \)

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: \(v, v' \) with eigenvalues \(\lambda, \lambda' \).

\[v^T M v' = v^T (\lambda' v') = \lambda' v^T v' \]

\[v^T M v' = \lambda v^T v' \]
Spectra of the graph.

A: Adjacency Matrix $A_{ij} = 1 \iff (i, j) \in E$

$M = \frac{1}{d} A$, normalized adjacency matrix, M real, symmetric

orthonormal eigenvectors: v_1, \ldots, v_n with eigenvalues

$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$

Claim: Any two eigenvectors with different eigenvalues are orthogonal.

Proof: Eigenvectors: v, v' with eigenvalues λ, λ'.

$v^T M v' = v^T (\lambda' v') = \lambda' v^T v'$

$v^T M v' = \lambda v^T v' = \lambda v^T v$.

□
Action of M.

ν - assigns values to vertices.
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M,
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1.$
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$.
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x. Connected \rightarrow path from x valued node to lower value.
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1. \; \lambda_1 = 1.$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists e = (i,j), \; v_i = x, \; x_j < x.$
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1. \lambda_1 = 1.$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists e = (i, j), v_i = x, x_j < x.$

\[\frac{i}{j} \]

\vdots

\[\frac{x}{x} \leq x \]
Action of M.

ν - assigns values to vertices.

$$(M\nu)_i = \frac{1}{d} \sum_{j \sim i} \nu_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$\nu_1 = 1. \; \lambda_1 = 1.$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $\nu \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\therefore \exists e = (i, j), \nu_i = x, x_j < x.$

$$(M\nu)_i \leq \frac{1}{d} (x + x \cdots + v_j) \leq x$$
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists \ e = (i, j), v_i = x, x_j < x.$

$(Mv)_i \leq \frac{1}{d} (x + x \cdots + v_j) < x.$
Action of M.

- Assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\exists e = (i,j)$, $v_i = x$, $x_j < x$.

$$(Mv)_i \leq \frac{1}{d} (x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists e = (i,j), v_i = x, x_j < x$.

![Diagram](image)

$$(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

\[\square\]
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.

$\exists e = (i, j), v_i = x, x_j < x.$

$$(Mv)_i \leq \frac{1}{d} (x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Action of M.

- Assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\exists e = (i, j)$, $v_i = x$, $x_j < x$.

$$(Mv)_i \leq \frac{1}{d} (x + x \cdots + v_j) < x.$$

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: By contradiction. Assign $+1$ to vertices in one component, $-\delta$ to rest.
Action of M.

- ν - assigns values to vertices.

$$(M\nu)_i = \frac{1}{d} \sum_{j \sim i} \nu_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$\nu_1 = 1. \quad \lambda_1 = 1.$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $\nu \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists \ e = (i,j), \ \nu_i = x, \ x_j < x.$

\[
\begin{align*}
\begin{array}{c}
\text{i} \\
\text{x}
\end{array} \
\begin{array}{c}
\text{j} \\
\leq x
\end{array}
\end{align*}
\]

\[
(M\nu)_i \leq \frac{1}{d}(x + x \cdots + \nu_j) < x.
\]

Therefore $\lambda_2 < 1. \quad \Box$

Claim: Connected if $\lambda_2 < 1$.

Proof: By contradiction. Assign $+1$ to vertices in one component, $-\delta$ to rest.

$\ x_i = (Mx_i)$
Action of \(M \).

\(\nu \) - assigns values to vertices.

\[
(M\nu)_i = \frac{1}{d} \sum_{j \sim i} \nu_j.
\]

Action of \(M \): taking the average of your neighbours.

(Direct) result from the action of \(M \), \(|\lambda_i| \leq 1 \) \(\forall i \)

\(\nu_1 = 1. \lambda_1 = 1. \)

Claim: For a connected graph \(\lambda_2 < 1. \)

Proof: Second Eigenvector: \(\nu \perp 1 \). Max value \(x \).
Connected \(\implies \) path from \(x \) valued node to lower value.

\[\exists e = (i, j), \nu_i = x, x_j < x. \]

\[x \leq x \]

\[(M\nu)_i \leq \frac{1}{d} (x + x \cdots + \nu_j) < x. \]

Therefore \(\lambda_2 < 1. \) \(\square \)

Claim: Connected if \(\lambda_2 < 1. \)

Proof: By contradiction. Assign \(+1 \) to vertices in one component, \(-\delta \) to rest.

\(x_i = (Mx_i) \implies \) eigenvector with \(\lambda = 1. \)
Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1. \quad \lambda_1 = 1.$

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.
Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists e = (i, j), v_i = x, x_j < x.$

\[(Mv)_i \leq \frac{1}{d} (x + x \cdots + v_j) < x. \]

Therefore $\lambda_2 < 1.$

Claim: Connected if $\lambda_2 < 1$.

Proof: By contradiction. Assign $+1$ to vertices in one component, $-\delta$ to rest.

$x_i = (Mx_i) \implies$ eigenvector with $\lambda = 1$.

Choose δ to make $\sum_i x_i = 0$,

Action of M.

v - assigns values to vertices.

$$(Mv)_i = \frac{1}{d} \sum_{j \sim i} v_j.$$

Action of M: taking the average of your neighbours.

(Direct) result from the action of M, $|\lambda_i| \leq 1 \quad \forall i$

$v_1 = 1$. $\lambda_1 = 1$.

Claim: For a connected graph $\lambda_2 < 1$.

Proof: Second Eigenvector: $v \perp 1$. Max value x.

Connected \rightarrow path from x valued node to lower value.

