Admin:

Check Piazza. There is a poll on bspace.

Today:
- Finish Path Routing.
- Games
Admin:
Check Piazza.
Admin:
Check Piazza. There is a poll on bspace.
Admin:
Check Piazza. There is a poll on bspace.

Today:
 - Finish Path Routing.
 - Games
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Path Routing.

Given $G = (V,E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Given $G = (V, E)$, $(s_1, t_1), \ldots , (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.

Value: 3
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.

Value: 3
Path Routing.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths connecting s_i and t_i and minimize max load on any edge.
Toll problem.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.
Toll problem.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Toll problem.

Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Total toll:
Toll problem.

Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11}$
Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.

Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$
Toll problem.

Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$

Can we do better?
Toll problem.

Given $G = (V, E)$, $(s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$
Can we do better?
Assign $1/2$ on these two edges.
Toll problem.

Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

```
Assign $\frac{1}{11}$ on each of 11 edges.
Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$
Can we do better?
Assign $1/2$ on these two edges.
Total toll:
```
Toll problem.

Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$

Can we do better?

Assign $1/2$ on these two edges.
Total toll: $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
Toll problem.

Given $G = (V, E), (s_1, t_1), \ldots, (s_k, t_k)$, find a set of k paths assign one unit of “toll” to edges to maximize total toll for connecting pairs.

Assign $\frac{1}{11}$ on each of 11 edges.
Total toll: $\frac{3}{11} + \frac{3}{11} + \frac{3}{11} = \frac{9}{11}$

Can we do better?

Assign 1/2 on these two edges.
Total toll: $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
\[\max_e c(e) \geq \sum_e c(e)d(e) \]
Total length is total congestion:
\[\sum_e c(e)d(e) = \sum_i d(p_i) \]
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
\[\max_e c(e) \geq \sum_e c(e)d(e) \]
Total length is total congestion: \[\sum_e c(e)d(e) = \sum_i d(p_i) \]
Each path, \(p_i \), in routing has length \(d(p_i) \geq d(s_i, t_i) \).
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
\[
\max_e c(e) \geq \sum_e c(e)d(e)
\]
Total length is total congestion:
\[
\sum_e c(e)d(e) = \sum_i d(p_i)
\]
Each path, \(p_i \), in routing has length \(d(p_i) \geq d(s_i, t_i) \).

\[
\max_e c(e) \geq \sum_e c(e)d(e) = \sum_i d(p_i) \geq \sum_i d(s_i, t_i).
\]
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
\[\max_e c(e) \geq \sum_e c(e)d(e) \]
Total length is total congestion: \[\sum_e c(e)d(e) = \sum_i d(p_i) \]
Each path, \(p_i \), in routing has length \(d(p_i) \geq d(s_i, t_i) \).

\[\max_e c(e) \geq \sum_e c(e)d(e) = \sum_i d(p_i) \geq \sum_i d(s_i, t_i). \]
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
\[\max_e c(e) \geq \sum_e c(e) d(e) \]
Total length is total congestion:
\[\sum_e c(e) d(e) = \sum_i d(p_i) \]
Each path, \(p_i \), in routing has length \(d(p_i) \geq d(s_i, t_i) \).

\[\max_e c(e) \geq \sum_e c(e) d(e) = \sum_i d(p_i) \geq \sum_i d(s_i, t_i). \]
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
\[\max_e c(e) \geq \sum_e c(e)d(e) \]
Total length is total congestion: \[\sum_e c(e)d(e) = \sum_i d(p_i) \]
Each path, \(p_i \), in routing has length \[d(p_i) \geq d(s_i, t_i). \]

\[\max_e c(e) \geq \sum_e c(e)d(e) = \sum_i d(p_i) \geq \sum_i d(s_i, t_i). \]

A toll solution is lower bound on any routing solution.
Toll is lower bound on Path Routing.

From before:
Max bigger than minimum weighted average:
$$\max_e c(e) \geq \sum_e c(e)d(e)$$
Total length is total congestion: $$\sum_e c(e)d(e) = \sum_i d(p_i)$$
Each path, $$p_i$$, in routing has length $$d(p_i) \geq d(s_i, t_i)$$.

$$\max_e c(e) \geq \sum_e c(e)d(e) = \sum_i d(p_i) \geq \sum_i d(s_i, t_i).$$

A toll solution is lower bound on any routing solution.
Any routing solution is an upper bound on a toll solution.
Algorithm.

Assign tolls.

Assign tolls.

How to route?
Shortest paths!

Assign routing.

How to assign tolls?
Higher tolls on congested edges.

Toll: $d(e) \propto c(e)^2$.

Equilibrium: The shortest path routing has $d(e) \propto c(e)^2$.

The routing does not change, the tolls do not change.
Assign tolls.
How to route?

Equilibrium: The shortest path routing has
has
d(e) \propto c(e).

The routing does not change, the tolls do not change.
Assign tolls.
How to route? **Shortest paths!**
Assign tolls.
How to route? **Shortest paths!**
Assign routing.
Assign tolls.
How to route? **Shortest paths!**
Assign routing.
How to assign tolls?
Algorithm.

Assign tolls.
How to route? **Shortest paths!**
Assign routing.
How to assign tolls? **Higher tolls on congested edges.**
Assign tolls.
How to route? **Shortest paths!**
Assign routing.
How to assign tolls? **Higher tolls on congested edges.**
Toll: $d(e) \propto 2^{c(e)}$.
Algorithm.

