Johnson-Lindenstrass

Points: $x_1, \ldots, x_n \in \mathbb{R}^d$.

Random $k = c \log n \varepsilon^2$ dimensional subspace.

Claim: with probability $1 - \frac{1}{n^{c-2}}$,

\[
(1 - \varepsilon) \sqrt{k \cdot d} |x_i - x_j|^2 \leq |y_i - y_j|^2 \leq (1 + \varepsilon) \sqrt{k \cdot d} |x_i - x_j|^2
\]

"Projecting and scaling by $\sqrt{d \cdot k}$ preserves all pairwise distances within factor of $1 \pm \varepsilon$."
Johnson-Lindenstrass

Points: $x_1, \ldots, x_n \in \mathbb{R}^d$.

Random $k = \frac{c \log n}{\varepsilon^2}$ dimensional subspace.
Points: $x_1, \ldots, x_n \in \mathbb{R}^d$.

Random $k = \frac{c \log n}{\epsilon^2}$ dimensional subspace.

Claim: with probability $1 - \frac{1}{n^{c-2}}$,

$$(1 - \epsilon) \sqrt{\frac{k}{d}} |x_i - x_j|^2 \leq |y_i - y_j|^2 \leq (1 + \epsilon) \sqrt{\frac{k}{d}} |x_i - x_j|^2$$
Points: $x_1, \ldots, x_n \in \mathbb{R}^d$.

Random $k = \frac{c \log n}{\varepsilon^2}$ dimensional subspace.

Claim: with probability $1 - \frac{1}{n^{c-2}}$,

$$(1 - \varepsilon) \sqrt{\frac{k}{d}} |x_i - x_j|^2 \leq |y_i - y_j|^2 \leq (1 + \varepsilon) \sqrt{\frac{k}{d}} |x_i - x_j|^2$$

“Projecting and scaling by $\sqrt{\frac{d}{k}}$ preserves all pairwise distances w/in factor of $1 \pm \varepsilon$.”
Random subspace.

Method 1:
Random subspace.

Method 1:
Pick unit v_1
Random subspace.

Method 1:
Pick unit v_1,

Method 2:
Choose k vectors $v_1,...,v_k$ Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_i.
remove projection onto previous subspace.
Random subspace.

Method 1:
Pick unit v_1,
ν_2 orthogonal to v_1,

...
Method 1:
Pick unit v_1,
v_2 orthogonal to v_1,
...
Random subspace.

Method 1:
Pick unit ν_1,
ν_2 orthogonal to ν_1,
...
ν_k orthogonal to previous vectors...
Random subspace.

Method 1:
Pick unit \(v_1 \),
\(v_2 \) orthogonal to \(v_1 \),
\[\ldots \]
\(v_k \) orthogonal to previous vectors...

Method 2:
Method 1:
Pick unit v_1,
v_2 orthogonal to v_1,
...
v_k orthogonal to previous vectors...

Method 2:
Choose k vectors v_1, \ldots, v_k
Random subspace.

Method 1:
Pick unit v_1,
v_2 orthogonal to v_1,
\ldots
v_k orthogonal to previous vectors...

Method 2:
Choose k vectors v_1, \ldots, v_k
Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_i.
Random subspace.

Method 1:
Pick unit v_1,
v_2 orthogonal to v_1,
...
v_k orthogonal to previous vectors...

Method 2:
Choose k vectors v_1, \ldots, v_k
Gram Schmidt orthonormalization of $k \times d$ matrix where rows are v_i.
remove projection onto previous subspace.
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$
Projections.

Project \(x \) into subspace spanned by \(v_1, v_2, \ldots, v_k \).

\[
y_1 = x \cdot v_1, \quad y_2 = x \cdot v_2, \ldots, \quad y_k = x \cdot v_k
\]

Projection: \((y_1, \ldots, y_k) \).
Projections.

Project x into subspace spanned by v_1, v_2, \ldots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \ldots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k.

$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$

Inverse of U maps e_i to random vector v_i and $U^{-1} = U$.

$z = Ux$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^d$.

y_i is ith coordinate of random vector z.
Projections.

Project x into subspace spanned by v_1, v_2, \ldots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \ldots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

y_i
Projections.

