
U.C. Berkeley | CS270: Algorithms Lecture 1
Professor Vazirani and Professor Rao Jan 16,2012
Lecturer: Satish Rao Last revised January 21, 2012

Lecture 1

1 Overview

These are slightly modi�ed from previous year's course notes.

An admittedly simplistic view of undergraduate algorithms covers 2-3 decades perhaps
to the nineties. It introduces analytical tools, basic algorithmic techniques, tends to cover
cleanly stated problems such as minimum spanning trees, shortest paths, and maximum

ow and with clever solutions. 1 The techniques tend to be combinatorial in nature.

In this course, we will cover ideas from the last 10-20 years of computer science. Some
problems include dealing with large data, and modelling. The set of techniques used are
probabilistic, algebraic, and continuous. These techniques are more applicable to today's
problems, and closer to the cutting edge of research in algorithms.

1.1 Example Problems

One example (rather general) problem is clustering. This may be clustering points in high
dimensional space which in turn may be representing documents, or individual's dna, or
individual's preferences. It may also be graph clustering which also in turn is a basic
subroutine for divide and conquer approaches to problems ranging from VLSI layout to
parallel processing. It is also directly useful for example in image segmentation.

The problem is: given an image, �nd a region corresponding to a single object. This
has been modelled as a graph problem where each pixel is a node, and edges and their
weights indicate how closely related two pixels are; for example, a high weight indicating
proximity as well as similarity of color. An object perhaps corresponds to a subset of
vertices which can easily be separated from the others; for example, a red circle in a blue
background. There are relatively few low weight edges connecting the pixels in the circle
to the background. This has been formalized as �nding the minimum normalized cut in a
graph. That is, �nding the subset S that minimizes

w(S; S)

w(S) � w(S )

where w(S; S) is the weight of edges between S and S and w(S) is the total weight of edges
incident to S. The closely related quantity,

w(S; S)

w(S)

1And, of course, they typically discuss dynamic programming and hashing which are oh so critical for

those technical questions in Google or Microsoft interviews.



Notes for Lecture 1: Jan 16,2012 2

is perhaps more intuitive as chooses the cut with minimum cost per unit weight cut o�;
this is useful in many recursive schemes as it makes the most progress in the recursion with
minimum costs.

These problems and their variants are NP-complete, and techniques. The current best
approach for solving this problem is to embed the vertices into some high dimensional space
where the edges are short and the vertices are spread out. Then a hyperplane cut through
the center of mass of the set of vertices will typically cut few edges and yet have many nodes
on each side. Computing the optimal embedding uses ideas linear algebra and optimization.
The analysis of the cutting process uses ideas from the area of approximation algorithms.

Another problem arises in recommendation systems. For example, given some informa-
tion about a person's movie preference predict their preferences about other movies. This
can be viewed as the matrix representation problem; the initial matrix has an entry for each
person, movie pair. In fact, each person is perhaps a combination of a few types of people,
and each movies is the combination of a few types of movies. Thus, the matrix is actually
of low rank.

An example being that Sarah Palin may like True Grit, and dislike Black Swan and
The Social Network, whereas Hillary Rodham Clinton may view things oppositely. We
also happen to know their preferences for thousands of movies. The rest of us are (rather
speculatively) part Hillary and part Sarah; that is, the set of people's preferences are rank
2. My preference would then simply be the combination of my inner Sarah and my inner
Hillary. Of course, the situation would typically have more archetypes, and include noise
(or even perhaps individuality), but this view can be quite useful to explain some amount
of people's preference.

The big tool here has been termed principal components analysis which uses ideas from
linear algebra.

1.2 Algorithmic Techniques

Some of the algorithmic techniques that are particularly relavent include.

� Sketching. Finding a small digest or core set of a large set of data which is useful
for the problem at hand. One example is �nding a sparse graph which represents a
dense graph for the purposes of �nding small cuts. Another is to process a large data
stream into a summary of the data stream which can then be used to predict pro�t
or devise strategies. The latter problems can have the added constraint that the data
has to be analyzed as a stream.