$\rightarrow \exists \ e = (i, j), v_i = x, x_j < x.$

\[
\begin{array}{c}
\begin{array}{c}
\vdots \\
\leq x
\end{array} \\
\begin{array}{c}
i \\
\downarrow
\end{array} \\
\begin{array}{c}
x \\
\downarrow
\end{array} \\
\begin{array}{c}
j
\end{array}
\end{array}
\]

\[
(Mv)_i \leq \frac{1}{d}(x + x \cdots + v_j) < x.
\]

Therefore $\lambda_2 < 1$.

Claim: Connected if $\lambda_2 < 1$.

Proof: By contradiction. Assign $+1$ to vertices in one component, $-\delta$ to rest.

$x_i = (Mx_i) \implies \text{eigenvector with } \lambda = 1.$

Choose δ to make $\sum_i x_i = 0$, i.e., $x \perp 1$.

\[\square\]
Spectral Gap and the connectivity of graph.

Spectral gap: $\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2$.
Spectral Gap and the connectivity of graph.

Spectral gap: \(\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2 \).

Recall: \(h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V - S)|}{|S|} \)
Spectral Gap and the connectivity of graph.

Spectral gap: \(\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2. \)

Recall: \(h(G) = \min_{S, |S| < |V|/2} \frac{|E(S, V - S)|}{|S|} \)

\(1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G \text{ disconnected} \iff h(G) = 0 \)
Spectral Gap and the connectivity of graph.

Spectral gap: $\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V-S)|}{|S|}$

$1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G$ disconnected $\iff h(G) = 0$

In general, small spectral gap $1 - \lambda_2$ suggests ”poorly connected” graph.
Spectral Gap and the connectivity of graph.

Spectral gap: \(\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2 \).

Recall: \(h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V-S)|}{|S|} \)

\(1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G \text{ disconnected} \iff h(G) = 0 \)

In general, small spectral gap \(1 - \lambda_2 \) suggests "poorly connected" graph.

Formally
Spectral Gap and the connectivity of graph.

Spectral gap: \(\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2 \).

Recall: \(h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V - S)|}{|S|} \)

\[1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G \text{ disconnected} \iff h(G) = 0 \]

In general, small spectral gap \(1 - \lambda_2 \) suggests "poorly connected" graph.

Formally

Cheeger’s Inequality
Spectral Gap and the connectivity of graph.

Spectral gap: $\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V-S)|}{|S|}$

$1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G$ disconnected $\iff h(G) = 0$

In general, small spectral gap $1 - \lambda_2$ suggests "poorly connected" graph.

Formally

Cheeger’s Inequality

$$\frac{1 - \lambda_2}{2}$$
Spectral Gap and the connectivity of graph.

Spectral gap: \(\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2 \).

Recall: \(h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V-S)|}{|S|} \)

\(1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G \text{ disconnected} \iff h(G) = 0 \)

In general, small spectral gap \(1 - \lambda_2 \) suggests "poorly connected" graph

Formally

Cheeger's Inequality

\[
\frac{1 - \lambda_2}{2} \leq h(G)
\]
Spectral Gap and the connectivity of graph.

Spectral gap: $\mu = \lambda_1 - \lambda_2 = 1 - \lambda_2$.

Recall: $h(G) = \min_{S, |S| \leq |V|/2} \frac{|E(S, V-S)|}{|S|}$

$1 - \lambda_2 = 0 \iff \lambda_2 = 1 \iff G \text{ disconnected} \iff h(G) = 0$

In general, small spectral gap $1 - \lambda_2$ suggests "poorly connected" graph.

Formally

Cheeger’s Inequality

$$\frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)}$$
Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.
Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.

$$\phi(G) = \min_{S \in V} \frac{n |E(S, V - S)|}{d |S| |V - S|}$$
Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.

$$\phi(G) = \min_{S \in V} \frac{n|E(S, V - S)|}{d|S||V - S|}$$

Let x be the characteristic vector of set S.

Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.

$$\phi(G) = \min_{S \in V} \frac{n|E(S, V - S)|}{d|S||V - S|}$$

Let x be the characteristic vector of set S
$$x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$
Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.

$$\phi(G) = \min_{S \subseteq V} \frac{n|E(S, V - S)|}{d|S||V - S|}$$

Let x be the characteristic vector of set S

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$

$$|E(S, V - S)| = \frac{1}{2} \sum_{i,j} A_{ij} |x_i - x_j| = \frac{d}{2} \sum_{i,j} M_{ij} (x_i - x_j)^2$$
Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.

$$\phi(G) = \min_{S \in V} \frac{n |E(S, V - S)|}{d |S| |V - S|}$$

Let x be the characteristic vector of set S

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$

$$|E(S, V - S)| = \frac{1}{2} \sum_{i,j} A_{ij} |x_i - x_j| = \frac{d}{2} \sum_{i,j} M_{ij} (x_i - x_j)^2$$

$$|S| |V - S| = \frac{1}{2} \sum_{i,j} |x_i - x_j| = \frac{1}{2} \sum_{i,j} (x_i - x_j)^2$$
Spectral Gap and Conductance.

