
Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.
Can encode in polysized linear program, but large.
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Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).

Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.
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Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)
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Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε
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Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O( k logn
ε2 ) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !
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Did we (approximately) solve path routing?

Yes? No?

No! Average of T routings.
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No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
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Learning just a bit.

Example: set of labelled points, find hyperplane that separates.
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Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...
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Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:

produce hypothesis correctly classifies 1
2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:

produce hyp. correctly classifies 1+µ fraction
That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.
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Given a weak learning method (produce ok hypotheses.)

produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.
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Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by ( 1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?
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Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.
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Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T )≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T )≤ ne−ε ∑t Lt ≤ ne−ε( 1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T )≤ ne−ε( 1
2+γ)T
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Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε( 1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!
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Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi )

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.
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A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.
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Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .

Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?

Distance (divergence) from q to p ∑i p∗
i log(p

∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.

Idea: p∗ loses less,
so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.

Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.

Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:

linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .

Advantage?
Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?

Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?

Distributions have entropy at most O(logn).



Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?

Distributions have entropy at most O(logn).



Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.
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loss function for multiplicative weights.

Next: Get closer to an optimal point for function.
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loss function for multiplicative weights.

Next: Get closer to an optimal point for function.



Convex optimization

Slides: Thanks to Di Wang.

min
x∈Q

f (x)

f (x)− f (y)≤ ⟨∇f (x),x −y⟩

Q: feasible space, convex.

(x , f (x))

f (x)+ ⟨∇f (x),y −x⟩



Convex optimization

Slides: Thanks to Di Wang.

min
x∈Q

f (x)

f (x)− f (y)≤ ⟨∇f (x),x −y⟩

Q: feasible space, convex.

First-order Iterative Methods

▶ Query x ∈ Q, update using ∇f (x)

▶ Low per-iteration cost, poly(1
ε
) convergence.

▶ Methods of choice in large-scale regime.



Gradient Descent

▶ Moves in down-hill direction.

▶ Improve objective function
value each iteration.

▶ Output final point.



Gradient Descent
L-Lipschitz continuous

∥∇f (x)−∇f (y)∥∗ ≤ L∥x −y∥ ∀x ,y ∈ Q

▶ Global linear lower bound and quadratic upper bound:

∀y f (x)+ ⟨∇f (x),y −x⟩≤ f (y)≤ f (x)+ ⟨∇f (x),y −x⟩+ L
2
∥y −x∥2

▶ Minimize using quadratic bound

xk+1 = Grad(xk ) = argmin
x∈Q

{⟨∇f (xk ),x −xk ⟩+
L
2
∥x −xk∥2}

If Q = Rn and ℓ2-norm, xk+1 = xk − 1
L ∇f (xk ).

▶ Primal progress: Av. ∇f (x ′)≥ ∇f (x)
2 for x ′ = αxk +(1−α)xk+1

f (xk )− f (xk+1)≥
1

2L
∥∇f (xk )∥2

∗
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Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x).

=⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.
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Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x).

=⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk )− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk ) is decreasing, we have f (xT )≤ 1
T ∑k f (xk ).

=⇒ f (xT )− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT )− f (x∗)≤ ε.
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f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk )− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk ) is decreasing, we have f (xT )≤ 1
T ∑k f (xk ).

=⇒ f (xT )− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT )− f (x∗)≤ ε.



Gradient Descent

Primal progress

f (xk )− f (xk+1)≥
1
2L

∥∇f (x)∥2
∗

Convergence

L-Lipschitz, R =maxx :f (x)≤f (x0) ∥x −x∗∥:

f (xT )− f (x∗)≤ O(
LR2

T
)

To get ε-approximation, need

T = O(
LR2

ε
)



Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.
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