Project x into subspace spanned by v_1, v_2, \ldots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \ldots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.
View As: Random vector, standard basis for k dimensions.
Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle$
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle = \langle U v_i | U x \rangle$
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle$
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$

Inverse of U maps e_i to random vector v_i
Projections.

Project x into subspace spanned by v_1, v_2, \cdots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \cdots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$

Inverse of U maps e_i to random vector v_i and $U^{-1} = U$.

$z = Ux$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^d$.

y_i is ith coordinate of random vector z.
Projections.

Project x into subspace spanned by v_1, v_2, \ldots, v_k.

$$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \ldots, y_k = x \cdot v_k$$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$$

Inverse of U maps e_i to random vector v_i and $U^{-1} = U$.

$z = Ux$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^d$.
Projections.

Project x into subspace spanned by v_1, v_2, \ldots, v_k.

$y_1 = x \cdot v_1, y_2 = x \cdot v_2, \ldots, y_k = x \cdot v_k$

Projection: (y_1, \ldots, y_k).

Have: Arbitrary vector, random k-dimensional subspace.

View As: Random vector, standard basis for k dimensions.

Orthogonal U - rotates v_1, \ldots, v_k onto e_1, \ldots, e_k

$y_i = \langle v_i | x \rangle = \langle Uv_i | Ux \rangle = \langle e_i | Ux \rangle = \langle e_i | z \rangle$

Inverse of U maps e_i to random vector v_i and $U^{-1} = U$.

$z = Ux$ is uniformly distributed on d sphere for unit $x \in \mathbb{R}^d$.

y_i is ith coordinate of random vector z.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$\mathbb{E}\left[\sum_{i \in [d]} z_i^2 \right] = 1.$

Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$\mathbb{E}\left[\sum_{i \in [k]} z_i^2 \right] = k d.$

Linearity of Expectation.

Expected length is \sqrt{kd}.

Johnson-Lindenstrass: close to expectation.

k is large enough $\rightarrow \approx (1 \pm \varepsilon) \sqrt{kd}$ with decent probability.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$.

Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = k$.

Linearity of Expectation.

Expected length is $\sqrt{k}d$.

Johnson-Lindenstrass: close to expectation. k is large enough $\to \approx (1 \pm \varepsilon)\sqrt{k}d$ with decent probability.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$$E[\sum_{i \in [d]} z_i^2] = 1.$$ Linearity of Expectation.

By symmetry, each z_i is identically distributed.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation.

Expected length is $\sqrt{\frac{k}{d}}$.
Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation.

Expected length is $\sqrt{\frac{k}{d}}$.

Johnson-Lindenstrass: close to expectation.
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation.

Expected length is $\sqrt{\frac{k}{d}}$.

Johnson-Lindenstrass: close to expectation.

k is large enough \rightarrow
Expected value of y_i.

Random projection: first k coordinates of random unit vector, z_i.

$E[\sum_{i \in [d]} z_i^2] = 1$. Linearity of Expectation.

By symmetry, each z_i is identically distributed.

$E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$. Linearity of Expectation.

Expected length is $\sqrt{\frac{k}{d}}$.

Johnson-Lindenstrass: close to expectation.

k is large enough \rightarrow

$\approx (1 \pm \epsilon)\sqrt{\frac{k}{d}}$ with decent probability.
Concentration Bounds.

z is uniformly random unit vector.
Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

$\text{Claim: } P(|z_1| > \sqrt{\frac{d}{2}}) \leq e^{-\frac{t^2}{2}}$.

Sphere view: surface "far" from equator defined by e_1.

$\Delta |z_1| \geq \Delta$ if $z \geq \Delta$ from equator of sphere.

Point on "Δ-spherical cap".

Area of caps $\leq \text{S.A. of sphere of radius } \sqrt{1 - \Delta^2}
\propto r^d = (1 - \Delta^2)^{d/2} \approx e^{-t^2d}$.

Constant of \propto is unit sphere area.

$P[\text{any } z_i > \sqrt{2\log d} E[z_i^2]]$ is small.
Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$
Concentration Bounds.

z is uniformly random unit vector.

Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

Area of caps $\leq S.A.$ of sphere of radius $\sqrt{1 - \Delta^2}$

$\propto r^d = (1 - \Delta^2)^{d/2} = (1 - t^2/d)^{d/2} \approx e^{-t^2/2}$

Constant of \propto is unit sphere area.
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

Diagram: Sphere with a blue point labeled Δ at a distance Δ from the equator.
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if
Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if

$z \geq \Delta$ from equator of sphere.
Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if $z \geq \Delta$ from equator of sphere.
Point on “Δ-spherical cap”.

\[\text{Area of caps} \leq \text{S.A. of sphere of radius } \sqrt{1 - \Delta^2} \propto \frac{r_d}{d} = \frac{(1 - \Delta^2)^{d/2}}{d/2} \approx e^{-t^2/2} \text{d} \]

Constant of \propto is unit sphere area.
Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if
$z \geq \Delta$ from equator of sphere.
Point on “Δ-spherical cap”.

Area of caps
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if $z \geq \Delta$ from equator of sphere.

Point on “Δ-spherical cap”.

Area of caps \leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$.
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}.$

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by $e_1.$

$|z_1| \geq \Delta$ if $z \geq \Delta$ from equator of sphere.

Point on “Δ-spherical cap”.

Area of caps

\leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$

$\propto r^d = (1 - \Delta^2)^{d/2}$
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if $z \geq \Delta$ from equator of sphere.
Point on “Δ-spherical cap”.

Area of caps

\leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$

$\propto r^d = (1 - \Delta^2)^{d/2}$

$\propto \left(1 - \frac{t^2}{d}\right)^{d/2}$
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if

$z \geq \Delta$ from equator of sphere.

Point on “Δ-spherical cap”.

Area of caps

\leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$

$\propto r^d = (1 - \Delta^2)^{d/2}$

$\propto (1 - \frac{t^2}{d})^{d/2} \approx e^{-t^2/2} 2d$
Concentration Bounds.

z is uniformly random unit vector.
Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if
$z \geq \Delta$ from equator of sphere.
Point on “Δ-spherical cap”.

Area of caps
\leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$
$\propto r^d = (1 - \Delta^2)^{d/2}$
$\propto \left(1 - \frac{t^2}{d}\right)^{d/2} \approx e^{-t^2} 2d$

Constant of \propto is unit sphere area.
Concentration Bounds.

z is uniformly random unit vector. Random point on the unit sphere. $E[\sum_{i \in [k]} z_i^2] = \frac{k}{d}$.

Claim: $\Pr[|z_1| > \frac{t}{\sqrt{d}}] \leq e^{-t^2/2}$

Sphere view: surface “far” from equator defined by e_1.

$|z_1| \geq \Delta$ if $z \geq \Delta$ from equator of sphere. Point on “Δ-spherical cap”.

Area of caps

\leq S.A. of sphere of radius $\sqrt{1 - \Delta^2}$

$\propto r^d = (1 - \Delta^2)^{d/2}$

$\propto (1 - \frac{t^2}{d})^{d/2} \approx e^{-t^2/2} \frac{d}{2}$

Constant of \propto is unit sphere area.

$\Pr[\text{any } z_i^2 > \sqrt{2\log d} E[z_i^2]]$ is small.
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2\log dE[z_i^2]}] \) is small.
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log dE[z_i^2]}] \) is small.

Length?
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots + z_k^2 \).
Many coordinates.

Proved $\Pr[\text{any } z_i^2 > \sqrt{2 \log d} E[z_i^2]]$ is small.

Length? $z = z_1^2 + z_2^2 + \cdots z_k^2$.

$$\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}$$
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log d E[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2 \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2 d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}} \), \(k = \frac{c \log n}{\varepsilon^2} \).
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log d} E[z_i^2]] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2 \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2 d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}} \), \(k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| \right]
\]
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log d E[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots + z_k^2 \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}} \), \(k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}} \right]
\]
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2\log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots + z_k^2. \)

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}
\]

Substituting \(t = \epsilon \sqrt{\frac{k}{d}}, \quad k = \frac{c\log n}{\epsilon^2}. \)

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \epsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\epsilon^2k}
\]
Many coordinates.