Assign tolls.
How to route? **Shortest paths!**
Assign routing.
How to assign tolls? **Higher tolls on congested edges.**
Toll: $d(e) \propto 2^{c(e)}$.

Equilibrium:
Algorithm.

Assign tolls.
How to route? **Shortest paths!**
Assign routing.
How to assign tolls? **Higher tolls on congested edges.**
Toll: \(d(e) \propto 2^{c(e)} \).

Equilibrium:
The shortest path routing has \(d(e) \propto 2^{c(e)} \).
Assign tolls.
How to route? **Shortest paths!**
Assign routing.
How to assign tolls? **Higher tolls on congested edges.**
Toll: \(d(e) \propto 2^{c(e)} \).

Equilibrium:
The shortest path routing has \(d(e) \propto 2^{c(e)} \).
The routing does not change, the tolls do not change.
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.

$$c_{opt} \geq \sum_i d(s_i, t_i) = \sum_e d(e)c(e)$$
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.

$$c_{opt} \geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e)$$

$$= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e)$$
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.

$$c_{opt} \geq \sum_i d(s_i, t_i) = \sum_e d(e)c(e)$$

$$= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)}c(e)}{\sum_e 2^{c(e)}}$$

Or $c_{max} \leq \left(1 + \frac{1}{m}\right)c_{opt} + 2\log m$.

(A)lmost within $2\log m$ of optimal!
How good is equilibrium?

Path is routed along shortest path and \(d(e) \propto 2^{c(e)} \).

\[
c_{opt} \geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e)
\]
\[
= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}}
\]
How good is equilibrium?

Path is routed along shortest path and \(d(e) \propto 2^{c(e)} \).

\[
\begin{align*}
\text{Let } c_t &= c_{\text{max}} - 2 \log m. \\
\text{Then, we have } c_{\text{opt}} &\geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e) \\
&= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}} \\
&\geq \frac{\sum_{e: c(e) > c_t} 2^{c(e)} c(e)}{\sum_{e: c(e) > c_t} 2^{c(e)} + \sum_{e: c(e) \leq c_t} 2^{c(e)}}
\end{align*}
\]
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.

For e with $c(e) \leq c_{\text{max}} - 2 \log m; 2^{c(e)} \leq 2^{c_{\text{max}}-2\log m} = \frac{2^{c_{\text{max}}}}{m^2}$.

$$c_{\text{opt}} \geq \sum_i d(s_i, t_i) = \sum_e d(e)c(e)$$

$$= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}}$$

Let $c_t = c_{\text{max}} - 2 \log m$.

$$\geq \frac{\sum_{e: c(e) > c_t} 2^{c(e)} c(e)}{\sum_{e: c(e) > c_t} 2^{c(e)} + \sum_{e: c(e) \leq c_t} 2^{c(e)}}$$
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.
For e with $c(e) \leq c_{max} - 2 \log m$; $2^{c(e)} \leq 2^{c_{max} - 2 \log m} = \frac{2^{c_{max}}}{m^2}$.

$$c_{opt} \geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e)$$

$$= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}}$$

Let $c_t = c_{max} - 2 \log m$.

$$\geq \frac{\sum_{e : c(e) > c_t} 2^{c(e)} c(e)}{\sum_{e : c(e) > c_t} 2^{c(e)} + \sum_{e : c(e) \leq c_t} 2^{c(e)}}$$

$$\geq \frac{(c_t) \sum_{e : c(e) > c_t} 2^{c(e)}}{(1 + \frac{1}{m}) \sum_{e : c(e) > c_t} 2^{c(e)}}$$
How good is equilibrium?

Path is routed along shortest path and \(d(e) \propto 2^{c(e)} \).
For \(e \) with \(c(e) \leq c_{\text{max}} - 2 \log m \); \(2^{c(e)} \leq 2^{c_{\text{max}} - 2 \log m} = \frac{2^{c_{\text{max}}}}{m^2} \).

\[
\begin{align*}
c_{\text{opt}} & \geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e) \\
& = \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}} \\
& \geq \frac{\sum_{e: c(e) > c_t} 2^{c(e)} c(e)}{\sum_{e: c(e) > c_t} 2^{c(e)} + \sum_{e: c(e) \leq c_t} 2^{c(e)}} \\
& \geq \frac{(c_t) \sum_{e: c(e) > c_t} 2^{c(e)}}{(1 + \frac{1}{m}) \sum_{e: c(e) > c_t} 2^{c(e)}} \\
& \geq \frac{(c_t)}{1 + \frac{1}{m}} = \frac{c_{\text{max}} - 2 \log m}{(1 + \frac{1}{m})} \\
\end{align*}
\]

Let \(c_t = c_{\text{max}} - 2 \log m \).
How good is equilibrium?

Path is routed along shortest path and \(d(e) \propto 2^{c(e)} \).