We will show $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.

$$\phi(G) = \min_{S \in V} \frac{n|E(S, V - S)|}{d|S||V - S|}$$

Let x be the characteristic vector of set S

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$

$$|E(S, V - S)| = \frac{1}{2} \sum_{i,j} A_{ij} |x_i - x_j| = \frac{d}{2} \sum_{i,j} M_{ij} (x_i - x_j)^2$$

$$|S||V - S| = \frac{1}{2} \sum_{i,j} |x_i - x_j| = \frac{1}{2} \sum_{i,j} (x_i - x_j)^2$$

$$\phi(G) = \min_{x \in \{0,1\}^V - \{0,1\}} \frac{n \sum_{i,j} M_{ij} (x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2}$$
Recall Rayleigh Quotient: \(\lambda_2 = \max_{x \in \mathbb{R}^n \setminus \{0\}, \perp 1} \frac{x^T M x}{x^T x} \)
Recall Rayleigh Quotient: $\lambda_2 = \max_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{x^T M x}{x^T x}$

$1 - \lambda_2 = \min_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{2(x^T x - x^T M x)}{2x^T x}$
Recall Rayleigh Quotient: \(\lambda_2 = \max_{x \in \mathbb{R}^v \setminus \{0\}, x \perp 1} x^T M x \frac{x^T x}{x^T x} \)

\[
1 - \lambda_2 = \min_{x \in \mathbb{R}^v \setminus \{0\}, x \perp 1} \frac{2(x^T x - x^T M x)}{2x^T x}
\]

Claim: \(2x^T x = \frac{1}{n} \sum_{i,j} (x_i - x_j)^2 \)
Recall Rayleigh Quotient: $\lambda_2 = \max_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{x^T Mx}{x^T x}$

$$1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{2(x^T x - x^T Mx)}{2x^T x}$$

Claim: $2x^T x = \frac{1}{n} \sum_{i,j} (x_i - x_j)^2$

Proof:

$$\sum_{i,j} (x_i - x_j)^2 = \sum_{i,j} x_i^2 + x_j^2 - 2x_i x_j$$

$$= 2n \sum_i x_i^2 - 2(\sum_i x_i)^2 = 2n \sum_i x_i^2 = 2nx^T x$$

We used $x \perp 1 \Rightarrow \sum_i x_i = 0$
Recall Rayleigh Quotient: $\lambda_2 = \max_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{x^T M x}{x^T x}$

$1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{2(x^T x - x^T M x)}{2x^T x}$
Recall Rayleigh Quotient: \(\lambda_2 = \max_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{x^T M x}{x^T x} \)

\[
1 - \lambda_2 = \min_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{2(x^T x - x^T M x)}{2x^T x}
\]

Claim: \(2(x^T x - x^T M x) = \sum_{i,j} M_{ij} (x_i - x_j)^2 \)
Recall Rayleigh Quotient: $\lambda_2 = \max_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{x^T M x}{x^T x}$

$$1 - \lambda_2 = \min_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{2(x^T x - x^T M x)}{2x^T x}$$

Claim: $2(x^T x - x^T M x) = \sum_{i,j} M_{ij} (x_i - x_j)^2$

Proof:

$$\sum_{i,j} M_{ij} (x_i - x_j)^2 = \sum_{i,j} M_{ij} (x_i^2 + x_j^2) - 2 \sum_{i,j} M_{ij} x_i x_j$$

$$= \sum_{i} \sum_{j \sim i} \frac{1}{d} (x_i^2 + x_j^2) - 2x^T M x$$

$$= 2 \sum_{(i,j) \in E} \frac{1}{d} (x_i^2 + x_j^2) - 2x^T M x$$

$$= 2 \sum_{i} x_i^2 - 2x^T M x = 2x^T x - 2x^T M x$$
Combining the two claims, we get
Combining the two claims, we get

\[1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

\[= \min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]
Combining the two claims, we get

\[1 - \lambda_2 = \min_{x \in \mathbb{R}^V \setminus \{0\}, x \perp 1} \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

\[= \min_{x \in \mathbb{R}^V \setminus \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

Recall

\[\phi(G) = \min_{x \in \{0,1\}^V \setminus \{0,1\}} \frac{n \sum_{i,j} M_{ij}(x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2} \]
Combining the two claims, we get

\[1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

\[= \min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

Recall

\[\phi(G) = \min_{x \in \{0,1\}^V - \{0,1\}} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2} \]

We have \(1 - \lambda_2\) as a continuous relaxation of \(\phi(G)\), thus
Combining the two claims, we get

\[1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} x \rightleftarrows \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

\[= \min_{x \in \mathbb{R}^V - \text{Span}\{1\}} x \rightleftarrows \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

Recall

\[\phi(G) = \min_{x \in \{0,1\}^V - \{0,1\}} \frac{n \sum_{i,j} M_{ij}(x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2} \]

We have \(1 - \lambda_2 \) as a continuous relaxation of \(\phi(G) \), thus

\[1 - \lambda_2 \leq \phi(G) \]
Combining the two claims, we get

\[1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

\[= \min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

Recall

\[\phi(G) = \min_{x \in \{0,1\}^V - \{0,1\}} \frac{n \sum_{i,j} M_{ij} (x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2} \]

We have \(1 - \lambda_2 \) as a continuous relaxation of \(\phi(G) \), thus

\[1 - \lambda_2 \leq \phi(G) \leq 2h(G) \]
Combining the two claims, we get

\[1 - \lambda_2 = \min_{x \in \mathbb{R}^V - \{0\}, x \perp 1} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

\[= \min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \]

Recall

\[\phi(G) = \min_{x \in \{0,1\}^V - \{0,1\}} \frac{n \sum_{i,j} M_{ij} (x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2} \]

We have \(1 - \lambda_2\) as a continuous relaxation of \(\phi(G)\), thus

\[1 - \lambda_2 \leq \phi(G) \leq 2h(G) \]

Hooray!! We get the easy part of Cheeger \(\frac{1 - \lambda_2}{2} \leq h(G)\)
Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.
Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$.
Cheeger Hard Part.

Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2nd eigenvector $x = \arg\min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}$
Cheeger Hard Part.

Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2^{nd} eigenvector $x = \arg\min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij}(x_i-x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i-x_j)^2}$

Consider x as an embedding of the vertices to the real line.
Cheeger Hard Part.

Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2nd eigenvector $x = \arg\min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}$

Consider x as an embedding of the vertices to the real line.

Round x to get a $x \in \{0, 1\}^V$
Cheeger Hard Part.

Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2^{nd} eigenvector $x = \text{argmin}_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{1}{n} \sum_{i,j} (x_i - x_j)^2 M_{ij}$

Consider x as an embedding of the vertices to the real line.

Round x to get a $x \in \{0, 1\}^V$

Rounding: Take a threshold t,

\[
\begin{align*}
 x_i &\geq t \quad \rightarrow x_i = 1 \\
 x_i &< t \quad \rightarrow x_i = 0
\end{align*}
\]
Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2nd eigenvector $x = \arg\min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}$

Consider x as an embedding of the vertices to the real line.

Round x to get a $x \in \{0, 1\}^V$

Rounding: Take a threshold t,

$$
\begin{cases}
 x_i \geq t & \rightarrow x_i = 1 \\
 x_i < t & \rightarrow x_i = 0
\end{cases}
$$

What will be a good t?
Now let’s get to the hard part of Cheeger $h(G) \leq \sqrt{2(1 - \lambda_2)}$.

Idea: We have $1 - \lambda_2$ as a continuous relaxation of $\phi(G)$

Take the 2^{nd} eigenvector $x = \arg\min_{x \in \mathbb{R}^V - \text{Span}\{1\}} \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\sum_{i,j} (x_i - x_j)^2}$

Consider x as an embedding of the vertices to the real line.

Round x to get a $x \in \{0, 1\}^V$

Rounding: Take a threshold t,

\[
\begin{cases}
 x_i \geq t & \rightarrow x_i = 1 \\
 x_i < t & \rightarrow x_i = 0
\end{cases}
\]

What will be a good t?

We don’t know. Try all possible thresholds ($n - 1$ possibilities), and hope there is a t leading to a good cut!
Sweeping Cut Algorithm

Input: \(G = (V, E), x \in \mathbb{R}^V, x \perp 1 \)
Sweeping Cut Algorithm

Input: $G = (V, E), x \in \mathbb{R}^V, x \perp \mathbf{1}$

Sort the vertices in non-decreasing order in terms of their values in x

WLOG $V = \{1, \ldots, n\}$ \quad $x_1 \leq x_2 \leq \ldots \leq x_n$
Sweeping Cut Algorithm

Input: \(G = (V, E), \ x \in \mathbb{R}^V, x \perp 1 \)

Sort the vertices in non-decreasing order in terms of their values in \(x \)

WLOG \(V = \{1, \ldots, n\} \quad x_1 \leq x_2 \leq \ldots \leq x_n \)

Let \(S_i = \{1, \ldots, i\} \quad i = 1, \ldots, n - 1 \)
Sweeping Cut Algorithm

Input: $G = (V, E)$, $x \in \mathbb{R}^V$, $x \perp 1$

Sort the vertices in non-decreasing order in terms of their values in x

WLOG $V = \{1, \ldots, n\}$ $x_1 \leq x_2 \leq \ldots \leq x_n$

Let $S_i = \{1, \ldots, i\}$ $i = 1, \ldots, n-1$

Return $S = \text{argmin}_{S_i} h(S_i)$
Sweeping Cut Algorithm

Input: $G = (V, E), x \in \mathbb{R}^V, x \perp 1$

Sort the vertices in non-decreasing order in terms of their values in x

WLOG $V = \{1, \ldots, n\} \quad x_1 \leq x_2 \leq \ldots \leq x_n$

Let $S_i = \{1, \ldots, i\} \quad i = 1, \ldots, n-1$

Return $S = \text{argmin}_{S_i} h(S_i)$

Main Lemma: $G = (V, E), d$-regular

$x \in \mathbb{R}^V, x \perp 1, \delta = \frac{\sum_{i,j} M_{ij}(x_i-x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i-x_j)^2}$

If S is the output of the sweeping cut algorithm, then $h(S) \leq \sqrt{2\delta}$
Sweeping Cut Algorithm

Input: $G = (V, E), x \in \mathbb{R}^V, x \perp 1$

Sort the vertices in non-decreasing order in terms of their values in x
WLOG $V = \{1, \ldots, n\}$ \quad $x_1 \leq x_2 \leq \ldots \leq x_n$

Let $S_i = \{1, \ldots, i\} \quad i = 1, \ldots, n - 1$

Return $S = \text{argmin}_{S_i} h(S_i)$

Main Lemma: $G = (V, E)$, d-regular
$x \in \mathbb{R}^V, x \perp 1, \delta = \frac{\sum_{i,j} M_{ij}(x_i - x_j)^2}{\frac{1}{n} \sum_{i,j}(x_i - x_j)^2}$

If S is the output of the sweeping cut algorithm, then $h(S) \leq \sqrt{2\delta}$

Note: Applying the Main Lemma with the 2nd eigenvector v_2, we have $\delta = 1 - \lambda_2$, and $h(G) \leq h(S) \leq \sqrt{2(1 - \lambda_2)}$. Done!
Proof of Main Lemma

WLOG $V = \{1, \ldots, n\}$ \quad $x_1 \leq x_2 \leq \ldots \leq x_n$
Proof of Main Lemma

WLOG $V = \{1, \ldots, n\}$ \hspace{1cm} $x_1 \leq x_2 \leq \ldots \leq x_n$

Want to show

$$\exists i \text{ s.t. } h(S_i) = \frac{1}{d} \frac{|E(S, V - S)|}{\min(|S|, |V - S|)} \leq \sqrt{2\delta}$$
Proof of Main Lemma