Proved $\Pr[\text{any } z_i^2 > \sqrt{2\log dE[z_i^2]}]$ is small.

Length? $z = z_1^2 + z_2^2 + \cdots z_k^2$.

$$\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}$$

Substituting $t = \varepsilon \sqrt{\frac{k}{d}}$, $k = \frac{c\log n}{\varepsilon^2}$.

$$\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2k} = e^{-c\log n} = \frac{1}{n^c}$$
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2 \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}}, k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2k} = e^{-c \log n} = \frac{1}{n^c}
\]

Johnson-Lindenstrauss: For \(n \) points, \(x_1, \ldots, x_n \), all distances preserved to within \(1 \pm \varepsilon \) under \(\sqrt{\frac{k}{d}} \)-scaled projection above.
Many coordinates.

Proved $\Pr[\text{any } z_i^2 > \sqrt{2 \log d E[z_i^2]}]$ is small.

Length? $z = z_1^2 + z_2^2 + \cdots z_k^2$.

$$\Pr[\sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} > t] \leq e^{-t^2 d}$$

Substituting $t = \varepsilon \sqrt{\frac{k}{d}}$, $k = \frac{c \log n}{\varepsilon^2}$.

$$\Pr[\sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \varepsilon \sqrt{\frac{k}{d}}] \leq e^{-\varepsilon^2 k} = e^{-c \log n} = \frac{1}{n^c}$$

Johnson-Lindenstrauss: For n points, x_1, \ldots, x_n, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.

View one pair $x_i - x_j$ as vector.
Many coordinates.

Proved $\Pr[\text{any } z_i^2 > \sqrt{2\log dE[z_i^2]}]$ is small.

Length? $z = z_1^2 + z_2^2 + \cdots + z_k^2$.

$$\Pr[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t] \leq e^{-t^2d}$$

Substituting $t = \varepsilon \sqrt{\frac{k}{d}}$, $k = \frac{c\log n}{\varepsilon^2}$.

$$\Pr[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}}] \leq e^{-\varepsilon^2k} = e^{-c\log n} = \frac{1}{n^c}$$

Johnson-Lindenstrauss: For n points, x_1, \ldots, x_n, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.

View one pair $x_i - x_j$ as vector.
Scale to unit.
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2 \).

\[
\Pr\left[\sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} > t \right] \leq e^{-t^2 d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}}, k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr\left[\sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} > \varepsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2 k} = e^{-c \log n} = \frac{1}{n^c}
\]

Johnson-Lindenstrauss: For \(n \) points, \(x_1, \ldots, x_n \), all distances preserved to within \(1 \pm \varepsilon \) under \(\sqrt{\frac{k}{d}} \)-scaled projection above.

View one pair \(x_i - x_j \) as vector.

Scale to unit.

Projection fails to preserve \(|x_i - x_j| \)
Many coordinates.
Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots + z_k^2. \)

\[
\Pr[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t] \leq e^{-t^2d}
\]

Substituting \(t = \epsilon \sqrt{\frac{k}{d}}, k = \frac{c \log n}{\epsilon^2}. \)

\[
\Pr[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \epsilon \sqrt{\frac{k}{d}}] \leq e^{-\epsilon^2k} = e^{-c \log n} = \frac{1}{n^c}
\]

Johnson-Lindenstrauss: For \(n \) points, \(x_1, \ldots, x_n \), all distances preserved to within \(1 \pm \epsilon \) under \(\sqrt{\frac{k}{d}} \)-scaled projection above.

View one pair \(x_i - x_j \) as vector.
Scale to unit.
Projection fails to preserve \(|x_i - x_j| \)
with probability \(\leq \frac{1}{n^c} \)
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2 \log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2. \)

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}} \), \(k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2k} = e^{-c \log n} = \frac{1}{n^c}
\]

Johnson-Lindenstrauss: For \(n \) points, \(x_1, \ldots, x_n \), all distances preserved to within \(1 \pm \varepsilon \) under \(\sqrt{\frac{k}{d}} \)-scaled projection above.

View one pair \(x_i - x_j \) as vector.

