Toll/Congestion

Given: G = (V, E). Given $(s_1, t_1) \dots (s_k, t_k)$.

Problem: Route path for each pair and minimize maximum congestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.

Can encode in polysized linear program, but large.

Congestion minimization and Experts.

Will use gain and $[0, \rho]$ version of experts:

$$G \ge (1-\varepsilon)G^* - \frac{\rho \log n}{\varepsilon}.$$

Let
$$T = \frac{k \log n}{\varepsilon^2}$$

1. Row player runs multiplicative weights on edges: $w_i = w_i (1 + \varepsilon)^{g_i/k}$.

2. Column routes all paths along shortest paths.

3. Output the average of all routings: $\frac{1}{\tau} \sum_{t} f(t)$.

Claim: The congestion, c_{max} is at most $C^* + 2k\varepsilon$.

Proof

$$G \ge G^*(1-\varepsilon) - \frac{k \log n}{\varepsilon^T} \to G^* - G \le \varepsilon G^* + \frac{k \log n}{\varepsilon}$$

 $G^* = T * c_{max}$ – Best row payoff against average routing (times T).

 $G \le T \times C^*$ – each day, gain is avg. congestion \le opt congestion.

$$\begin{array}{c} \textit{T} = \frac{k\log n}{\varepsilon^2} \rightarrow \textit{Tc}^*_{\text{max}} - \textit{TC} \leq \varepsilon \, \textit{TC}^* + \frac{k\log n}{\varepsilon} & \rightarrow \\ \textit{c}_{\textit{max}} - \overset{\bullet}{C}^* \leq \varepsilon \, \textit{C}^* + \varepsilon & \end{array}$$

Toll/Congestion

Given: G = (V, E). Given $(s_1, t_1) \dots (s_k, t_k)$.

Row: choose routing of all paths. (Exponential)

Column: choose edge.

Row pays if column chooses edge on any path.

Matrix:

row for each routing: *r* column for each edge: *e*

A[r,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls. Route: minimize max congestion on any edge.

Better setup.

Runtime: $O(km \log n)$ to route in each step (using Dijkstra's)

$$O(\frac{\kappa \log n}{\epsilon^2})$$
 steps to get $c_{\max} - C^* < \epsilon C^*$ (assuming $C^* > 1$) approximation.

To get constant c error.

 $\rightarrow O(k^2 m \log n/\epsilon^2)$ to get a constant approximation.

Exercise: $O(km \log n/\epsilon^2)$ algorithm!!!

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won't be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r.

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Fractional versus Integer.

Did we (approximately) solve path routing? Yes? No?

No! Average of *T* routings.

We approximately solved fractional routing problem.

No solution to the path routing problem that is $(1 + \varepsilon)$ optimal!

Decent solution to path routing problem?

For each s_i , t_i , choose path p_i at random from "daily" paths.

Congestion c(e) edge has expected congestion, $\tilde{c}(e)$, of c(e).

"Concentration" (law of large numbers) c(e) is relatively large $(\Omega(\log n))$

 $\rightarrow \tilde{c}(e) \approx c(e)$.

Concentration results? later.

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

Looks hard

1/2 of them? Easy. Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify $\geq \frac{1}{2} + \varepsilon$ points correctly.

Not really important but ...

Boosting/MW Framework

Points lose when classified correctly.

The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do
$$T = \frac{2}{c^2} \ln \frac{1}{u}$$
 rounds

- 1. Find $h_t(\cdot)$ correct on $1/2 + \gamma$ of weighted points.
- 2. Multiply each point that is correct by (1ε) .

Output hypotheses h(x): majority of $h_1(x), h_2(x), \dots, h_T(x)$.

Claim: h(x) is correct on $1 - \mu$ of the points!!!

Cool!

Really? Proof?

Weak Learner/Strong Learner

Input: *n* labelled points.

Weak Learner:

produce hypothesis correctly classifies $\frac{1}{2} + \varepsilon$ fraction

Strong Learner:

produce hyp. correctly classifies $1 + \mu$ fraction

That's a really strong learner!

Strong Learner:

produce hypothesis correctly classifies $1 - \mu$ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Logarithm

$$ln(1-x) = (-x-x^2/2-x^3/3....)$$
 Taylors formula for $|x| < 1$.

Implies: for
$$x \le 1/2$$
, that $-x - x^2 \le \ln(1-x) \le -x$.

The first inequality is from geometric series.

$$x^3/3 + ... = x^2(x/3 + x^2/4 + ..) \le x^2(1/2)$$
 for $|x| < 1/2$.

The second is from truncation.

Second implies: $(1 - \varepsilon)^x \le e^{-\varepsilon x}$, by exponentiation.

Poll.

Given a weak learning method (produce ok hypotheses.) produce a great hypothesis.

Can we do this?

- (A) Yes
- (B) No

If yes. How?

The idea: Multiplicative Weights.

Standard online optimization method reinvented in many areas.

Adaboost proof.

Claim: h(x) is correct on $1 - \mu$ of the points!

