
Welcome back.

Turn in homework!

I am away April 15-20.

Midterm out when I get back.

Few days and take home.
Shiftable.

Have handle on projects before that.

Progress report due Monday.
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Example Problem: clustering.

I Points: documents, dna, preferences.
I Graphs: applications to VLSI, parallel processing, image

segmentation.



Image example.



Image Segmentation

Which region?

Normalized Cut: Find S, which minimizes

w(S,S)

w(S)×w(S)
.

Ratio Cut: minimize
w(S,S)

w(S)
,

w(S) no more than half the weight. (Minimize cost per unit weight
that is removed.)

Either is generally useful!
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Edge Expansion/Conductance.

Graph G = (V ,E),

Assume regular graph of degree d .

Edge Expansion.

h(S) = |E(S,V−S)|
d min |S|,|V−S| , h(G) = minS h(S)

Conductance.

φ(S) = n|E(S,V−S)|
d |S||V−S| , φ(G) = minS φ(S)

Note n ≥max(|S|, |V |− |S|)≥ n/2

→ h(G)≤ φ(G)≤ 2h(S)
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Spectra of the graph.
M = A/d adjacency matrix, A

Eigenvector: v – Mv = λv

Real, symmetric.

Claim: Any two eigenvectors with different eigenvalues are
orthogonal.

Proof: Eigenvectors: v ,v ′ with eigenvalues λ ,λ ′.
vT Mv ′ = vT (λ ′v ′) = λ ′vT v ′

vT Mv ′ = λvT v ′ = λvT v .
Distinct eigenvalues→ orthonormal basis.

In basis: matrix is diagonal..

M =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


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Action of M.

v - assigns weights to vertices.

Mv replaces vi with 1
d ∑e=(i ,j) vj .

Eigenvector with highest value? v = 1. λ1 = 1.

→ vi = (M1)i = 1
d ∑e∈(i ,j) 1 = 1.

Claim: For a connected graph λ2 < 1.

Proof: Second Eigenvector: v ⊥ 1. Max value x .
Connected→ path from x valued node to lower value.
→ ∃ e = (i , j), vi = x , xj < x .

i

x

...

j

≤ x

(Mv)i ≤ 1
d (x + x · · ·+ vj ) < x .

Therefore λ2 < 1.

Claim: Connected if λ2 < 1.
Proof: Assign +1 to vertices in one component, −δ to rest.

xi = (Mxi ) =⇒ eigenvector with λ = 1.
Choose δ to make ∑i xi = 0, i.e., x ⊥ 1.
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Rayleigh Quotient

λ1 = maxx
xT Mx
xT x

In basis, M is diagonal.

Represent x in basis, i.e., xi = x ·vi .

xMx = ∑i λix2
i ≤ λ1 ∑i x2

i λ = λxT x

Tight when x is first eigenvector.

Rayleigh quotient.
λ2 = maxx⊥1

xT Mx
xT x .

x ⊥ 1↔ ∑i xi = 0.

Example: 0/1 Indicator vector for balanced cut, S is one such vector.

Rayleigh quotient is |E(S,S)|
|S| = h(S).

Rayleigh quotient is less than h(S) for any balanced cut S.

Find balanced cut from vector that acheives Rayleigh quotient?
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Cheeger’s inequality.

Rayleigh quotient.

λ2 = maxx⊥1
xT Mx
xT x .

Eigenvalue gap: µ = λ1−λ2.

Recall: h(G) = minS,|S|≤|V |/2
|E(S,V−S)|

|S|

µ

2 = 1−λ2
2 ≤ h(G)≤

√
2(1−λ2) =

√
2µ

Hmmm..

Connected λ2 < λ1.
h(G) large→ well connected→ λ1−λ2 big.

Disconnected λ2 = λ1.
h(G) small→ λ1−λ2 small.
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Easy side of Cheeger.

Small cut→ small eigenvalue gap.

µ

2 ≤ h(G)

Cut S. i ∈ S : vi = |V |− |S|, i ∈ Svi =−|S|.

∑i vi = |S|(|V |− |S|)−|S|(|V |− |S|) = 0

→ v ⊥ 1.

vT v = |S|(|V |− |S|)2 + |S|2(|V |− |S|) = |S|(|V |− |S|)(|V |).
vT Mv = 1

d ∑e=(i ,j) xixj .

Same side endpoints: like vT v .