Scale to unit.

Projection fails to preserve \(|x_i - x_j| \)

with probability \(\leq \frac{1}{n^c} \)

Scaled vector length also preserved.
Many coordinates.
Proved $\Pr[\text{any } z_i^2 > \sqrt{2\log d}E[z_i^2]]$ is small.

Length? $z = z_1^2 + z_2^2 + \cdots z_k^2$.

$$\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}$$

Substituting $t = \varepsilon\sqrt{\frac{k}{d}}$, $k = \frac{c\log n}{\varepsilon^2}$.

$$\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon\sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2 k} = e^{-c\log n} = \frac{1}{n^c}$$

Johnson-Lindenstrauss: For n points, x_1, \ldots, x_n, all distances preserved to within $1 \pm \varepsilon$ under $\sqrt{\frac{k}{d}}$-scaled projection above.

View one pair $x_i - x_j$ as vector.
Scale to unit.
Projection fails to preserve $|x_i - x_j|$ with probability $\leq \frac{1}{n^c}$
Scaled vector length also preserved.

$\leq n^2$ pairs
Many coordinates.

Proved Pr[any \(z_i^2 > \sqrt{2 \log dE[z_i^2]} \)] is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2 \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}} \), \(k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr\left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2 k} = e^{-c \log n} = \frac{1}{n^c}
\]

Johnson-Lindenstrauss: For \(n \) points, \(x_1, \ldots, x_n \), all distances preserved to within \(1 \pm \varepsilon \) under \(\sqrt{\frac{k}{d}} \)-scaled projection above.

View one pair \(x_i - x_j \) as vector.

Scale to unit.

Projection fails to preserve \(|x_i - x_j| \)

with probability \(\leq \frac{1}{n^c} \)

Scaled vector length also preserved.

\(\leq n^2 \) pairs plus union bound
Many coordinates.

Proved \(\Pr[\text{any } z_i^2 > \sqrt{2\log dE[z_i^2]}] \) is small.

Length? \(z = z_1^2 + z_2^2 + \cdots z_k^2 \).

\[
\Pr \left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > t \right] \leq e^{-t^2d}
\]

Substituting \(t = \varepsilon \sqrt{\frac{k}{d}} \), \(k = \frac{c \log n}{\varepsilon^2} \).

\[
\Pr \left[\left| \sqrt{z_1^2 + z_2^2 + \cdots + z_k^2} - \sqrt{\frac{k}{d}} \right| > \varepsilon \sqrt{\frac{k}{d}} \right] \leq e^{-\varepsilon^2k} = e^{-c\log n} = \frac{1}{n^c}
\]

Johnson-Lindenstrauss: For \(n \) points, \(x_1, \ldots, x_n \), all distances preserved to within \(1 \pm \varepsilon \) under \(\sqrt{\frac{k}{d}} \)-scaled projection above.

View one pair \(x_i - x_j \) as vector.
Scale to unit.
Projection fails to preserve \(|x_i - x_j| \)

with probability \(\leq \frac{1}{n^c} \)

Scaled vector length also preserved.

\(\leq n^2 \) pairs plus union bound

\(\rightarrow \) prob any pair fails to be preserved with \(\leq \frac{1}{n^{c-2}} \).
Locality Preserving Hashing

Find nearby points in high dimensional space.
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation.
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution.
Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution. Why?

Close to grid boundary.
Locality Preserving Hashing

Find nearby points in high dimensional space.
 Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation.
Not quite a solution. Why?
 Close to grid boundary.
Find close points to x:
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution. Why?
 Close to grid boundary.

Find close points to x:
 Check grid cell and neighboring grid cells.
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution. Why?
 Close to grid boundary.
Find close points to x:
 Check grid cell and neighboring grid cells.
Locality Preserving Hashing

Find nearby points in high dimensional space. Points could be images!

Hash function $h(\cdot)$ s.t. $h(x_i) = h(x_j)$ if $d(x_i, x_j) \leq \delta$.

Low dimensions: grid cells give \sqrt{d}-approximation. Not quite a solution. Why?
 Close to grid boundary.
Find close points to x:
 Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.
Locality Preserving Hashing

Find nearby points in high dimensional space.
Points could be images!