� High Dimensional Geometry and Convexity. Gradient descent. This is a really in-
spired by using calculus and indeed constrained optimization tools you learned likely
before you ever took an algorithms class.

� Techniques from Linear Algebra. Principal components analysis and computing the
embeddings into space we discussed above both use the notion of eigenvalues and
eigenvectors. Semide�nite programming which combines eigenvalue methods with
linear programming methods have proven to be quite useful, of late.



Notes for Lecture 1: Jan 16,2012 3

� Dueling subroutines. One view of this is that when you try to solve a problem it is
good to know when you are done. A bit more adversarially; one subroutine works to
�nd better and better solutions while the other works to prove you can't do better.
Remarkably, the evidence provided by each allows the other to do an increasingly
better job.

Perhaps this last description is painfully vague, so we will illustrate the concept with an
extended example below.

1.3 Course Assessment

Before proceeding, here is some information on assessment. The grading will be based on
5 homeworks (40 %) where collaboration, full credited, is allowed, 1 homework/midterm
(25 %) where collaboration is prohibited, and a project (35 %). The project can be done
in groups of 2 or 3 and should either be connecting your research to topics in this class, or
digesting a topic of interest related to this class. The main output of the project is a report
and a presentation to the course sta�.

2 Dueling Subroutines: Congestion Minimization.

Given graph G = (V;E) and pairs of nodes (s1; t1); (s2; t2); : : : ; (sk; tk) we want to �nd paths
connecting each pair such that the number of paths that use any one edge is minimized.
One could de�ne this problem as routing one unit of 
ow for each pair while minimizing
the maximum 
ow on any edge. We refer to the number of paths (or the amount of 
ow)
on the edge as the congestion. The problem is thus to route a path for each pair while
minimizing the maximum congestion.

This problem has many applications. For example, VLSI routing, internet routing,
travelling on roads, etc.

How do we solve this problem? Well, we can at least �nd a feasible solution by simply
routing some path for each pair. Use something like depth �rst search or breadth �rst search
(or shortest path) to choose such a path. But does this minimize the maximum congestion?
To get started, let's just minimize the average congestion. Thinking for a moment, the
average congestion is simply the sum of the path lengths divided by the number of edges:

P
i `(pi)

m

where pi is the path connecting the ith pair and `(pi) is the length of pi and m is the
number of edges. Thus, for the average congestion problem we can simply route along
shortest paths; we use the minimum resources for each demand pair.

Moreover, the optimal solution for the average congestion problem is clearly a lower
bound on the optimal value for the maximum congestion problem. Do we get close to the
right answer with ths method?

Unfortunately, as seen by the example in Figure ??, the congestion is k if we route
along the shortest paths but the optimal value of the congestion is 1. An approach to �x
this would be to reroute when we congest edges too much. For example we could route



Notes for Lecture 1: Jan 16,2012 4

t1

t2

tk

sk

s2

: : :

s1

Figure 1: The shortest path method does not quite work.

along shortest paths, assign high tolls to congested edges, reroute along shortest paths with
respect to the tolls, assign high tolls on congested edges and so on.

Let's consider some options for assigning tolls, a toll f : E ! R is an increasing function
of the congestion. The �rst function to try is the identity function f(e) = ce.

We route along shortest paths with the weight of edge e being f(e), the routing changes
congestion on the edges and we re-route according to the new value of the congestion. For
now, let us assume that the process has converged to an equilibrium i.e. routing along
shortest paths with respect to weights f(e) that are a function of the congestion ce does
not change the congestion on the edges. The issue of the time taken to converge to an
equilibrium will be addressed later.