WLOG $V = \{1, \ldots, n\}$ \hspace{1cm} $x_1 \leq x_2 \leq \ldots \leq x_n$

Want to show

$$\exists i \text{ s.t. } h(S_i) = \frac{\frac{1}{d}|E(S, V - S)|}{\min(|S|, |V - S|)} \leq \sqrt{2\delta}$$

Probabilistic Argument: Construct a distribution D over $\{S_1, \ldots, S_{n-1}\}$ such that

$$\mathbb{E}_{S \sim D}[\frac{\frac{1}{d}|E(S, V - S)|}{\mathbb{E}_{S \sim D}[\min(|S|, |V - S|)]}] \leq \sqrt{2\delta}$$
Proof of Main Lemma

WLOG \(V = \{1, \ldots, n\} \) \(x_1 \leq x_2 \leq \ldots \leq x_n \)

Want to show

\[\exists i \text{ s.t. } h(S_i) = \frac{\frac{1}{d} |E(S, V - S)|}{\min(|S|, |V - S|)} \leq \sqrt{2\delta} \]

Probabilistic Argument: Construct a distribution \(D \) over \(\{S_1, \ldots, S_{n-1}\} \) such that

\[\mathbb{E}_{S \sim D}[\frac{\frac{1}{d} |E(S, V - S)|}{\min(|S|, |V - S|)}] \leq \sqrt{2\delta} \]

\[\to \mathbb{E}_{S \sim D}[\frac{1}{d} |E(S, V - S)| - \sqrt{2\delta} \min(|S|, |V - S|)] \leq 0 \]
Proof of Main Lemma

WLOG \(V = \{1, \ldots, n\} \quad x_1 \leq x_2 \leq \ldots \leq x_n \)

Want to show

\[\exists i \text{ s.t. } h(S_i) = \frac{1}{d} |E(S, V - S)| \leq \sqrt{2\delta} \]

Probabilistic Argument: Construct a distribution \(D \) over \(\{S_1, \ldots, S_{n-1}\} \) such that

\[\mathbb{E}_{S \sim D}[\frac{1}{d} |E(S, V - S)|] \leq \sqrt{2\delta} \]

\[\mathbb{E}_{S \sim D}[\min(|S|, |V - S|)] \]

\[\rightarrow \mathbb{E}_{S \sim D}[\frac{1}{d} |E(S, V - S)| - \sqrt{2\delta} \min(|S|, |V - S|)] \leq 0 \]

\[\exists S \quad \frac{1}{d} |E(S, V - S)| - \sqrt{2\delta} \min(|S|, |V - S|) \leq 0 \]
The distribution D

WLOG, shift and scale so that $x_{\left\lfloor \frac{n}{2} \right\rfloor} = 0$, and $x_1^2 + x_n^2 = 1$
WLOG, shift and scale so that $x_{\lfloor \frac{n}{2} \rfloor} = 0$, and $x_1^2 + x_n^2 = 1$

Take t from the range $[x_1, x_n]$ with density function $f(t) = 2|t|$.

The distribution D
The distribution D

WLOG, shift and scale so that $x_{\lfloor n/2 \rfloor} = 0$, and $x_1^2 + x_n^2 = 1$

Take t from the range $[x_1, x_n]$ with density function $f(t) = 2|t|$.

Check: $\int_{x_1}^{x_n} f(t) dt = \int_{x_1}^0 -2tdt + \int_0^{x_n} 2tdt = x_1^2 + x_n^2 = 1$
The distribution D

WLOG, shift and scale so that $x_{\left\lfloor \frac{n}{2} \right\rfloor} = 0$, and $x_1^2 + x_n^2 = 1$

Take t from the range $[x_1, x_n]$ with density function $f(t) = 2|t|$.

Check: $\int_{x_1}^{x_n} f(t)dt = \int_{x_1}^{0} -2tdt + \int_{0}^{x_n} 2tdt = x_1^2 + x_n^2 = 1$

$S = \{i : x_i \leq t\}$
The distribution \(D \)

WLOG, shift and scale so that \(x_{\lceil n/2 \rceil} = 0 \), and \(x_1^2 + x_n^2 = 1 \)

Take \(t \) from the range \([x_1, x_n]\) with density function \(f(t) = 2|t| \).

Check: \(\int_{x_1}^{x_n} f(t) \, dt = \int_{x_1}^{0} -2t \, dt + \int_{0}^{x_n} 2t \, dt = x_1^2 + x_n^2 = 1 \)

\(S = \{ i : x_i \leq t \} \)

Take \(D \) as the distribution over \(S_1, \ldots, S_{n-1} \) resulted from the above procedure.
Goal: \[\frac{\mathbb{E}_{S \sim D} \left[\frac{1}{d} |E(S, V-S)| \right]}{\mathbb{E}_{S \sim D} \left[\min(|S|, |V-S|) \right]} \leq \sqrt{2 \delta} \]
Goal: \(\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|,|V-S|)]} \leq \sqrt{2\delta} \)

Denominator:
Goal: \(\frac{\mathbb{E}_{S \sim D}[\frac{1}{d} |E(S, V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V-S|)]} \leq \sqrt{2\delta} \)

Denominator:

Let \(T_i = i \) is in the smaller set of \(S, V - S \)
Goal: \[\frac{\mathbb{E}_{S \sim D} \left[\frac{1}{d} |E(S, V - S)| \right]}{\mathbb{E}_{S \sim D} \left[\min(|S|, |V - S|) \right]} \leq \sqrt{2\delta} \]

Denominator:

Let \(T_i = i \) is in the smaller set of \(S, V - S \)