Hash function \(h(\cdot) \) s.t. \(h(x_i) = h(x_j) \) if \(d(x_i, x_j) \leq \delta \).

Low dimensions: grid cells give \(\sqrt{d} \)-approximation.
Not quite a solution. Why?
Close to grid boundary.
Find close points to \(x \):
Check grid cell and neighboring grid cells.

Project high dimensional points into low dimensions.

Use grid hash function.
Implementing Johnson-Lindenstrauss

Random vectors
Implementing Johnson-Lindenstrauss

Random vectors have many bits
Random vectors have many bits
Use random bit vectors: \(\{-1, +1\}^d\) instead.
Implementing Johnson-Lindenstrauss

Random vectors have many bits
Use random bit vectors: $\{-1, +1\}^d$ instead.
 Almost orthogonal.
Random vectors have many bits
Use random bit vectors: $\{-1, +1\}^d$ instead.
 Almost orthogonal.
Project z.
Implementing Johnson-Lindenstrauss

Random vectors have many bits
Use random bit vectors: \(\{-1, +1\}^d \) instead.
 Almost orthogonal.
Project \(z \).
Coordinate for bit vector \(b \).
Random vectors have many bits
Use random bit vectors: $\{-1, +1\}^d$ instead.
Almost orthogonal.

Project z.

Coordinate for bit vector b.

$$C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i$$
Random vectors have many bits
Use random bit vectors: \([-1, +1]^d\) instead.
 Almost orthogonal.
Project \(z\).
Coordinate for bit vector \(b\).
 \[C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i \]
 \[E[C_i^2] = \]
Random vectors have many bits

Use random bit vectors: $\{-1, +1\}^d$ instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.

\[C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i \]

\[E[C_i^2] = E[\frac{1}{d} \sum_{i,j} b_i b_j z_i z_j] \]
Implementing Johnson-Lindenstrauss

Random vectors have many bits
Use random bit vectors: $\{-1, +1\}^d$ instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.

$$C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i$$

$$E[C_i^2] = E[\frac{1}{d} \sum_{i,j} b_i b_j z_i z_j] = \frac{1}{d} \sum_{i,j} E[b_i b_j] z_i z_j = \frac{1}{d} \sum_i z_i^2$$
Random vectors have many bits
Use random bit vectors: $\{-1, +1\}^d$ instead.

Almost orthogonal.

Project z.

Coordinate for bit vector b.

$$C_i = \frac{1}{\sqrt{d}} \sum b_i z_i$$

$$E[C_i^2] = E[\frac{1}{d} \sum_{i,j} b_i b_j z_i z_j] = \frac{1}{d} \sum_{i,j} E[b_i b_j] z_i z_j = \frac{1}{d} \sum z_i^2 = \frac{1}{d}$$
Random vectors have many bits
Use random bit vectors: $\{-1, +1\}^d$ instead.
Almost orthogonal.
Project z.
Coordinate for bit vector b.
$$C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i$$
$$E[C_i^2] = E[\frac{1}{d} \sum_{i,j} b_i b_j z_i z_j] = \frac{1}{d} \sum_{i,j} E[b_i b_j] z_i z_j = \frac{1}{d} \sum_i z_i^2 = \frac{1}{d}$$
Implementing Johnson-Lindenstrauss

Random vectors have many bits
Use random bit vectors: \([-1, +1]^d\) instead.

Almost orthogonal.

Project \(z\).

Coordinate for bit vector \(b\).

\[
C_i = \frac{1}{\sqrt{d}} \sum_i b_i z_i
\]

\[
E[C_i^2] = E\left[\frac{1}{d} \sum_{i,j} b_i b_j z_i z_j\right] = \frac{1}{d} \sum_{i,j} E[b_i b_j] z_i z_j = \frac{1}{d} \sum_i z_i^2 = \frac{1}{d}
\]

\[
E[\sum_i C_i^2] = \frac{k}{d}
\]
Binary Johnson-Lindenstrass

Project onto $[-1, +1]$ vectors.
Binary Johnson-Lindenstrass

Project onto $[-1, +1]$ vectors.

$$E[C] = E[\sum_i C_i^2] = \frac{k}{d}$$
Binary Johnson-Lindenstrass

Project onto $[-1, +1]$ vectors.