Let S_{bad} be the set of points where h(x) is incorrect.

majority of $h_t(x)$ are wrong for $x \in S_{bad}$.

point $x \in S_{bad}$ is winning – loses less than $\frac{1}{2}$ the time.

$$W(T) \geq (1-\varepsilon)^{\frac{T}{2}}|S_{bad}|$$

Each day *t*, weak learner penalizes $\geq \frac{1}{2} + \gamma$ of the weight.

Loss $L_t \geq (1/2 + \gamma)$

$$\rightarrow W(t+1) \leq W(t)(1-\varepsilon(L_t)) \leq W(t)e^{-\varepsilon L_t}$$

$$\rightarrow W(T) < ne^{-\varepsilon \sum_t L_t} < ne^{-\varepsilon (\frac{1}{2} + \gamma)T}$$

Combining

$$|S_{bad}|(1-\varepsilon)^{T/2} \leq W(T) \leq ne^{-\varepsilon(\frac{1}{2}+\gamma)T}$$

Calculation...

$$\begin{split} &|S_{bad}|(1-\varepsilon)^{T/2} \leq ne^{-\varepsilon(\frac{1}{2}+\gamma)T} \\ &\text{Set } \varepsilon = \gamma, \text{ take logs.} \\ &\ln\left(\frac{|S_{bad}|}{n}\right) + \frac{\tau}{2}\ln(1-\gamma) \leq -\gamma T(\frac{1}{2}+\gamma) \\ &\text{Again, } -\gamma - \gamma^2 \leq \ln(1-\gamma), \\ &\ln\left(\frac{|S_{bad}|}{n}\right) + \frac{\tau}{2}(-\gamma - \gamma^2) \leq -\gamma T(\frac{1}{2}+\gamma) \to \ln\left(\frac{|S_{bad}|}{n}\right) \leq -\frac{\gamma^2 T}{2} \\ &\text{And } T = \frac{2}{\gamma^2}\log\mu, \\ &\to \ln\left(\frac{|S_{bad}|}{n}\right) \leq \log\mu \to \frac{|S_{bad}|}{n} \leq \mu. \end{split}$$

The misclassified set is at most μ fraction of all the points.

The hypothesis correctly classifies $1 - \mu$ of the points!

Claim: Multiplicative weights: h(x) is correct on $1 - \mu$ of the points!

A step closer.

Another Algorithm.

Finding a feasible point: x^* for constraints. If $x^{(t)}$ point violates constraint by $> \varepsilon$ move toward constraint. Closer.

The Math:

Wrong side, angle to correct point is less than 90°

This is the idea in perceptron. But can do analysis directly.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning. Blending learning methods.

Multiplicative weights and a step closer.

The solution is a distribution: p^* .

Every day each strategy loses (or not), $\ell_i^{(t)}$. Assumption: Solution doesn't lose (much).

MW: keeps a distribution.

Closer?

Distance (divergence) from q to $p \sum_i p_i^* \log(p_i^*/q_i)$. Step in MW gets closer to p^* with this distance. Idea: p^* loses less,

so new distribution plays losers less. Move toward playing losers less.

Thus closer to p^* .

The math:

linear (and quadratic) approximation of e^x .

Advantage's

Distributions have entropy at most $O(\log n)$.

Theme:Good on average, hyperplane.

```
"Duality"
```

 $\min cx$, Ax > b, x > 0.

Linear combination of constraints: $y^T Ax \ge y^T c$ Find a solution for just one constraint!!!

Best response.

Multiplicative weights: two person games (linear programs)

y is exponential weights on "how unsatisfied" each equation is.

 $y_i \propto \sum_t (1 + \varepsilon)^{(a_i x^{(t)} - b_i)}$

y "wins" ≡ unsatisfiable linear combo of constraints.

Otherwise, x eventually "wins".

Or pair that are pretty close.

(Apologies: switched x and y in game setup.)

"Separating" Hyperplane?

 y^T "separates" affine subspace Ax from $\geq y^T c$.

Or doesn't and x responds.

The math: $e = \lim_{n \to \infty} (1 + 1/n)^n$.

Reinforcement learning == Bandits.

Multiplicative Weights framework:

Update all experts.

Bandits.

Only update expert you choose.

No information about others.

(Named after one-armed bandit slot machine.)

Idea: "Learn" which expert is best.

Prof. Dragan's mantra: formulation as optimization.

Exploration: choose new bandit to get "data".

Exploitation: choose best bandit.

Strategy:

Multiplicative weights.

Update by $(1+\varepsilon)$.

Big ε .

Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

Next up: convex optimization.

Analysis of previous. Get closer to a feasible point.

Idea: infeasible gives direction to step toward a feasible point. violation of hyperplane for perceptron. loss function for multiplicative weights.

Next: Get closer to an optimal point for function.