For \(e \) with \(c(e) \leq c_{\text{max}} - 2 \log m \); \(2^{c(e)} \leq 2^{c_{\text{max}} - 2 \log m} = \frac{2^{c_{\text{max}}}}{m^2} \).

\[
c_{\text{opt}} \geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e)
\]

\[
= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}}
\]

Let \(c_t = c_{\text{max}} - 2 \log m \).

\[
\geq \frac{\sum_{e: c(e) > c_t} 2^{c(e)} c(e)}{\sum_{e: c(e) > c_t} 2^{c(e)} + \sum_{e: c(e) \leq c_t} 2^{c(e)}}
\]

\[
\geq \frac{(c_t) \sum_{e: c(e) > c_t} 2^{c(e)}}{(1 + \frac{1}{m}) \sum_{e: c(e) > c_t} 2^{c(e)}}
\]

\[
\geq \frac{(c_t) \sum_{e: c(e) > c_t} 2^{c(e)}}{1 + \frac{1}{m}} = \frac{c_{\text{max}} - 2 \log m}{(1 + \frac{1}{m})}
\]

Or \(c_{\text{max}} \leq (1 + \frac{1}{m}) c_{\text{opt}} + 2 \log m \).
How good is equilibrium?

Path is routed along shortest path and $d(e) \propto 2^{c(e)}$.
For e with $c(e) \leq c_{\text{max}} - 2 \log m$; $2^{c(e)} \leq 2^{c_{\text{max}} - 2 \log m} = \frac{2^{c_{\text{max}}}}{m^2}$.

$c_{\text{opt}} \geq \sum_i d(s_i, t_i) = \sum_e d(e) c(e)

= \sum_e \frac{2^{c(e)}}{\sum_{e'} 2^{c(e')}} c(e) = \frac{\sum_e 2^{c(e)} c(e)}{\sum_e 2^{c(e)}}$

Let $c_t = c_{\text{max}} - 2 \log m$.

$\geq \frac{\sum_{e: c(e) > c_t} 2^{c(e)} c(e)}{\sum_{e: c(e) > c_t} 2^{c(e)} + \sum_{e: c(e) \leq c_t} 2^{c(e)}}$

$\geq \frac{(c_t) \sum_{e: c(e) > c_t} 2^{c(e)}}{(1 + \frac{1}{m}) \sum_{e: c(e) > c_t} 2^{c(e)}}$

$\geq \frac{(c_t)}{1 + \frac{1}{m}} = \frac{c_{\text{max}} - 2 \log m}{(1 + \frac{1}{m})}$

Or $c_{\text{max}} \leq (1 + \frac{1}{m}) c_{\text{opt}} + 2 \log m$.
(A)lmost) within $2 \log m$ of optimal!
The end: sort of.

Got to here in class. Feel free to continue reading.
Getting to equilibrium.

Maybe no equilibrium!
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and $d(e) \propto 2^{c(e)}$.

We obtain $c_{\text{max}} = 3 \left(1 + \frac{1}{m}\right) c_{\text{opt}} + 2 \log m$. This is worse!

What do we gain?
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and $d(e) \propto 2^{c(e)}$.

Lose a factor of three at the beginning.
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and \(d(e) \propto 2^{c(e)} \).

Lose a factor of three at the beginning.

\[c_{opt} \geq \sum_i d(s_i, t_i) \geq \frac{1}{3} \sum_e d(p_i). \]
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and $d(e) \propto 2^{c(e)}$.

Lose a factor of three at the beginning.

$$c_{opt} \geq \sum_i d(s_i, t_i) \geq \frac{1}{3} \sum_e d(p_i).$$

We obtain $c_{max} = 3(1 + \frac{1}{m})c_{opt} + 2\log m$.
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and \(d(e) \propto 2^{c(e)} \).

Lose a factor of three at the beginning.

\[
c_{opt} \geq \sum_i d(s_i, t_i) \geq \frac{1}{3} \sum_e d(p_i).
\]

We obtain \(c_{max} = 3(1 + \frac{1}{m})c_{opt} + 2 \log m \).

This is worse!
Getting to equilibrium.

Maybe no equilibrium!

Approximate equilibrium:

Each path is routed along a path with length within a factor of 3 of the shortest path and \(d(e) \propto 2^{c(e)} \).

Lose a factor of three at the beginning.

\[
c_{opt} \geq \sum_i d(s_i, t_i) \geq \frac{1}{3} \sum_e d(p_i).
\]

We obtain \(c_{\text{max}} = 3 \left(1 + \frac{1}{m} \right) c_{opt} + 2 \log m \).

This is worse!

What do we gain?
An algorithm!

Algorithm: reroute paths that are off by a factor of three.
(Note: $d(e)$ recomputed every rerouting.)
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: $d(e)$ recomputed every rerouting.)

$p: w(p) = X$

$p': w(p') \leq X/3$
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: $d(e)$ recomputed every rerouting.)

Potential function: $\sum_e w(e)$, $w(e) = 2^{c(e)}$
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: \(d(e)\) recomputed every rerouting.)

\[p: w(p) = X \]

Potential function: \(\sum_e w(e) \), \(w(e) = 2^{c(e)} \)

Moving path:
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: $d(e)$ recomputed every rerouting.)

p: $w(p) = X$ \[\implies w'(p) = X/2\]

p': $w(p') \leq X/3$

Potential function: $\sum_e w(e)$, $w(e) = 2^{c(e)}$

Moving path:
Divides $w(e)$ along long path (with $w(p)$ of X) by two.
An algorithm!

Algorithm: reroute paths that are off by a factor of three.
(Note: $d(e)$ recomputed every rerouting.)

p: $w(p) = X$ \[\Rightarrow w'(p) = X/2\]

-1 for $c(e)$

$+1$ for $c(e)$

p': $w(p') \leq X/3$ \[\Rightarrow w'(p') \leq 2X/3\]

Potential function: $\sum_e w(e)$, $w(e) = 2^{c(e)}$

Moving path:
Divides $w(e)$ along long path (with $w(p)$ of X) by two.
Multiplies $w(e)$ along shorter ($w(p) \leq X/3$) path by two.
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: \(d(e)\) recomputed every rerouting.)