$E[C] = E[\sum_i C_i^2] = \frac{k}{d}$

Concentration?
Binary Johnson-Lindenstrass

Project onto $[-1, +1]$ vectors.

$$E[C] = E[\sum_i C_i^2] = \frac{k}{d}$$

Concentration?

$$\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}$$
Project onto $[-1, +1]$ vectors.

$$E[C] = E[\sum_i C_i^2] = \frac{k}{d}$$

Concentration?

$$\Pr \left[|C - \frac{k}{d}| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}$$

Choose $k = \frac{c \log n}{\varepsilon^2}$.
Binary Johnson-Lindenstrass

Project onto $[-1, +1]$ vectors.

$$E[C] = E[\sum_i C_i^2] = \frac{k}{d}$$

Concentration?

$$\Pr\left[|C - \frac{k}{d}| \geq \varepsilon \frac{k}{d}\right] \leq e^{-\varepsilon^2 k}$$

Choose $k = \frac{c \log n}{\varepsilon^2}$.

\rightarrow failure probability $\leq 1/n^c$.
Analysis Idea.

\[\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k} \]
Analysis Idea.

\[
\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}
\]

Variance of \(C_i^2 \)?
Analysis Idea.

$$\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}$$

Variance of C_i^2? \[\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \]
Analysis Idea.

\[\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k} \]

Variance of \(C_i^2 \)? \(\left(\frac{k}{d^2} \right) \left(\sum i z_i^4 + 4 \sum i, j z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2(\sum z_i^2)^2 \)
Analysis Idea.

\[\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k} \]

Variance of \(C_i^2 \)? \(\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2 \left(\sum_i z_i^2 \right)^2 \leq \frac{2k}{d^2} \).
Analysis Idea.

\[\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k} \]

Variance of \(C_i^2 \)? \(\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2 \left(\sum_i z_i^2 \right)^2 \leq \frac{2k}{d^2} \).

Roughly normal (gaussian):
Analysis Idea.

\[
Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}
\]

Variance of \(C_i^2 \)? \(\left(\frac{k}{d^2} \right) (\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2) \leq \left(\frac{k}{d^2} \right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2} \).

Roughly normal (gaussian):

Density \(\propto e^{-t^2}/2 \) for \(t \) std deviations away.
Analysis Idea.

\[
\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}
\]

Variance of \(C_i^2 \)?

\[
\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2 \left(\sum_i z_i^2 \right)^2 \leq \frac{2k}{d^2}.
\]

Roughly normal (gaussian):

Density \(\propto e^{-t^2}/2 \) for \(t \) std deviations away.

So, assuming normality
Analysis Idea.

$$\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}$$

Variance of C_i^2? \(\left(\frac{k}{d^2} \right) (\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2) \leq \left(\frac{k}{d^2} \right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2}. \)

Roughly normal (gaussian):

- Density $\propto e^{-t^2/2}$ for t std deviations away.

So, assuming normality

$$\sigma = \frac{\sqrt{k}}{d},$$
Analysis Idea.

$$\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}$$

Variance of C_i^2: \(\left(\frac{k}{d^2} \right) \left(\sum i z_i^4 + 4 \sum i,j z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2(\sum i z_i^2)^2 \leq \frac{2k}{d^2} \).

Roughly normal (gaussian):

Density $\propto e^{-t^2}/2$ for t std deviations away.

So, assuming normality

$$\sigma = \frac{\sqrt{k}}{d}, \ t = \frac{\varepsilon k}{\sqrt{2k} d}$$
Analysis Idea.

\[
\Pr \left[\left| C - \frac{k}{d} \right| \geq \epsilon \frac{k}{d} \right] \leq e^{-\epsilon^2 k}
\]

Variance of \(C_i^2\)? \[\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2}.
\]

Roughly normal (gaussian):
Density \(\propto e^{-t^2/2}\) for \(t\) std deviations away.