Gradient Descent

L-Lipschitz continuous

$$\|\nabla f(x) - \nabla f(y)\|_* \le L\|x - y\| \quad \forall x, y \in Q$$

▶ Global linear lower bound and quadratic upper bound:

$$\forall y \quad f(x) + \langle \nabla f(x), y - x \rangle \le f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$$

Minimize using quadratic bound

$$x_{k+1} = \operatorname{Grad}(x_k) = \underset{x \in \mathcal{Q}}{\operatorname{argmin}} \{ \langle \nabla f(x_k), x - x_k \rangle + \frac{L}{2} \|x - x_k\|^2 \}$$

Convex optimization

Slides: Thanks to Di Wang.

$$\min_{x \in Q} f(x)$$

$$f(x) - f(y) \le \langle \nabla f(x), x - y \rangle$$

$$Q: \text{ feasible space, convex.}$$

First-order Iterative Methods

- ▶ Query $x \in Q$, update using $\nabla f(x)$
- ▶ Low per-iteration cost, poly(½) convergence.
- Methods of choice in large-scale regime.

Gradient Descent: one dimensional intuition.

Convexity:

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x). \implies f(x) \le f(x^*) + \nabla f(x)^T (x - x^*)$$

Also:
$$f(x) - f(x^*) < \nabla f(x)^T (x - x^*) = qR$$

L-Lipschitz,
$$R = ||x_0 - x^*||$$
:

$$x^{+} = x - \frac{1}{L} \nabla f(x)$$
 $f(x) - f(x^{+}) \ge \frac{1}{2L} ||\nabla f(x)||_{*}^{2}$

In one dimension: $\nabla f(x) = g$.

Gap: gR. Progress/step: Roughly $g^2/2$.

Idea: Gap/(progress/step) \implies roughly 2LR/q steps.

Convexity: $g \ge (f(x) - f(x^*))/R \implies 2LR^2/(f(x) - f(x^*))$ steps.

While gap $f(x) - f(x^*) \ge \varepsilon$ we have $g \ge \varepsilon/R$.

 $\implies O(LR^2/\varepsilon)$ steps reduce gap by 1/2.

Gradient Descent

- Moves in down-hill direction.
- ► Improve objective function value each iteration.
- Output final point.

Gradient Descent: convergence in ℓ_2

Convexity:

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x)$$
. $\Longrightarrow f(x) \le f(x^*) + \nabla f(x)^T (x - x^*)$

L-Lipschitz,
$$R = ||x_0 - x^*||$$
:
 $x^+ = x - \frac{1}{L} \nabla f(x)$ $f(x) - f(x^+) \ge \frac{1}{2L} ||\nabla f(x)||_*^2$

$$f(x^+) \le f(x^*) + \nabla f(x)^T (x - x^*) - \frac{1}{2L} \|\nabla f(x)\|_2^2$$

$$\implies f(x^+) - f(x^*) \le \frac{L}{2} (\frac{2}{L} \nabla f(x)^T (x - x^*) - \frac{1}{L^2} \|\nabla f(x)\|_2^2)$$

$$\leq \frac{L}{2} (\frac{2}{L} \nabla f(x)^T (x - x^*) - \frac{1}{L^2} ||\nabla f(x)||_2^2 - ||x - x^*||_2^2 + ||x - x^*||_2^2) \text{ Add } 0$$

$$\leq \frac{L}{2}(\|x - x^*\|_2^2 - \|(x - x^*) - \frac{1}{L}\nabla f(x)\|_2^2)$$

$$\leq \frac{L}{2}(\|x - x^*\|_2^2 - \|x^+ - x^*\|_2^2)$$

$$\leq \frac{L}{2}(\|\mathbf{x} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^+ - \mathbf{x}^*\|_2^2)$$

$$\sum_{k}^{T} f(x_{k}) - f(x^{*}) \le \sum_{k}^{T} \frac{L}{2} (\|x_{k-1} - x^{*}\|_{2}^{2} - \|x_{k} - x^{*}\|_{2}^{2})$$

$$\le \frac{L}{2} (\|x_{0} - x^{*}\|_{2}^{2} - \|x_{T} - x^{*}\|_{2}^{2}) \le \frac{L}{2} \|x_{0} - x^{*}\|_{2}^{2}$$

$$f(x_k)$$
 is decreasing, we have $f(x_T) \le \frac{1}{T} \sum_k f(x_k)$.

$$\implies f(x_T) - f(x^*) \le \frac{LR^2}{2T}$$
 where $R = ||x_0 - x^*||$.

Also:
$$T = O(LR^2/\varepsilon)$$
 iterations for $f(x_T) - f(x^*) \le \varepsilon$.

Gradient Descent

Primal progress

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{2L} \|\nabla f(x)\|_*^2$$

Convergence

 $\textit{L-Lipschitz}, \ \textit{R} = \max_{\textit{x}:\textit{f(x)} \leq \textit{f(x_0)}} \|\textit{x} - \textit{x}^*\| \text{:}$

$$f(x_T) - f(x^*) \le O(\frac{LR^2}{T})$$

To get ε -approximation, need

$$T = O(\frac{LR^2}{\varepsilon})$$

Relationship?

What is relationship to move closer to feasible?

If wrong side of hyperplane by at least something. Move to other side.

What is the "hyperplane" here?

 $\nabla f(x)$ Maybe.