Can check

\[\mathbb{E}_{S \sim D}[T_i] = Pr[T_i] = x_i^2 \]

\[\mathbb{E}_{S \sim D}[\min(|S|, |V - S|)] = \mathbb{E}_{S \sim D}[\sum_i T_i] \]

\[= \sum_i \mathbb{E}_{S \sim D}[T_i] \]

\[= \sum_i x_i^2 \]
Goal: $$\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V-S|)]} \leq \sqrt{2\delta}$$
Goal: \[
\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V - S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V - S|)]} \leq \sqrt{2\delta}
\]

Numerator:
Goal: \[\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V - S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V - S|)]} \leq \sqrt{2\delta} \]

Numerator:

Let \(T_{i,j} = i, j \) is cut by \((S, V - S)\)
Goal: \(\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V-S|)]]} \leq \sqrt{2\delta} \)

Numerator:

Let \(T_{i,j} = i, j \) is cut by \((S, V - S)\)

\[
\begin{align*}
\begin{cases}
 x_i, x_j \text{ same sign:} & \quad Pr[T_{i,j}] = |x_i^2 - x_j^2| \\
 x_i, x_j \text{ different sign:} & \quad Pr[T_{i,j}] = x_i^2 + x_j^2
\end{cases}
\end{align*}
\]
Goal: \[\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S \sim D}[\text{min}(|S|,|V-S|)]} \leq \sqrt{2\delta} \]

Numerator:

Let \(T_{i,j} = i,j \) is cut by \((S, V - S)\)

\[
\begin{align*}
\begin{cases}
 x_i, x_j \text{ same sign:} & Pr[T_{i,j}] = |x_i^2 - x_j^2| \\
 x_i, x_j \text{ different sign:} & Pr[T_{i,j}] = x_i^2 + x_j^2
\end{cases}
\]

A common upper bound: \(\mathbb{E}[T_{i,j}] = Pr[T_{i,j}] \leq |x_i - x_j|(|x_i| + |x_j|) \)
Goal: \(\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|, |V-S|)]} \leq \sqrt{2 \delta} \)

Numerator:

Let \(T_{i,j} = i, j \) is cut by \((S, V-S)\)

\[
\begin{aligned}
& x_i, x_j \text{ same sign: } \Pr[T_{i,j}] = |x_i^2 - x_j^2| \\
& x_i, x_j \text{ different sign: } \Pr[T_{i,j}] = x_i^2 + x_j^2
\end{aligned}
\]

A common upper bound: \(\mathbb{E}[T_{i,j}] = \Pr[T_{i,j}] \leq |x_i - x_j|(|x_i| + |x_j|) \)

\[
\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S, V-S)|] = \frac{1}{2} \sum_{i,j} M_{ij} \mathbb{E}[T_{i,j}] \leq \frac{1}{2} \sum_{i,j} M_{ij} |x_i - x_j|(|x_i| + |x_j|)
\]
Cauchy-Schwarz Inequality

\[|a \cdot b| \leq \|a\|\|b\|, \text{ as } a \cdot b = \|a\|\|b\| \cos(a, b) \]
Cauchy-Schwarz Inequality

\[|a \cdot b| \leq \|a\|\|b\|, \text{ as } a \cdot b = \|a\|\|b\|\cos(a, b) \]

Applying with \(a, b \in \mathbb{R}^n \) with
\(a_{ij} = \sqrt{M_{ij}}|x_i - x_j|, b_{ij} = \sqrt{M_{ij}}|x_i| + |x_j| \)
Cauchy-Schwarz Inequality

\[|a \cdot b| \leq \|a\| \|b\|, \text{ as } a \cdot b = \|a\| \|b\| \cos(a, b) \]

Applying with \(a, b \in \mathbb{R}^n \) with \(a_{ij} = \sqrt{M_{ij}}|x_i - x_j|, b_{ij} = \sqrt{M_{ij}}|x_i| + |x_j| \)

Numerator:

\[
\mathbb{E}_{S \sim D} \left[\frac{1}{d} |E(S, V - S)| \right] = \frac{1}{2} \sum_{i,j} M_{ij} \mathbb{E}[T_{i,j}]
\]

\[
\leq \frac{1}{2} \sum_{i,j} M_{ij} |x_i - x_j|(|x_i| + |x_j|)
\]

\[
= \frac{1}{2} a \cdot b
\]

\[
\leq \frac{1}{2} \|a\| \|b\|
\]
Recall $\delta = \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}$, $a_{ij} = \sqrt{M_{ij}} |x_i - x_j|$, $b_{ij} = \sqrt{M_{ij}} |x_i| + |x_j|$
Recall \(\delta = \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2} \), \(a_{ij} = \sqrt{M_{ij}} |x_i - x_j| \), \(b_{ij} = \sqrt{M_{ij}} |x_i| + |x_j| \)

\[
\|a\|^2 = \sum_{i,j} M_{ij} (x_i - x_j)^2 = \frac{\delta}{n} \sum_{i,j} (x_i - x_j)^2
\]

\[
= \frac{\delta}{n} \sum_{i,j} (x_i^2 + x_j^2) - \sum_{i,j} 2x_i x_j
\]

\[
= \frac{\delta}{n} \sum_{i,j} (x_i^2 + x_j^2) - 2(\sum_{i} x_i)^2
\]

\[
\leq \frac{\delta}{n} \sum_{i,j} (x_i^2 + x_j^2) = 2\delta \sum_{i} x_i^2
\]
Recall $\delta = \frac{\sum_{i,j} M_{ij} (x_i - x_j)^2}{\frac{1}{n} \sum_{i,j} (x_i - x_j)^2}$, $a_{ij} = \sqrt{M_{ij}} |x_i - x_j|$, $b_{ij} = \sqrt{M_{ij}} |x_i| + |x_j|$