The equilibrium condition for the graph in �gure ?? says that the lengths of all the
k paths between u and v under weights f(e) are equal, else we would �nd an improved
routing. If the common length is c0 the congestion on the path of length i must satisfy
cii = c0 to make all the lengths equal. The total 
ow is k so we have,

c0

�
1 +

1

2
+ � � �+ 1

k

�
= k

The maximum congestion c0 has been reduced slightly to k= ln k compared to the k
obtained from the route along shortest paths strategy. If we used a quadratic function
f(e) = c2, the congestion on the path of length i satis�es c2i i = c0 showing that ci =

c0p
i
,

c0

�
1 +

1p
2
+ � � �+ 1p

k

�
= k

The bound on the maximum congestion c0 improves to
p
k for the quadratic function, this

suggests that rapidly increasing functions lead to better bounds. Consider the exponential
function, say f(c) = 2c,

2c0 = i:2ci ) ci = c0 � log i



Notes for Lecture 1: Jan 16,2012 5

Substituting in the congestion equation, we have kc0 � log k! = k, using the approximation
log k! = k log k � k we conclude that the maximum congestion is O(log k) a considerable
improvement over routing along shortest paths.

The preceding discussion was for a speci�c example, in fact, for any congestion mini-
mization problem, routing along shortest paths with respect to the exponential function,
yields a congestion that is within 2 logm of the optimal. We introduce the problem dual to
congestion minimization in order to prove this bound.

The dual problem (see lecture 7 for the precise meaning of duality and a derivation
of the dual problem) is to assign weights we to the edges such that the total weight is 1.
Let pi denote the shortest path between (si; ti) under the weights we. The objective is to
maximize the sum of the lengths of the shortest paths between pairs (si; ti).

max
X
i2[k]

w(pi)

we � 0;
X
e2E

we = 1 (1)

The maximum congestion for the metric we is greater that the value of the dual objective
function,

max
e

c(e) �
X
e

w(e)c(e) =
X
i

w(pi) �
X
i

w(si; ti)

where pi are the paths used in a particular routing: perhaps the optimal congestion routing.
The key step is the equality in the middle step; here we \change the order of summation"
which done more slowly goes as followsX

i

w(pi) =
X
i

X
e2pi

w(e) =
X
e

X
pi3e

w(e) =
X
e

w(e)c(e):

We use the fact that the weights provide a lower bound on the congestion, routing along
shortest paths says the weighted average of the congestion is lower than this upper bound,
and note that all the edges with congestion lower than cmax � 2 logm have at most 1=m of
the total weight, and thus the average congestion is at least cmax � 2 log n (almost.) That
is, the average congestion of the shortest path routing under exponential weights is a lower
bound on the optimal and is within an additive 2 logm of the optimal.

This is laid out in the following derivation.

copt �
X
i

w(si; ti)

=
X
i

w(e)c(e)

=

P
e 2

c(e)c(e)P
e 2

c(e)

>
(cmax � 2 logm)

P
e:c(e)>cmax�2 logm 2c(e)

(1 + 1=m)
P

e:c(e)>cmax�2 logn 2
c(e)

> (cmax � 2 log n)=(1 + 1=m)



Notes for Lecture 1: Jan 16,2012 6

That is,
copt(1 + 1=m) + 2 logm > c:

2.1 Convergence

We should point out that here we set up (carefully) a situation where the path routing and
and resulting tolls were in equilibrium. In general, a toll function is not even su�cient,
one actually needs to get an algorithm where the shortest path under the current tolls are
stable. Indeed, a single path may oscillate between two choices.

This situation can be remedied in a variety of ways. One is to move a small fraction of
the 
ow to new paths. Still, this moves the situation to a di�erent regime. Another way
is to send 
ow along approximately shortest paths. For the exponential function and for
integer paths, perhaps only shift paths of length that are routed along paths that are more
than a factor of two.

The di�erence now is that the �rst equality becomes an inequality where a factor of two
is introduced.

That is,

copt �
X
i

w(si; ti) �
1

2

X
e

c(e)w(e):

This leads to a total bound of

2(1 + 1=m)copt + 2 logm � cmax:

By manipulating the exponential function to be f(c) = (1+ �)c; and routing along 1+ �
approximately shortest paths, we get an expression like

(1 + �)copt + 2
logm

�
� cmax:

2.2 Wrap up.

To address the congestion minimization problem, we noted that the related average mini-
mization problem seemed easier. That is, minimizing one constraint is easier than simulta-
neously dealing with many. Moreover, the average problem also provides a lower bound on
the value of the real problem. We noted that di�erent ways of weighting constraints also
provided the lower bound and remained easy to solve.