So, assuming normality
\[
\sigma = \frac{\sqrt{k}}{d}, \quad t = \frac{\epsilon \frac{k}{d}}{\sqrt{2k}} = \epsilon \frac{\sqrt{k}}{\sqrt{2}}.
\]
Analysis Idea.

\[
\Pr \left[\left| C - \frac{k}{d} \right| \geq \epsilon \frac{k}{d} \right] \leq e^{-\epsilon^2 k}
\]

Variance of \(C_i^2 \)? \((\frac{k}{d^2}) (\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2) \leq \left(\frac{k}{d^2}\right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2}.

Roughly normal (gaussian):
Density \(\propto e^{-t^2/2} \) for \(t \) std deviations away.

So, assuming normality
\[
\sigma = \frac{\sqrt{k}}{d}, \quad t = \frac{\epsilon k}{\sqrt{2kd}} = \epsilon \sqrt{k}/\sqrt{2}.
\]

Probability of failure roughly \(\leq e^{-t^2/2} \)
Analysis Idea.

\[
\Pr \left[\left| C - \frac{kd}{d} \right| \geq \varepsilon \frac{kd}{d} \right] \leq e^{-\varepsilon^2 k}
\]

Variance of \(C_i \)? \(\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2} \).

Roughly normal (gaussian):

Density \(\propto e^{-t^2/2} \) for \(t \) std deviations away.

So, assuming normality

\[
\sigma = \frac{\sqrt{k}}{d}, \quad t = \frac{\varepsilon \frac{k}{d}}{\sqrt{2k}} = \varepsilon \sqrt{k}/\sqrt{2}.
\]

Probability of failure roughly \(\leq e^{-t^2/2} \)

\(\rightarrow e^{\varepsilon^2 k/4} \)
Analysis Idea.

$$\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k}$$

Variance of C_i^2? $\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2}$.

Roughly normal (gaussian):

Density $\propto e^{-t^2/2}$ for t std deviations away.

So, assuming normality

$$\sigma = \frac{\sqrt{k}}{d}, \quad t = \frac{\varepsilon \frac{k}{d}}{\sqrt{2\frac{k}{d}}} = \varepsilon \sqrt{k}/\sqrt{2}.$$

Probability of failure roughly $\leq e^{-t^2/2}$

$\rightarrow e^{\varepsilon^2 k/4}$

“Roughly normal.”
Analysis Idea.

\[\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k} \]

Variance of \(C_i^2 \)? \(\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2(\sum_i z_i^2)^2 \leq \frac{2k}{d^2} \).

Roughly normal (gaussian):
Density \(\propto e^{-t^2/2} \) for \(t \) std deviations away.

So, assuming normality
\[\sigma = \frac{\sqrt{k}}{d}, \quad t = \frac{\varepsilon \frac{k}{d}}{\sqrt{2k/d}} = \varepsilon \sqrt{k/\sqrt{2}}. \]

Probability of failure roughly \(\leq e^{-t^2/2} \)
\[\rightarrow e^{\varepsilon^2 k/4} \]

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.
Analysis Idea.

\[\Pr \left[\left| C - \frac{k}{d} \right| \geq \varepsilon \frac{k}{d} \right] \leq e^{-\varepsilon^2 k} \]

Variance of \(C_i^2 \)?
\[\left(\frac{k}{d^2} \right) \left(\sum_i z_i^4 + 4 \sum_{i,j} z_i^2 z_j^2 \right) \leq \left(\frac{k}{d^2} \right) 2 \left(\sum_i z_i^2 \right)^2 \leq \frac{2k}{d^2}. \]

Roughly normal (gaussian):
Density \(\propto e^{-t^2}/2 \) for \(t \) std deviations away.

So, assuming normality
\[\sigma = \frac{\sqrt{k}}{d}, \quad t = \frac{\varepsilon \frac{k}{d}}{\sqrt{2k} \frac{d}{d}} = \varepsilon \sqrt{k}/\sqrt{2}. \]

Probability of failure roughly \(\leq e^{-t^2}/2 \)
\[\rightarrow e^{\varepsilon^2 k/4} \]

“Roughly normal.” Chernoff, Berry-Esseen, Central Limit Theorems.
Sum up
Have a good break!