-1 for \(c(e)\)

\[p: w(p) = X \implies w'(p) = X/2 \]

+1 for \(c(e)\)

\[p': w(p') \leq X/3 \implies w'(p') \leq 2X/3 \]

Potential function: \(\sum_e w(e), w(e) = 2^{c(e)}\)

Moving path:
Divides \(w(e)\) along long path (with \(w(p)\) of \(X\)) by two.
Multiplies \(w(e)\) along shorter \((w(p) \leq X/3)\) path by two.

\[-\frac{X}{2} + \frac{X}{3} = -\frac{X}{6}. \]
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: \(d(e)\) recomputed every rerouting.)

\[-1 \text{ for } c(e)\]

\[p: w(p) = X \implies w'(p) = X/2\]

\[+1 \text{ for } c(e)\]

\[p': w(p') \leq X/3 \implies w'(p') \leq 2X/3\]

Potential function: \(\sum_e w(e), w(e) = 2^{c(e)}\)

Moving path:
Divides \(w(e)\) along long path (with \(w(p)\) of \(X\)) by two.
Multiplies \(w(e)\) along shorter (\(w(p) \leq X/3\)) path by two.

\[-\frac{X}{2} + \frac{X}{3} = -\frac{X}{6}\]

Potential function decreases.
An algorithm!

Algorithm: reroute paths that are off by a factor of three. (Note: $d(e)$ recomputed every rerouting.)

-1 for $c(e)$

p: $w(p) = X$

$\Rightarrow w'(p) = \frac{X}{2}$

$+1$ for $c(e)$

p': $w(p') \leq \frac{X}{3}$

$\Rightarrow w'(p') \leq \frac{2X}{3}$

Potential function: $\sum_e w(e)$, $w(e) = 2^{c(e)}$

Moving path:
Divides $w(e)$ along long path (with $w(p)$ of X) by two.
Multiplies $w(e)$ along shorter ($w(p) \leq \frac{X}{3}$) path by two.

$-\frac{X}{2} + \frac{X}{3} = -\frac{X}{6}$.

Potential function decreases. \implies termination and existence.
Replace $d(e) = (1 + \varepsilon)c(e)$.

Replace factor of 3 by $(1 + 2\varepsilon)c_{\text{max}} \leq (1 + 2\varepsilon)c_{\text{opt}} + 2 \log m / \varepsilon$. (Roughly)

Fractional paths?
Replace $d(e) = (1 + \varepsilon)^{c(e)}$.
Replace $d(e) = (1 + \varepsilon)^{c(e)}$.

Replace factor of 3 by $(1 + 2\varepsilon)$.
Replace $d(e) = (1 + \varepsilon)^{c(e)}$.

Replace factor of 3 by $(1 + 2\varepsilon)$

$$c_{\text{max}} \leq (1 + 2\varepsilon)c_{\text{opt}} + 2\log m/\varepsilon. \quad \text{(Roughly)}$$
Replace $d(e) = (1 + \varepsilon)^{c(e)}$.

Replace factor of 3 by $(1 + 2\varepsilon)$

$c_{max} \leq (1 + 2\varepsilon) c_{opt} + 2\log m / \varepsilon$. (Roughly)

Fractional paths?
Wrap up.

Dueling players:
Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.
Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!
Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),

Wrap up.
Wrap up.

Dueling players:
Toll player raises tolls on congested edges.
Congestion player avoids tolls.

Converges to near optimal solution!

A lower bound is “necessary” (natural),
and helpful (mysterious?)!
Strategic Games.

\[N \text{ players.} \]
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Example:
2 players
Player 1: \{Defect, Cooperate\).
Player 2: \{Defect, Cooperate\).
Payoff: \begin{align*}
C & C(3,3) \\
D & C(0,5) \\
& D(5,0) \\
& C(1,1)
\end{align*}
Strategic Games.

\(N\) players.
Each player has strategy set. \(\{S_1, \ldots, S_N\}\).
Vector valued payoff function: \(u(s_1, \ldots, s_n)\) (e.g., \(\in \mathbb{R}^N\)).
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).
Example:
Strategic Games.

\(N \) players.
Each player has strategy set. \(\{S_1, \ldots, S_N\} \).
Vector valued payoff function: \(u(s_1, \ldots, s_n) \) (e.g., \(\in \mathbb{R}^N \)).
Example:
2 players
Strategic Games.

N players.
Each player has strategy set. $\{S_1, \ldots, S_N\}$.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).
Example:

2 players
Player 1: $\{\text{Defect, Cooperate}\}$.
Player 2: $\{\text{Defect, Cooperate}\}$.
Strategic Games.

N players.

Each player has strategy set. $\{S_1, \ldots, S_N\}$.

Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).

Example:

2 players

Player 1: $\{\text{Defect, Cooperate}\}$.
Player 2: $\{\text{Defect, Cooperate}\}$.

Payoff:
Strategic Games.

