
Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.
Can encode in polysized linear program, but large.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.
Can encode in polysized linear program, but large.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.
Can encode in polysized linear program, but large.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.

Can encode in polysized linear program, but large.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.
Can encode in polysized linear program, but large.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Problem: Route path for each pair and minimize maximum
congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.
Can encode in polysized linear program, but large.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).

Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)

Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.

Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r

column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.

Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.

Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths. (Exponential)
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows.

Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:

wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:

G ≥ G∗(1− ε)− k logn
εT → G∗−G ≤ εG∗+ k logn

ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT

→ G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥ G∗(1− ε)− k logn

εT → G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗

max−TC ≤ εTC∗+ k logn
ε

→
cmax −C∗ ≤ εC∗+ ε

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm

! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm !

! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! !

!

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→ O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Fractional versus Integer.

Did we (approximately) solve path routing?

Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes?

No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No!

Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.

We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)

c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large

(Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))

→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results?

later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi at random from “daily” paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them?

Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.

Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line.

And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless.

A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:

produce hypothesis correctly classifies 1
2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:

produce hyp. correctly classifies 1+µ fraction
That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Poll.

Given a weak learning method (produce ok hypotheses.)

produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes.

How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.

Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.

The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.

2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x):

majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points

! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points !

! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! !

!

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really?

Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)

≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x −x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x −x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning

– loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→

W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt

≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→ W (t +1)≤ W (t)(1− ε(Lt))≤ W (t)e−εLt

→ W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤ W (T)≤ ne−ε(1
2+γ)T

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ)

→ ln
(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ

→ |Sbad |
n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points

!

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ − γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ − γ2)≤−γT (1
2 + γ) → ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Blending learning methods.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c

Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!

Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)

y is exponential weights on “how unsatisfied” each equation is.
yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.

Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.

Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?

yT “separates” affine subspace Ax from ≥ yT c.
Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math:

e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e

= limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e =

limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

Theme:Good on average, hyperplane.
“Duality”

mincx ,Ax ≥ b,x ≥ 0.

Linear combination of constraints: yT Ax ≥ yT c
Find a solution for just one constraint!!!
Best response.

Multiplicative weights: two person games (linear programs)
y is exponential weights on “how unsatisfied” each equation is.

yi ∝ ∑t(1+ ε)(ai x(t)−bi)

y “wins” ≡ unsatisfiable linear combo of constraints.
Otherwise, x eventually “wins”.
Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

“Separating” Hyperplane?
yT “separates” affine subspace Ax from ≥ yT c.

Or doesn’t and x responds.

The math: e = limn→∞(1+1/n)n.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.

If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.

Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:

Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron.

But can do analysis directly.

A step closer.

Another Algorithm.

Finding a feasible point: x∗ for constraints.
If x (t) point violates constraint by > ε

move toward constraint.
Closer.

The Math:
Wrong side, angle to correct point is less than 90◦

This is the idea in perceptron. But can do analysis directly.

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .

Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?

Distance (divergence) from q to p ∑i p∗
i log(p

∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.

Idea: p∗ loses less,
so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.

Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.

Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:

linear (and quadratic) approximation of ex .
Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .

Advantage?
Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?

Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?

Distributions have entropy at most O(logn).

Multiplicative weights and a step closer.

The solution is a distribution: p∗.

Every day each strategy loses (or not), ℓ(t)i .
Assumption: Solution doesn’t lose (much).

MW: keeps a distribution.

Closer?
Distance (divergence) from q to p ∑i p∗

i log(p
∗
i /qi).

Step in MW gets closer to p∗ with this distance.
Idea: p∗ loses less,

so new distribution plays losers less.
Move toward playing losers less.
Thus closer to p∗.

The math:
linear (and quadratic) approximation of ex .
Advantage?

Distributions have entropy at most O(logn).

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.

Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.

No information about others.
(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.

Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.

Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:

Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.

Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.

Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more?

Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits.

One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits.

One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Reinforcement learning == Bandits.
Multiplicative Weights framework:

Update all experts.

Bandits.
Only update expert you choose.
No information about others.

(Named after one-armed bandit slot machine.)

