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Welcome back.

Turn in homework!
| am away April 15-20.
Midterm out when | get back.

Few days and take home.
Shiftable.

Have handle on projects before that.

Progress report due Monday.



Example Problem: clustering.

» Points: documents, dna, preferences.

» Graphs: applications to VLSI, parallel processing, image
segmentation.
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Image Segmentation

Which region? Normalized Cut: Find S, which minimizes

w(S,9)
w(S) x w(S)

Ratio Cut: minimize .

w(S,S)

w(s) ’

w(S) no more than half the weight. (Minimize cost per unit weight
that is removed.)
Either is generally useful!
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Edge Expansion/Conductance.

Graph G=(V,E),
Assume regular graph of degree d.
Edge Expansion.
E(S.V-S ;

h(S) = gmarsmvig N(G) = ming h(S)
Conductance.

9(S) = 5Ey=5", 0(G) = ming9(S)
Note n > max(|S|,|V|—1|S|) > n/2

— h(G) < ¢(G) <2h(S)
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Spectra of the graph.

M = A/d adjacency matrix, A
Eigenvector: v - Mv =Av
Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are
orthogonal.

Proof: Eigenvectors: v, Vv’ with eigenvalues A,1’.
vimv =vT(Av)=1vTv/

vIMY =AvTv =AvTv.
Distinct eigenvalues — orthonormal basis.

In basis: matrix is diagonal..
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Action of M.

v - assigns weights to vertices.
Mv replaces v; with % Yo ) V.
Eigenvector with highest value? v=1. 4y =1.
= Vi=(M1)j=LYecipl=1.
Claim: For a connected graph A, < 1.

Proof: Second Eigenvector: v 1. 1. Max value x.
Connected — path from x valued node to lower value.
—3de=/(i)), vi=Xx, x; < X.

_:’ J (Mv); < Y (x+x---+v) <x.
Vx <x Therefore A, < 1.

Claim: Connected if A, < 1.

Proof: Assign +1 to vertices in one component, —9 to rest.
x; = (Mx;) = eigenvector with 1 = 1.

Choose 6 to make ¥ x; =0, i.e., x L 1.
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Rayleigh Quotient

Ay = maxy X7 T

In basis, M is diagonal.
Represent x in basis, i.e., X; = x - v;.
XMx =Y ix% < 2 L x2A = AxTx
Tight when x is first eigenvector. O
Rayleigh quotient.

Ao = maXy 4 %
X1L1&Yx=0.
Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is 'Els‘s)‘ h(S).

Rayleigh quotient is less than h(S) for any balanced cut S.

Find balanced cut from vector that acheives Rayleigh quotient?
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Cheeger’s inequality.

Rayleigh quotient.

T
— x' Mx
2,2 =MmaXy 1 Tx

Eigenvalue gap: u =24y — .

Recall: h(G) = mins,\S\g\V\/Z W

=k <nG)<2(1—X2)= /21

Hmmm..

n=

Connected A, < A4.

h(G) large — well connected — A1 — A» big.
Disconnected 4> = A4.

h(G) small — A — Ao small.
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Hypercube
V={0,1}9 (x,y) € E when x and y differ in one bit.

|V| =29 |E| = d29-1.

Good cuts?

Coordinate cut: d of them.

. . 2d—1 1
Edge expansion: S =5

Ball cut: All nodes within d/2 of node, say 00---0.
Vertex cut size: (,7,) bit strings with d/2 1's.
Vertex expansion: ~ %.

i N ~ L
Edge expansion: d/2 edges to next level. ~ 573

Worse by a factor of v/d
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Anyone see any symmetry?
Coordinate cuts. +1 on one side, -1 on other.
(Mv);=(1-2/d)v;.
Eigenvalue 1 —2/d. d Eigenvectors. Why orthogonal?
Next eigenvectors?
Delete edges in two dimensions.
Four subcubes: bipartite. Color +1
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Eigenvalues: 1—2k/d. (¢) eigenvectors.
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xT Mx

+% close to 1.
X' X

Find x L 1 with Rayleigh quotient,

o Ji-n/a iti<n/2
" \38n/4—i ifi>n/2

Hit with M.

-n/4+1/2 ifi=1,n
(Mx)j =< n/4—1 ifi=n/2
X; otherwise

= XTMx=xTx(1-0(%)) —A>1-0(%)

Tight example for upper bound for Cheeger.
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p - probability distribution.

Probability distrubtion after choose a random neighbor.
Mp.

Converge to uniform distribution.
Power method: M!x goes to highest eigenvector.
Mix = aiAbvy + asdovo + -
A — A - rate of convergence.
Q(n?) steps to get close to uniform.

Start at node 0, probability distribution, [1,0,0,---,0].
Takes Q(n?) to get n steps away.

Recall druken sailor.



Sum up.



See you on Tuesday.