N players.
Each player has strategy set. \{ S_1, \ldots, S_N \}.
Vector valued payoff function: $u(s_1, \ldots, s_n)$ (e.g., $\in \mathbb{R}^N$).
Example:
2 players
Player 1: \{ Defect, Cooperate \}.
Player 2: \{ Defect, Cooperate \}.
Payoff:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff \((3,3)\).
What is the best thing for the players to do?

Both cooperate. Payoff (3, 3).

If player 1 wants to do better, what does he do?

Stable now! Nash Equilibrium: neither player has incentive to change strategy.
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1.1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)
What is the best thing for the players to do?
Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?
Defects! Payoff (5,0)

What does player 2 do now?
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(.1,1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!
Famous because?

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,5)</td>
</tr>
<tr>
<td>D</td>
<td>(5,0)</td>
<td>(1.1)</td>
</tr>
</tbody>
</table>

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (1,1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
Digression..

What situations?
Digression..

What situations?

Prisoner's dilemma:
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.
Digression..

What situations?

Prisoner's dilemma:
Two prisoners separated by jailors and asked to betray partner.
Basis of the free market.
Digression..

What situations?
Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.
Basis of the free market.
Companies compete, don’t cooperate.
Digression..

What situations?
Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.
Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .

More sophisticated models,
e.g., iterated dominance,
coalitions,
complexity..

Lots of interesting Game Theory!

This class (today): simpler version.
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.

No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...
Digression..

What situations?
Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models
Digression..

What situations?
Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance,
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.

No Monopoly:
E.G., OPEC, Airlines,.

Should defect.

Why don’t they?
Free market economics ...not so much?
More sophisticated models, e.g., iterated dominance, coalitions, complexity.
What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.

Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!
Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!

This class(today): simpler version.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
- Player 1 has m strategies
- Player 2 has n strategies

Payoff function:
\[u(i, j) = (-a, a) \] (or just \(a \)).

"Player 1 pays \(a \) to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).

Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?
- \((R, R)\)?
 - No.
- \((R, P)\)?
 - No.
- \((R, S)\)?
 - No.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: \(u(i, j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
"Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.
Two Person Zero Sum Games

2 players.

Each player has strategy set: m strategies for player 1 n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.
Payoffs by m by n matrix: A.

rosenbo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: \(u(i,j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

(R, R)?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: \(u(i, j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

\((R, R)\)? no.
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: \(u(i, j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?
\((R, R)\)? no. \((R, P)\)?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: $u(i,j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: \(u(i,j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

\((R, R)\)? no. \((R, P)\)? no. \((R, S)\)?
Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1
n strategies for player 2

Payoff function: \(u(i, j) = (-a, a) \) (or just \(a \)).
“Player 1 pays \(a \) to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by \(m \) by \(n \) matrix: \(A \).
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

\[
\begin{array}{ccc}
R & P & S \\
R & 0 & 1 & -1 \\
P & -1 & 0 & 1 \\
S & 1 & -1 & 0 \\
\end{array}
\]

Any Nash Equilibrium?

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: $u(i, j) = (-a, a)$ (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock, paper, scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Any Nash Equilibrium?

Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do you play?
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.
Mixed Strategies.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs?

1. Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

1 Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff.

\[E[X] = \sum_{(i,j)} X(i,j) \Pr[(i,j)] \]

Each player chooses independently: \(\Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \).

\[E[X] = 0 \]

\(^1\) Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

\[\text{Expected Payoff} = \sum_{(i,j) \in \Omega} X(i,j) \Pr((i,j)) \]

Each player chooses independently:
\[\Pr((i,j)) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \]

\[E[X] = 0 \]

\(^1\) Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff.**

Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$

\(^1\)Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i,j) : i,j \in [1,\ldots,3]\} \)

Random variable \(X \) (payoff).

\(^1\text{Remember zero sum games have one payoff.}\)
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i,j) : i,j \in [1,\ldots,3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j)\Pr[(i,j)].
\]

\(^1\)Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff.**

Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$

Random variable X (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)] .$$

Each player chooses independently:

¹Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. **Expected Payoff.**

Sample space: \(\Omega = \{(i, j) : i, j \in [1, \ldots, 3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently:

\[
Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}.
\]

\(^1\)Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: \(\Omega = \{ (i, j) : i, j \in [1, \ldots, 3] \} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently:

\[
Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}.
\]

\[
E[X] = 0.
\]

\(^1\)Remember zero sum games have one payoff.
Payoffs: Equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
</tbody>
</table>

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: \(\Omega = \{(i, j) : i, j \in [1, \ldots, 3]\} \)

Random variable \(X \) (payoff).

\[
E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].
\]

Each player chooses independently:

\[
Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}.
\]

\[
E[X] = 0. \quad \text{1}
\]

1Remember zero sum games have one payoff.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy?
Will Player 1 change strategy? Mixed strategies uncountable!
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock?
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper?
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors?
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>.33</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy.
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j)
\]
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).
Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\Rightarrow \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))
\]
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).
Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i] (\sum_j Pr[j] \times X(i,j))
\]
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>0.33</td>
<td>-1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).
Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).
Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i] (\sum_j Pr[j] \times X(i,j))
\]

Mixed strategy can’t be better than the best pure strategy.
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0 \).

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0 \).

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0 \).

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))
\]

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change!
Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? \(\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0. \)

Expected payoff of Paper? \(\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0. \)

Expected payoff of Scissors? \(\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0. \)

No better pure strategy. \(\implies \) No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

\[
E[X] = \sum_{(i,j)}(Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i] (\sum_j Pr[j] \times X(i,j))
\]

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.
Equilibrium

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>.33</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.33</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$.

Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.

Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$.

No better pure strategy. \implies No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

$E[X] = \sum_{(i,j)}(Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))$

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!
Another example plus notation.

Rock, Paper, Scissors, prEmpt.

Payoffs:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? (E,E).

Pure strategy equilibrium.

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium?
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEempt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? (E,E).
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Equilibrium? \((E,E)\). Pure strategy equilibrium.

Notation:
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

\[
A = \begin{bmatrix}
0 & 1 & -1 & 1 \\
-1 & 0 & 1 & 1 \\
1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0 \\
\end{bmatrix}
\]
Playing the boss...

Row has extra strategy: Cheat.
Playing the boss...

Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)
Playing the boss...

Row has extra strategy: Cheat. Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.
Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Note: column knows row cheats.
Why play?
Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)

Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.

Why play?
Row is column’s advisor.
Row has extra strategy: Cheat.
Ties with rock and scissors, beats paper. (Scissors, or no rock!)
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.
Playing the boss...

Row has extra strategy: Cheat. Ties with rock and scissors, beats paper. (Scissors, or no rock!)

Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Note: column knows row cheats.

Why play?
Row is column’s advisor.
... boss.
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix} \]

Equilibrium:

Row:
\((0, 1, 3), (1, 6), (1, 2)\).

Column:
\((1, 3), (1, 2), (1, 6)\).

Payoff?
Remember: weighted average of pure strategies.

Row Player.
Strategy 1:
\[\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times (-1) = \frac{1}{3} \]

Strategy 2:
\[\frac{1}{3} \times (-1) + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6} \]

Strategy 3:
\[\frac{1}{3} \times 1 + \frac{1}{2} \times (-1) + \frac{1}{6} \times 0 = -\frac{1}{6} \]

Strategy 4:
\[\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times (-1) = -\frac{1}{6} \]

Payoff is
\[0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6} \]

Column player: every column payoff is
\(-\frac{1}{6}\).

Both only play optimal strategies!

Complementary slackness.

Why not play just one?
Change payoff for other guy!
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\).
Equilibrium: play the boss...

\[A = \begin{bmatrix}
 0 & 1 & -1 \\
-1 & 0 & 1 \\
 1 & -1 & 0 \\
 0 & 0 & -1
\end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Payoff?
Equilibrium: play the boss...

$$A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}$$

Equilibrium:
Row: $(0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})$. Column: $(\frac{1}{3}, \frac{1}{2}, \frac{1}{6})$.

Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.
Equilibrium: play the boss...

$$A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}$$

Equilibrium:
Row: $\left(0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2}\right)$. Column: $\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right)$.

Row Player.

Strategy 1: $\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1$
Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.
Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1\)
Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)

Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3} \)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6} \)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 \)
Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)
Equilibrium: play the boss...

\[A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6})\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies!
Equilibrium: play the boss...

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies! Complementary slackness.
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).
Both only play optimal strategies! Complementary slackness.

Why not play just one?
Equilibrium: play the boss...

\[
A = \begin{bmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

Equilibrium:
Row: \((0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})\). Column: \((\frac{1}{3}, \frac{1}{2}, \frac{1}{6})\).

Row Player.

Strategy 1: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}\)
Strategy 2: \(\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}\)
Strategy 3: \(\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}\)
Strategy 4: \(\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}\)

Payoff is \(0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}\)

Column player: every column payoff is \(-\frac{1}{6}\).

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!
Lecture 2 ended here..and Lecture 3 reviewed a few of the previous slides and continued into lecture 3 notes.
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.

Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^tAy.$$

That is,

$$\sum_i x_i \left(\sum_j a_{ij} y_j \right) = \sum_j \left(\sum_i x_i a_{ij} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$x^tAy^* = \max_y (x^tAy) = \min_x x^tAy^*.$$

(No better column strategy, no better row strategy.)
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$p(x, y) = x^t A y$

That is,

$\sum_i x_i \left(\sum_j a_{ij} y_j \right) = \sum_j \left(\sum_i x_i a_{ij} \right) y_j$.

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$(x^*)^t A y^* = \max_y (x^*)^t A y = \min_x x^t A y^* = \min_x (x^*)^t A y$.

(No better column strategy, no better row strategy.)
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.

Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?
Two person zero sum games.

$m \times n$ payoff matrix A.

Row mixed strategy: $x = (x_1, \ldots, x_m)$.
Column mixed strategy: $y = (y_1, \ldots, y_n)$.

Payoff for strategy pair (x, y):

$$p(x, y) = x^t Ay$$

That is,

$$\sum_{i} x_i \left(\sum_{j} a_{i,j} y_j \right) = \sum_{j} \left(\sum_{i} x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes.

Equilibrium pair: (x^*, y^*)?

$$(x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*.$$

(No better column strategy, no better row strategy.)
Equilibrium.

Equilibrium pair: (x^*, y^*)?

\[
p(x,y) = (x^*)^tAy^* = \max_y(x^*)^tAy = \min_x x^tAy^*.
\]

(No better column strategy, no better row strategy.)
Equilibrium pair: \((x^*, y^*)\)?

\[p(x, y) = (x^*)^tAy^* = \max_y (x^*)^tAy = \min_x x^tAy^*. \]

(No better column strategy, no better row strategy.)