Idea: “Learn” which expert is best.
Prof. Dragan’s mantra: formulation as optimization.

Exploration: choose new bandit to get “data”.
Exploitation: choose best bandit.

Strategy:
Multiplicative weights.
Update by (1+ ε).

Big ε.
Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Next up: convex optimization.

Analysis of previous.

Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.

violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.

loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Next up: convex optimization.

Analysis of previous.
Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point.
violation of hyperplane for perceptron.
loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Convex optimization

Slides: Thanks to Di Wang.

min
x∈Q

f (x)

f (x)− f (y)≤ ⟨∇f (x),x −y⟩

Q: feasible space, convex.

(x , f (x))

f (x)+ ⟨∇f (x),y −x⟩

Convex optimization

Slides: Thanks to Di Wang.

min
x∈Q

f (x)

f (x)− f (y)≤ ⟨∇f (x),x −y⟩

Q: feasible space, convex.

First-order Iterative Methods

▶ Query x ∈ Q, update using ∇f (x)

▶ Low per-iteration cost, poly(1
ε
) convergence.

▶ Methods of choice in large-scale regime.

Gradient Descent

▶ Moves in down-hill direction.

▶ Improve objective function
value each iteration.

▶ Output final point.

Gradient Descent
L-Lipschitz continuous

∥∇f (x)−∇f (y)∥∗ ≤ L∥x −y∥ ∀x ,y ∈ Q

▶ Global linear lower bound and quadratic upper bound:

∀y f (x)+ ⟨∇f (x),y −x⟩≤ f (y)≤ f (x)+ ⟨∇f (x),y −x⟩+ L
2
∥y −x∥2

▶ Minimize using quadratic bound

xk+1 = Grad(xk) = argmin
x∈Q

{⟨∇f (xk),x −xk ⟩+
L
2
∥x −xk∥2}

If Q = Rn and ℓ2-norm, xk+1 = xk − 1
L ∇f (xk).

▶ Primal progress: Av. ∇f (x ′)≥ ∇f (x)
2 for x ′ = αxk +(1−α)xk+1

f (xk)− f (xk+1)≥
1

2L
∥∇f (xk)∥2

∗

Gradient Descent
L-Lipschitz continuous

∥∇f (x)−∇f (y)∥∗ ≤ L∥x −y∥ ∀x ,y ∈ Q

▶ Global linear lower bound and quadratic upper bound:

∀y f (x)+ ⟨∇f (x),y −x⟩≤ f (y)≤ f (x)+ ⟨∇f (x),y −x⟩+ L
2
∥y −x∥2

f (y)
xkxk+1

▶ Minimize using quadratic bound

xk+1 = Grad(xk) = argmin
x∈Q

{⟨∇f (xk),x −xk ⟩+
L
2
∥x −xk∥2}

If Q = Rn and ℓ2-norm, xk+1 = xk − 1
L ∇f (xk).

▶ Primal progress: Av. ∇f (x ′)≥ ∇f (x)
2 for x ′ = αxk +(1−α)xk+1

f (xk)− f (xk+1)≥
1

2L
∥∇f (xk)∥2

∗

Gradient Descent
L-Lipschitz continuous

∥∇f (x)−∇f (y)∥∗ ≤ L∥x −y∥ ∀x ,y ∈ Q

▶ Global linear lower bound and quadratic upper bound:

∀y f (x)+ ⟨∇f (x),y −x⟩≤ f (y)≤ f (x)+ ⟨∇f (x),y −x⟩+ L
2
∥y −x∥2

▶ Minimize using quadratic bound

xk+1 = Grad(xk) = argmin
x∈Q

{⟨∇f (xk),x −xk ⟩+
L
2
∥x −xk∥2}

If Q = Rn and ℓ2-norm, xk+1 = xk − 1
L ∇f (xk).