\[
\|a\|^2 = \sum_{i,j} M_{ij} (x_i - x_j)^2 = \frac{\delta}{n} \sum_{i,j} (x_i - x_j)^2 \\
= \frac{\delta}{n} \sum_{i,j} (x_i^2 + x_j^2) - \sum_{i,j} 2x_i x_j \\
= \frac{\delta}{n} \sum_{i,j} (x_i^2 + x_j^2) - 2(\sum_i x_i)^2 \\
\leq \frac{\delta}{n} \sum_{i,j} (x_i^2 + x_j^2) = 2\delta \sum_i x_i^2
\]

\[
\|b\|^2 = \sum_{i,j} M_{ij} (|x_i| + |x_j|)^2 \\
\leq \sum_{i,j} M_{ij} (2x_i^2 + 2x_j^2) \\
= 4 \sum_i x_i^2
\]
Goal: \[\mathbb{E}_{S \sim D} \left[\left\{ \frac{1}{d} \left| E(S, V-S) \right| \right\} \right] \leq \sqrt{2\delta} \]
Goal: \[\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|,|V-S|)]} \leq \sqrt{2\delta} \]

Numerator:
\[\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|] \leq \frac{1}{2} \| a \| \| b \| \]
\[\leq \frac{1}{2} \sqrt{2\delta} \sum_i x_i^2 \sqrt{4 \sum_i x_i^2} = \sqrt{2\delta} \sum_i x_i^2 \]

Recall Denominator:
\[\mathbb{E}_{S \sim D}[\min(|S|,|V-S|)] = \sum_i x_i^2 \]

We get
\[\frac{\mathbb{E}_{S \sim D}[\frac{1}{d}|E(S,V-S)|]}{\mathbb{E}_{S \sim D}[\min(|S|,|V-S|)]} \leq \sqrt{2\delta} \]
Goal: \[\frac{\mathbb{E}_{S \sim D} \left[\frac{1}{d} |E(S, V - S)| \right]}{\mathbb{E}_{S \sim D} \left[\min(|S|, |V - S|) \right]} \leq \sqrt{2\delta} \]

Numerator:
\[\mathbb{E}_{S \sim D} \left[\frac{1}{d} |E(S, V - S)| \right] \leq \frac{1}{2} \|a\| \|b\| \]
\[\leq \frac{1}{2} \sqrt{2\delta \sum_{i} x_i^2} \sqrt{4 \sum_{i} x_i^2} = \sqrt{2\delta \sum_{i} x_i^2} \]

Recall Denominator:
\[\mathbb{E}_{S \sim D} \left[\min(|S|, |V - S|) \right] = \sum_{i} x_i^2 \]

We get
\[\frac{\mathbb{E}_{S \sim D} \left[\frac{1}{d} |E(S, V - S)| \right]}{\mathbb{E}_{S \sim D} \left[\min(|S|, |V - S|) \right]} \leq \sqrt{2\delta} \]

Thus \(\exists S_i \) such that \(h(S_i) \leq \sqrt{2\delta}, \) which gives \(h(G) \leq \sqrt{2(1 - \lambda)} \) \(\square \)
Cycle

Tight example for hard part of Cheeger?
Tight example for hard part of Cheeger?

$$\mu \geq 1 - \lambda^2 \leq h(G) = \sqrt{2} \left(1 - \lambda^2\right) = \sqrt{2} \mu$$

Will show other side of Cheeger is asymptotically tight.

Cycle on n nodes.

Edge expansion: Cut in half.

$$|S| = \frac{n}{2}, \quad |E(S, S)| \rightarrow h(G) = 4\frac{n}{2}.$$
Cycle

Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \]
Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda^2}{2} \leq h(G) \]
Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} \]
Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu} \]
Tight example for hard part of Cheeger?

\[
\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu}
\]

Will show other side of Cheeger is asymptotically tight.

Cycle on \(n \) nodes.
Tight example for hard part of Cheeger?

\[
\mu \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu}
\]

Will show other side of Cheeger is asymptotically tight.

Cycle on \(n \) nodes.

Edge expansion: Cut in half.
Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu} \]

Will show other side of Cheeger is asymptotically tight.

Cycle on \(n \) nodes.

Edge expansion: Cut in half.

\[|S| = \frac{n}{2}, |E(S, \overline{S})| = 2 \]
Tight example for hard part of Cheeger?
\[
\frac{\mu}{2} = \frac{1-\lambda_2}{2} \leq h(G) \leq \sqrt{2(1-\lambda_2)} = \sqrt{2\mu}
\]
Will show other side of Cheeger is asymptotically tight.

Cycle on \(n \) nodes.

Edge expansion: Cut in half.
\[
|S| = \frac{n}{2}, \quad |E(S, S^c)| = 2
\]
\[
\rightarrow h(G) = \frac{4}{n}.
\]
Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu} \]

Will show other side of Cheeger is asymptotically tight.

Cycle on \(n \) nodes.

Edge expansion: Cut in half.

\[|S| = \frac{n}{2}, \ |E(S, \overline{S})| = 2 \]

\[\rightarrow h(G) = \frac{4}{n}. \]

Show eigenvalue gap \(\mu \) is \(O\left(\frac{1}{n^2} \right) \).
Tight example for hard part of Cheeger?

\[\frac{\mu}{2} = \frac{1 - \lambda_2}{2} \leq h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu} \]

Will show other side of Cheeger is asymptotically tight.

Cycle on \(n \) nodes.

Edge expansion: Cut in half.

- \(|S| = \frac{n}{2} \), \(|E(S, \overline{S})| = 2 \)
- \(\Rightarrow h(G) = \frac{4}{n} \).