No row is better:
\[\min_i A^{(i)} \cdot y = (x^*)^tAy^*. \]

\[^2 \text{A}^{(i)} \text{ is } i\text{th row.} \]
Equilibrium pair: \((x^*, y^*)\)?

\[p(x, y) = (x^*)^t Ay^* = \max_y (x^*)^t Ay = \min_x x^t Ay^*. \]

(No better column strategy, no better row strategy.)

No row is better:
\[\min_i A(i) \cdot y = (x^*)^t Ay^*. \]

No column is better:
\[\max_j (A^t)(j) \cdot x = (x^*)^t Ay^*. \]

\(^2 A(i) \) is \(i \)th row.
Best Response

Column goes first:

\[R = \max_y \min_x (x^tAy) \]

Note: \(x \) can be \((0,0,...,1,...0)\).

Example: Roshambo.

Value of \(R \)?

Row goes first:

\[C = \min_x \max_y (x^tAy) \]

Again: \(y \) of form \((0,0,...,1,...0)\).

Example: Roshambo.

Value of \(C \)?
Best Response

Column goes first:
Find y, where best row is not too low..

$$R = \max_y \min_x (x^tAy).$$

Note: x can be $(0, 0, \ldots, 1, \ldots, 0)$.

Example: Roshambo.

Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^tAy).$$

Agin: y of form $(0, 0, \ldots, 1, \ldots, 0)$.

Example: Roshambo.

Value of C?
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_{y} \min_{x} (x^t A y).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo.

Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_{x} \max_{y} (x^t A y).$$

Again: y of form $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshambo.

Value of C?
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.
Example: Roshambo.
Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0,0,\ldots,1,\ldots 0)$.

Example: Roshambo. Value of R?
Best Response

Column goes first:
Find y, where best row is not too low..

\[R = \max_y \min_x (x^t Ay). \]

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.
Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.
Example: Roshambo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t Ay).$$
Column goes first:
Find \(y \), where best row is not too low.

\[
R = \max_y \min_x (x^t Ay).
\]

Note: \(x \) can be \((0, 0, \ldots, 1, \ldots 0)\).

Example: Roshambo. Value of \(R \)?

Row goes first:
Find \(x \), where best column is not high.

\[
C = \min_x \max_y (x^t Ay).
\]

Agin: \(y \) of form \((0, 0, \ldots, 1, \ldots 0)\).
Best Response

Column goes first:
Find \(y \), where best row is not too low.

\[
R = \max_y \min_x (x^t Ay).
\]

Note: \(x \) can be \((0, 0, \ldots, 1, \ldots 0)\).

Example: Roshambo. Value of \(R \)?

Row goes first:
Find \(x \), where best column is not high.

\[
C = \min_x \max_y (x^t Ay).
\]

Agin: \(y \) of form \((0, 0, \ldots, 1, \ldots 0)\).

Example: Roshambo.
Best Response

Column goes first:
Find y, where best row is not too low.

$$R = \max_y \min_x (x^t Ay).$$

Note: x can be $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshamo. Value of R?

Row goes first:
Find x, where best column is not high.

$$C = \min_x \max_y (x^t Ay).$$

Agin: y of form $(0, 0, \ldots, 1, \ldots 0)$.

Example: Roshamo. Value of C?
Duality.

\[R = \max_y \min_x (x^t Ay). \]
Duality.

\[R = \max_y \min_x (x^t A y). \]
\[C = \min_x \max_y (x^t A y). \]

Weak Duality: \(R \leq C \).

Proof: Better to go second. At Equilibrium \((x^*, y^*)\), payoff \(v = \) row payoffs \((Ay^*) \) all \(\geq v = \Rightarrow R \geq v \).

column payoffs \((x^* \, t \, A) \) all \(\leq v = \Rightarrow v \geq C \).

\(\Rightarrow R \geq C \).

Equilibrium \(\Rightarrow R = C \).*

Strong Duality: There is an equilibrium point! and \(R = C \).*

Doesn't matter who plays first!
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
Duality.

\[R = \max_y \min_x (x^t Ay) \]

\[C = \min_x \max_y (x^t Ay) \]

Weak Duality: \(R \leq C \).

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \): row payoffs \((Ay^*)\) all \(\geq v\)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
row payoffs \((Ay^*)\) all \(\geq v \) \(\implies \) \(R \geq v \).

\(\square \)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):
- row payoffs \((Ay^*)\) all \(\geq v \implies R \geq v.\)
- column payoffs \(((x^*)^t A)\) all \(\leq v\)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
row payoffs \((Ay^*)\) all \(\geq v \) \(\implies \) \(R \geq v. \)
column payoffs \(((x^*)^t A)\) all \(\leq v \) \(\implies \) \(v \geq C. \)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
- Row payoffs \((Ay^*)\) all \(\geq v\) \(\implies R \geq v.\)
- Column payoffs \(((x^*)^t A)\) all \(\leq v\) \(\implies v \geq C.\)

\(\implies R \geq C\)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
row payoffs \((Ay^*)\) all \(\geq v \implies R \geq v. \)
column payoffs \(((x^*)^t A)\) all \(\leq v \implies v \geq C. \)

\(\implies R \geq C\)

Equilibrium \(\implies R = C!\)
Duality.

\begin{align*}
R &= \max_y \min_x (x^t A y), \\
C &= \min_x \max_y (x^t A y).
\end{align*}

Weak Duality: $R \leq C$.

Proof: Better to go second.