Different side endpoints: −|S|(|V |− |S|)
vT Mv = vT v − (2|E(S,S)||S|(|V |− |S|)

vT Mv
vT v = 1− 2|E(S,S)|

|S|

λ2 ≥ 1−2h(S)→ h(G)≥ 1−λ2
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Hypercube
V = {0,1}d

(x ,y) ∈ E when x and y differ in one bit.

|V |= 2d |E |= d2d−1.

Good cuts?

Coordinate cut: d of them.
Edge expansion: 2d−1

d2d−1 = 1
d

Ball cut: All nodes within d/2 of node, say 00 · · ·0.
Vertex cut size:

( d
d/2

)
bit strings with d/2 1’s.

≈ 2d
√

d
Vertex expansion: ≈ 1√

d
.

Edge expansion: d/2 edges to next level. ≈ 1
2
√

d

Worse by a factor of
√

d
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Eigenvalues of hypercube.

Anyone see any symmetry?

Coordinate cuts. +1 on one side, -1 on other.

(Mv)i = (1−2/d)vi .

Eigenvalue 1−2/d . d Eigenvectors. Why orthogonal?

Next eigenvectors?

Delete edges in two dimensions.

Four subcubes: bipartite. Color ±1

Eigenvalue: 1−4/d .
(d

2

)
eigenvectors.

Eigenvalues: 1−2k/d .
(d

k

)
eigenvectors.
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Back to Cheeger.

Coordinate Cuts:

Eigenvalue 1−2/d . d Eigenvectors.
µ

2 = 1−λ2
2 ≤ h(G)≤

√
2(1−λ2) =

√
2µ

For hypercube: h(G) = 1
d λ1−λ2 = 2/d .

Left hand side is tight.

Note: hamming weight vector also in first eigenspace.

Lose “names” in hypercube, find coordinate cut?

Find coordinate cut?

Eigenvector v maps to line.
Cut along line.

Eigenvector algorithm yields some linear combination of coordinate
cut.

Find coordinate cut?
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Cycle

Tight example for Other side of Cheeger?

µ

2 = 1−λ2
2 ≤ h(G)≤

√
2(1−λ2) =

√
2µ

Cycle on n nodes.

Will show other side of Cheeger is tight.

Edge expansion:Cut in half.
|S|= n/2, |E(S,S)|= 2
→ h(G) = 2

n .

Show eigenvalue gap µ ≤ 1
n2 .

Find x ⊥ 1 with Rayleigh quotient, xT Mx
xT x close to 1.
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Find x ⊥ 1 with Rayleigh quotient, xT Mx
xT x close to 1.

xi =

{
i−n/4 if i ≤ n/2
3n/4− i if i > n/2

Hit with M.

(Mx)i =


−n/4 + 1/2 if i = 1,n
n/4−1 if i = n/2
xi otherwise

→ xT Mx = xT x(1−O( 1
n2 )) → λ2 ≥ 1−O( 1

n2 )

µ = λ1−λ2 = O( 1
n2 )

h(G) = 2
n = Θ(

√
µ)

µ

2 = 1−λ2
2 ≤ h(G)≤

√
2(1−λ2) =

√
2µ

Tight example for upper bound for Cheeger.
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Eigenvalues of cycle?

Eigenvalues: cos 2πk
n .

xi = cos 2πki
n

(Mx)i = cos
(

2πk(i+1)
n

)
+ cos

(
2πk(i−1)

n

)
= 2cos

(
2πk

n

)
cos

(
2πki

n

)
Eigenvalue: cos 2πk

n .

Eigenvalues:
vibration modes of system.
Fourier basis.
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Random Walk.

p - probability distribution.

Probability distrubtion after choose a random neighbor.
Mp.

Converge to uniform distribution.

Power method: M tx goes to highest eigenvector.

M tx = a1λ t
1v1 + a2λ2v2 + · · ·

λ1−λ2 - rate of convergence.

Ω(n2) steps to get close to uniform.

Start at node 0, probability distribution, [1,0,0, · · · ,0].
Takes Ω(n2) to get n steps away.

Recall druken sailor.
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Start at node 0, probability distribution, [1,0,0, · · · ,0].
Takes Ω(n2) to get n steps away.

Recall druken sailor.



Random Walk.

p - probability distribution.

Probability distrubtion after choose a random neighbor.
Mp.

Converge to uniform distribution.

Power method: M tx goes to highest eigenvector.

M tx = a1λ t
1v1 + a2λ2v2 + · · ·

λ1−λ2 - rate of convergence.

Ω(n2) steps to get close to uniform.

Start at node 0, probability distribution, [1,0,0, · · · ,0].
Takes Ω(n2) to get n steps away.

Recall druken sailor.



Sum up.



See you on Tuesday.