Show eigenvalue gap \(\mu \) is \(O\left(\frac{1}{n^2}\right) \).

Find \(x \perp 1 \) with Rayleigh quotient, \(\frac{x^T Mx}{x^T x} \) close to 1.
Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1.
Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1.

$$x_i = \begin{cases} i - n/4 & \text{if } i \leq n/2 \\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Asymptotically tight example for upper bound for Cheeger $h(G) \leq \sqrt{2} (1 - \lambda_2)$ = $\sqrt{2} \mu$.

$$\mu = \lambda_1 - \lambda_2 = O\left(\frac{1}{n^2}\right)$$
Find $x \perp 1$ with Rayleigh quotient, \(\frac{x^T M x}{x^T x} \) close to 1.

\[
X_i = \begin{cases}
 i - n/4 & \text{if } i \leq n/2 \\
 3n/4 - i & \text{if } i > n/2
\end{cases}
\]

Hit with M.

\[
(Mx)_i = \begin{cases}
 -n/4 + 1/2 & \text{if } i = 1, n \\
 n/4 - 1 & \text{if } i = n/2 \\
 x_i & \text{otherwise}
\end{cases}
\]
Find \(x \perp 1 \) with Rayleigh quotient, \(\frac{x^T M x}{x^T x} \) close to 1.

\[
x_i = \begin{cases}
 i - n/4 & \text{if } i \leq n/2 \\
 3n/4 - i & \text{if } i > n/2
\end{cases}
\]

Hit with \(M \).

\[
(Mx)_i = \begin{cases}
 -n/4 + 1/2 & \text{if } i = 1, n \\
 n/4 - 1 & \text{if } i = n/2 \\
 x_i & \text{otherwise}
\end{cases}
\]

\[
\rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2}))
\]
Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1.

$$x_i = \begin{cases}
i - n/4 & \text{if } i \leq n/2 \\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with M.

$$(Mx)_i = \begin{cases} -n/4 + 1/2 & \text{if } i = 1, n \\ n/4 - 1 & \text{if } i = n/2 \\ x_i & \text{otherwise} \end{cases}$$

$$\rightarrow x^T M x = x^T x(1 - O(\frac{1}{n^2})) \rightarrow \lambda_2 \geq 1 - O(\frac{1}{n^2})$$
Find \(x \perp 1 \) with Rayleigh quotient, \(\frac{x^T M x}{x^T x} \) close to 1.

\[
x_i = \begin{cases}
 i - n/4 & \text{if } i \leq n/2 \\
 3n/4 - i & \text{if } i > n/2
\end{cases}
\]

Hit with \(M \).

\[
(Mx)_i = \begin{cases}
 -n/4 + 1/2 & \text{if } i = 1, n \\
 n/4 - 1 & \text{if } i = n/2 \\
 x_i & \text{otherwise}
\end{cases}
\]

\[
\to x^T M x = x^T x (1 - O\left(\frac{1}{n^2}\right)) \to \lambda_2 \geq 1 - O\left(\frac{1}{n^2}\right)
\]

\[
\mu = \lambda_1 - \lambda_2 = O\left(\frac{1}{n^2}\right)
\]
Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1.

$$x_i = \begin{cases}
 i - n/4 & \text{if } i \leq n/2 \\
 3n/4 - i & \text{if } i > n/2
\end{cases}$$

Hit with M.

$$(Mx)_i = \begin{cases}
 -n/4 + 1/2 & \text{if } i = 1, n \\
 n/4 - 1 & \text{if } i = n/2 \\
 x_i & \text{otherwise}
\end{cases}$$

$$x^T M x = x^T x(1 - O(\frac{1}{n^2})) \quad \Rightarrow \quad \lambda_2 \geq 1 - O(\frac{1}{n^2})$$

$$\mu = \lambda_1 - \lambda_2 = O(\frac{1}{n^2})$$

$$h(G) = \frac{4}{n} = \Theta(\sqrt{2\mu})$$
Find $x \perp 1$ with Rayleigh quotient, $\frac{x^T M x}{x^T x}$ close to 1.

$$x_i = \begin{cases}
i - n/4 & \text{if } i \leq n/2 \\ 3n/4 - i & \text{if } i > n/2 \end{cases}$$

Hit with M.

$$\begin{align*} (Mx)_i = & \begin{cases}
-n/4 + 1/2 & \text{if } i = 1, n \\
n/4 - 1 & \text{if } i = n/2 \\
\lambda_i & \text{otherwise}
\end{cases} \\
\end{align*}$$

$$\rightarrow x^T M x = x^T x (1 - O(\frac{1}{n^2})) \rightarrow \lambda_2 \geq 1 - O(\frac{1}{n^2})$$

$$\mu = \lambda_1 - \lambda_2 = O(\frac{1}{n^2})$$

$$h(G) = \frac{4}{n} = \Theta(\sqrt{2\mu})$$

Asymptotically tight example for upper bound for Cheeger

$$h(G) \leq \sqrt{2(1 - \lambda_2)} = \sqrt{2\mu}.$$
Sum up.

$1 - \lambda_2$ as a relaxation of $\phi(G)$.

Sum up.

$1 - \lambda_2$ as a relaxation of $\phi(G)$.

Sweeping cut Algorithm
Sum up.

$1 - \lambda_2$ as a relaxation of $\phi(G)$.

Sweeping cut Algorithm

Probabilistic argument to show there exists a good threshold cut
$1 - \lambda_2$ as a relaxation of $\phi(G)$.
Sweeping cut Algorithm
Probabilistic argument to show there exists a good threshold cut
Example: Cycle, Cheeger hard part is asymptotic tight.
Satish will be back on Tuesday.
Satish will be back on Tuesday.