Lecture 15

1 Streaming Algorithms: Frequent Items

Recall the streaming setting where we have a data stream x_1, x_2, \ldots, x_n with $x_i \in [m]$, the available memory is $O(\log^2 n)$. Today we will see algorithms for finding frequent items in a stream. We first present a deterministic algorithm that approximates frequencies for the top k items. We then introduce more efficient randomized algorithms that can handle insertions as well as deletions.

1.1 Deterministic algorithm

The following algorithm estimates item frequencies f_j within an additive error of n/k using $O(k \log n)$ memory.

1. Maintain set S of k counters, initialize to 0. For each element x_i in stream:

 2. If $x_i \in S$ increment the counter for x_i.

 3. If $x_i \not\in S$ add x_i to S if space is available, else decrement all counters in S.

 An item in S whose count falls to 0 can be removed, the space requirement for storing k counters is $k \log n$ and the update time per item is $O(k)$.

 The algorithm estimates the count of an item as the value of its counter or zero if it has no counter.

 Claim 1

 The frequency estimate n_j produced by the algorithm satisfies $f_j - n/k \leq n_j \leq f_j$.

 Proof: Clearly, n_j is less than the true frequency f_j. Differences between f_j and the value of the estimate are caused by one of the two scenarios: (i) The item $j \not\in S$, each counter in S gets decremented, this is the case when x_j occurs in the stream but the counter for j is not incremented. (ii) The counter for j gets decremented due to an element j' that is not contained in S.

 Both scenarios result in k counters getting decremented hence they can occur at most n/k times, showing that $n_j \geq f_j - n/k$. □

1.2 Count min sketch

The turnstile model allows both additions and deletions of items in the stream. The stream consists of pairs (i, c_i), where the $i \in [m]$ is an item and c_i is the number of items to be added or deleted. The count of an item can not be negative at any stage, the frequency f_j of item j is $f_j = \sum c_j$.

The following algorithm estimates frequencies of all items up to an additive error of $\epsilon |f|_1$ with probability $1 - \delta$, the ℓ_1 norm $|f|_1$ is the number of items present in the data set. The two parameters k and t in the algorithm are chosen to be $(\frac{2}{\epsilon}, \log(1/\delta))$.
1. Maintain t arrays $A[i]$ each having k counters, hash function $h_i : U \rightarrow [k]$ drawn from a 2-wise independent family \mathcal{H} is associated to array $A[i]$.

2. For element (j, c_j) in the stream, update counters as follows:

$$A[i, h_i(j)] \leftarrow A[i, h_i(j)] + c_j \quad \forall i \in [t]$$

3. The frequency estimate for item j is $\min_{i \in [t]} A[i, h(j)]$.

The output estimate is always more than the true value of f_j as the count of all the items in the stream is non negative.

1.2.1 Analysis

To bound the error in the estimate for f_j we need to analyze the excess X where $A[i, h_1(j)] = f_j + X$. The excess X can be expressed as a sum of random variables $X = \sum_i Y_i$ where the indicator random variable $Y_i = f_i$ if $h_1(j) = h_1(i)$ and 0 otherwise. As $h_1 \in \mathcal{H}$ is chosen uniformly at random from a 2-wise independent hash function family, $E[Y_i] = f_i/k$.

$$E[X] = \frac{|f|_1}{k} = \frac{\epsilon |f|_1}{2}$$

Applying Markov’s inequality, we have

$$Pr[X > \epsilon |f|_1] \leq \frac{1}{2}$$

The probability that all the excesses at $A[i, h_i(x_j)]$ are greater than $\epsilon |f|_1$ is at most $1/2^t \leq \delta$ as t was chosen to be $\log(1/\delta)$. The algorithm estimates the frequency of item x_j up to an additive error $\epsilon |f|_1$ with probability $1 - \delta$.

The memory required for the algorithm is the sum of the space for the array and the hash functions, $O(kt \log n + t \log m) = O(\frac{1}{\epsilon} \log(1/\delta) \log n)$. The update time per item in the stream is $O(\log \frac{1}{\delta})$.

1.3 Count Sketch

We present another sketch algorithm with error in terms of the ℓ_2 norm $|f|_2 = \sqrt{\sum_j f_j^2}$. The relation between the ℓ_1 and ℓ_2 norms is $\frac{1}{\sqrt{n}} |f|_1 \leq |f|_2 \leq |f|_1$, the ℓ_2 norm is less than the ℓ_1 norm so the guarantee for this algorithm is better than that for the previous one.

1. Maintain t arrays $A[i]$ each having k counters, hash functions $g_i : U \rightarrow \{-1, 1\}$ and $h_i : U \rightarrow [k]$ drawn uniformly at random from a 2-wise independent families are associated to array $A[i]$.

2. For element (j, c_j) in the stream, update counters as follows:

$$A[i, h_i(j)] \leftarrow A[i, h_i(j)] + g_i(j)c_j \quad \forall i \in [t]$$

3. The frequency estimate for item j is the median over the t arrays of $g_i(x_j)A[i, h(j)]$.
1.3.1 Analysis

Again, the entry \(A[1, h_1(j)] = g_1(j) f_j + X \), we examine the contribution \(X \) from the other items by writing \(X = \sum_i Y_i \) where the indicator variable \(Y_i \) is \(\pm f_i \) if \(h_1(i) = h_1(j) \) and 0 otherwise. Note that \(E[Y_j] = 0 \), so the expected value of \(g_1(j) A[1, h(j)] \) is \(f_j \).

The random variables \(Y_i \) are pairwise independent as \(h_1 \) is a 2-wise independent hash function, so the variance of \(X \) can be expressed as,

\[
\text{Var}(X) = \sum_{i \in [m]} \text{Var}(Y_i) = \sum_{i \in [m]} \frac{f_i^2}{k} = \frac{|f_j|^2}{k}
\]

We will use Chebyshev’s inequality to bound the deviation of \(X \) from its expected value,

\[
Pr[|X - \mu| > \Delta] \leq \frac{\text{Var}(X)}{\Delta^2}
\]

The mean \(\mu = f_j \) and the variance is \(\frac{|f_j|^2}{k} \), choosing \(\delta = \epsilon |f_j|_2 \) and \(k = 4/\epsilon^2 \) we have,

\[
Pr[|X - \mu| > \epsilon |f_j|_2] \leq \frac{1}{\epsilon^2 k} \leq \frac{1}{4}
\]

For \(t = \theta(\log(1/\delta)) \), the probability that the median value deviates from \(\mu \) by more than \(\epsilon |f_j|_2 \) is less than \(\delta \) by a Chernoff bound. That is, the probability that there are fewer than \(t/2 \) success in a series of \(t \) tosses of a coin with success probability \(3/4 \) is smaller than \(\delta \) for \(t = O(\log(1/\delta)) \).

Arguing as in the count min sketch the space required is \(O(\frac{1}{\epsilon^2} \log \frac{1}{\delta} \log n) \) and the update time per item is \(O(\log \frac{1}{\delta}) \).

1.4 Remarks

The count sketch approximates \(f_j \) within \(\epsilon |f_j|_2 \) but requires \(\tilde{O}(\frac{1}{\epsilon^2}) \) space, while the count min sketch approximates \(f_j \) within \(\epsilon |f_j|_1 \) and requires \(O(\frac{1}{\epsilon^2}) \) space. The approximation provided by the sketch algorithms is meaningful only for items that occur with high frequency.