▶ Primal progress: Av. ∇f (x ′)≥ ∇f (x)
2 for x ′ = αxk +(1−α)xk+1

f (xk)− f (xk+1)≥
1

2L
∥∇f (xk)∥2

∗

Gradient Descent
L-Lipschitz continuous

∥∇f (x)−∇f (y)∥∗ ≤ L∥x −y∥ ∀x ,y ∈ Q

▶ Global linear lower bound and quadratic upper bound:

∀y f (x)+ ⟨∇f (x),y −x⟩≤ f (y)≤ f (x)+ ⟨∇f (x),y −x⟩+ L
2
∥y −x∥2

▶ Minimize using quadratic bound

xk+1 = Grad(xk) = argmin
x∈Q

{⟨∇f (xk),x −xk ⟩+
L
2
∥x −xk∥2}

If Q = Rn and ℓ2-norm, xk+1 = xk − 1
L ∇f (xk).

▶ Primal progress: Av. ∇f (x ′)≥ ∇f (x)
2 for x ′ = αxk +(1−α)xk+1

f (xk)− f (xk+1)≥
1

2L
∥∇f (xk)∥2

∗

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x).

=⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:

x+ = x − 1
L ∇f (x) f (x)− f (x+)≥ 1

2L∥∇f (x)∥2
∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x)

f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR.

Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)

= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R

=⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: one dimensional intuition.

Convexity:
f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

Also: f (x)− f (x∗)≤ ∇f (x)T (x −x∗)= gR

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

In one dimension: ∇f (x) = g.

Gap: gR. Progress/step: Roughly g2/2.

Idea: Gap/(progress/step) =⇒ roughly 2LR/g steps.

Convexity: g ≥ (f (x)− f (x∗))/R =⇒ 2LR2/(f (x)− f (x∗)) steps.

While gap f (x)− f (x∗)≥ ε we have g ≥ ε/R.

=⇒ O(LR2/ε) steps reduce gap by 1/2.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x).

=⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:

x+ = x − 1
L ∇f (x) f (x)− f (x+)≥ 1

2L∥∇f (x)∥2
∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x)

f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −

∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −

∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent: convergence in ℓ2
Convexity:

f (x∗)≥ f (x)+∇f (x)T (x∗−x). =⇒ f (x)≤ f (x∗)+∇f (x)T (x −x∗)

L-Lipschitz, R = ∥x0 −x∗∥:
x+ = x − 1

L ∇f (x) f (x)− f (x+)≥ 1
2L∥∇f (x)∥2

∗

f (x+)≤ f (x∗)+∇f (x)T (x −x∗)− 1
2L∥∇f (x)∥2

2

=⇒ f (x+)− f (x∗)≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2)

≤ L
2 (

2
L ∇f (x)T (x −x∗)− 1

L2 ∥∇f (x)∥2
2−∥x −x∗∥2

2 +∥x −x∗∥2
2) Add 0

≤ L
2 (∥x −x∗∥2

2 −∥(x −x∗)− 1
L ∇f (x)∥2

2)

≤ L
2 (∥x −x∗∥2

2 −∥x+−x∗∥2
2)

∑
T
k f (xk)− f (x∗)≤ ∑

T
k

L
2 (∥xk−1 −x∗∥2

2 −∥xk −x∗∥2
2)

≤ L
2 (∥x0 −x∗∥2

2 −∥xT −x∗∥2
2)≤

L
2∥x0 −x∗∥2

2

f (xk) is decreasing, we have f (xT)≤ 1
T ∑k f (xk).

=⇒ f (xT)− f (x∗)≤ LR2

2T where R = ∥x0 −x∗∥.

Also: T = O(LR2/ε) iterations for f (xT)− f (x∗)≤ ε.

Gradient Descent

Primal progress

f (xk)− f (xk+1)≥
1
2L

∥∇f (x)∥2
∗

Convergence

L-Lipschitz, R =maxx :f (x)≤f (x0) ∥x −x∗∥:

f (xT)− f (x∗)≤ O(
LR2

T
)

To get ε-approximation, need

T = O(
LR2

ε
)

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.

Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x)

Maybe.

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something.
Move to other side.

What is the “hyperplane” here?

∇f (x) Maybe.

	Preliminaries
	Gradient Descent