At Equilibrium (x^*, y^*), payoff v:

row payoffs $(A y^*)$ all $\geq v \implies R \geq v$.

column payoffs $((x^*)^t A)$ all $\leq v \implies v \geq C$.

$\implies R \geq C$

Equilibrium $\implies R = C$!

Strong Duality: There is an equilibrium point!
Duality.

\[R = \max_y \min_x (x^t Ay). \]

\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v\):

row payoffs \((Ay^*)\) all \(\geq v\) \(\implies R \geq v.\)

column payoffs \(((x^*)^t A)\) all \(\leq v\) \(\implies v \geq C.\)

\(\implies R \geq C\)

Equilibrium \(\implies R = C!\)

Strong Duality: There is an equilibrium point! and \(R = C!\)
Duality.

\[R = \max_y \min_x (x^t Ay). \]
\[C = \min_x \max_y (x^t Ay). \]

Weak Duality: \(R \leq C. \)

Proof: Better to go second.

At Equilibrium \((x^*, y^*)\), payoff \(v \):
row payoffs \((Ay^*)\) all \(\geq v \) \(\implies\) \(R \geq v. \)
column payoffs \(((x^*)^t A)\) all \(\leq v \) \(\implies\) \(v \geq C. \)
\(\implies\) \(R \geq C \)

Equilibrium \(\implies\) \(R = C! \)

Strong Duality: There is an equilibrium point! and \(R = C! \)

Doesn’t matter who plays first!
Proof of Equilibrium.

Later. Let’s see some examples.
An “asymptotic” game.

“Catch me.”
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row (“Catch me”): choose path from a to b.
Column (“Catcher”): choose edge.
Row pays if column chooses edge on path.
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row (“Catch me”): choose path from a to b.
Column (“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row (“Catch me”): choose path from a to b.
Column (“Catcher”): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
An “asymptotic” game.

“Catch me.”

Given: $G = (V, E)$.
Given $a, b \in V$.
Row ("Catch me"): choose path from a to b.
Column("Catcher"): choose edge.
Row pays if column chooses edge on path.

Matrix:
row for each path: p
column for each edge: e
Catchme:
Use Blue Path
Blue with prob: 1/3.
Green with prob: 1/6.
Pink with prob: 1/2.

Catcher:
Caught! sometimes.
With probability 1/2.
Catchme:
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught, sometimes.
With probability 1/2.
Catchme:
Blue with prob. $1/3$.
Green with prob. $1/6$.
Pink with prob. $1/2$.

Catcher:
Caught, sometimes.
With probability $1/2$.
Catchme:

Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:

Caught, sometimes.
With probability 1/2.
Catchme:
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught, sometimes.
With probability 1/2.
Catchme:
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught, sometimes.
With probability 1/2.
Catchme:
Blue with prob. 1/3.
Green with prob. 1/6.
Pink with prob. 1/2.

Catcher:
Caught, sometimes.
 With probability 1/2.
Example.

Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$.
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):

Catch me: route along shortest path.
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:
Example.

Edge solution: $Pr[e_1] = 1/2, Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path?
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Example.

Edge solution: $Pr[e_1] = 1/2$, $Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):

Catch me: route along shortest path.
(Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
(Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut. **Minimum cut** allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
Example.

Edge solution: $Pr[e_1] = 1/2, Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)

Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Example.

Edge solution: $Pr[e_1] = 1/2, Pr[e_2] = 1/2$

Offense (Best Response.):

Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:

Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!

What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.
Example.

Row solution: \(Pr[p_1] = 1/2, \ Pr[p_2] = 1/3, \ Pr[p_3] = 1/6. \)
Edge solution: \(Pr[e_1] = 1/2, \ Pr[e_2] = 1/2 \)

Offense (Best Response.):
Catch me: route along shortest path.
 (Knows catcher’s distribution.)
Catcher: raise toll on most congested edge.
 (Knows catch me’s distribution.)

Defense:
Where should “catcher” play to catch any path? a cut.
Minimum cut allows the maximum toll on any edge!
What should “catch me” do to avoid catcher?
minimize maximum load on any edge!
Max-Flow Problem.
Note: exponentially many strategies for “catch me”!
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Toll/Congestion

Given: \(G = (V, E) \).
Given \((s_1, t_1) \ldots (s_k, t_k)\).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: \(r \)
column for each edge: \(e \)

\(A[r, e] \) is congestion on edge \(e \) by routing \(r \)

Offense: (Best Response.)
Router: route along shortest paths.
Toll/Congestion

Given: \(G = (V, E) \).
Given \((s_1, t_1) \ldots (s_k, t_k)\).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: \(r \)
column for each edge: \(e \)

\(A[r, e] \) is congestion on edge \(e \) by routing \(r \)

Offense: *(Best Response.)*
Router: route along shortest paths.
Toll: charge most loaded edge.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.
Toll/Congestion

Given: $G = (V, E)$.
Given $(s_1, t_1) \ldots (s_k, t_k)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Again: exponentially (squared) number of paths for route player.
Summary...

You should now know about...
Summary...

You should now know about
Games

Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.
You should now know about

Games
Nash Equilibrium
You should now know about
Games
Nash Equilibrium
Pure Strategies
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Summary...

You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.
You should now know about

Games
Nash Equilibrium
Pure Strategies
Zero Sum Two Person Games
Mixed Strategies.
Checking Equilibrium.
Best Response.
Statement of Duality Theorem.
Finding Equilibrium.

...see you Tuesday.