Strategic Games.

N players. Each player has strategy set. {*S*¹,...,*S^N* }. Vector valued payoff function: *^u*(*^s*1,...,*sn*) (e.g., [∈] ^ℜ*^N*). Example:2 players Player 1: { **^D**efect, **^C**ooperate }. Player 2: { **^D**efect, **^C**ooperate }. Payoff:**CC** $\begin{bmatrix} \mathbf{C} \\ (3,3) \\ (5,0) \end{bmatrix} \begin{bmatrix} \mathbf{D} \\ (0,5) \\ (1,1) \end{bmatrix}$ **D** $(5,0)$ $(1,1)$ Two Person Zero Sum Games2 players.

Each player has strategy set:*m* strategies for player 1 *ⁿ* strategies for player 2

Payoff function: *^u*(*i*,*j*) = (−*a*,*^a*) (or just *^a*). "Player 1 pays *^a* to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by *^m*Payoffs by *m* by *n* matrix: *A*.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.

Any Nash Equilibrium?

Famous because?

C $(3,3)$ $(0,5)$ **CC** $\begin{array}{|c} (3,3) & (0,5) \\ \hline \textbf{D} & (5,0) & (.1.1) \\ \textit{that is the best the} \end{array}$ What is the best thing for the players to do?Both cooperate. Payoff (3,3). If player 1 wants to do better, what do they do?Defects! Payoff (5,0) What does player 2 do now?Defects! Payoff (.1,.1). Stable now!Nash Equilibrium: neither player has incentive to change strategy.

Mixed Strategies.

 Player 1: play each strategy with equal probability.Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Digression..

What situations?

 Prisoner's dilemma: Two prisoners separated by jailors and asked to betray partner.Basis of the free market. Companies compete, don't cooperate.No Monopoly: E.G., OPEC, Airlines, .Should defect. Why don't they? Free market economics ...not so much? More sophisticated models ,e.g, iterated dominance, coalitions, complexity.. Lots of interesting Game Theory!This class(today): simpler version.Payoffs: Equilibrium. R P S .33 .³³ .³³ $R \mid .3\overline{3} \mid 0$ $\begin{array}{c|c|c|c|c|c|c} \n\text{R} & 33 & 0 & 1 & -1 \\ \n\text{P} & 33 & -1 & 0 & 1 \\ \n\text{S} & 33 & 1 & -1 & 0 \n\end{array}$ Payoffs? Can't just look it up in matrix!. Average Payoff. Expected Payoff. Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$
Bandom variable *X* (pavoff) Random variable *^X* (payoff). $E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].$ Each player chooses independently: $Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$. $E[X] = 0.1$

¹Remember zero sum games have one payoff.

Another example plus notation.

Rock, Paper, Scissors, prEempt. PreEmpt ties preEmpt, beats everything else.Pavoffs. R P S ER | 0 | 1 | -1 | 1
P | -1 | 0 | 1 | 1 \overline{R} \overline{P} $\begin{array}{|c|c|c|c|c|c|c|c|} \hline -1 & 0 & 1 & 1 \\ \hline 1 & -1 & 0 & 1 \end{array}$ \overline{S} -1 -1 -1 0 EE | -1 | -1 | -1 | 0 |
Equilibrium? **(E,E)**. Pure strategy equilibrium.
Netation: Perk in 4. Press is 8. Sciences in 8. Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.Payoff Matrix. $A =$ $\sqrt{\frac{1}{2}}$ 0 1 −1 1

−1 0 1 1

1 −1 0 1

−1 −1 −1 0 1 $\overline{}$ $\overline{}$

Two person zero sum games.

m [×]*ⁿ* payoff matrix *^A*.

Row mixed strategy: $x = (x_1, \ldots, x_m)$. Column mixed strategy: $y = (y_1, \ldots, y_n)$. Payoff for strategy pair (*^x*,*y*):

 $p(x, y) = x^t A y$

That is,

$$
\sum_i x_i \left(\sum_j a_{i,j} y_j \right) = \sum_j \left(\sum_i x_i a_{i,j} \right) y_j.
$$

Recall row minimizes, column maximizes.Equilibrium pair: (*^x*∗ ,*y*∗)?

$$
(x^*)^t A y^* = \max_{y} (x^*)^t A y = \min_{x} x^t A y^*.
$$

(No better column strategy, no better row strategy.)

```
Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)A =\sqrt{\frac{1}{2}}0 1 −1<br>
-1 0 1<br>
1 -1 0<br>
0 0 -1
                                                                1
                                                                \Bigg\}\overline{\phantom{a}}Note: column knows row cheats.Why play?
Row is column's advisor.... boss.Equilibrium.Equilibrium pair: (x∗,y∗)?p(x, y) = (x^*)^t A y^* = \max_{y} (x^*)^t A y = \min_{x} x^t A y^*.(No better column strategy, no better row strategy.)No row is better:\min_i A^{(i)} \cdot y = (x^*)^t A y^*.<sup>2</sup>

No column is better:max_j(A^t)^{(j)} \cdot x = (x^*)^t A y^*.^{2}A^{(i)} is ith row.
```
Playing the boss...

Approximate Equilibrium!

Experts: *^x^t* is strategy on day *^t*, *^y^t* is best column against *^x^t* .

Let $y^* = \frac{1}{T} \sum_t y_t$ and $x^* = \text{argmin}_{x_t} x_t A y_t$.

Claim: (*^x*∗,*y*∗) are 2ε-optimal for matrix *^A*.

Column payoff: $C(x^*) = \max_y x^*Ay$. Loss on day *t*, $x_t A y_t \ge x^* A y_t^* = C(x^*)$ by the choice of x^* . $\textsf{Loss on day}\;t,\;x_tA\mathcal{Y}_t\geq x^*A\mathcal{Y}_t^*=C(x^*)\;t. \ \text{Thus, algorithm loss,}\;L,\;\mathsf{is}\geq T\times C(x^*).$

Best expert: *^L*∗- best row against all the columns played.

best row against $\sum_t Ay_t$ and $T \times y^* = \sum_t y_t$
→ best row against $T \times Ay^*$ → best row against *T* × *Ay**.
→ *L** ≤ *T* × *R*(*y**). → *L*^{*} ≤ *T* × *R*(*y*^{*}). \rightarrow *L*[∗] ≤ *T* × *R*(*y*[∗]).
Multiplicative Weights: *L* ≤ (1+ε)*L*[∗] + $\frac{\ln n}{\varepsilon}$

 $T \times C(x^*) \leq (1+\varepsilon)T \times R(y^*) + \frac{\ln P}{\varepsilon} \to C(x^*) \leq (1+\varepsilon)R(y^*) + \frac{\ln P}{\varepsilon T}$
 $\to C(x^*) - R(y^*) \lt \varepsilon R(y^*) + \frac{\ln P}{\varepsilon T}$ \rightarrow *C*(*x*^{*}) $-$ *R*(*y*^{*}) \leq *εR*(*y*^{*}) + $\frac{\ln n}{\varepsilon}$ *T*. $T = \frac{\ln n}{\varepsilon^2}$, $R(y^*) \le 1$
 $C(x^*) - R(y)$ \rightarrow *C*(*x*^{*})−*R*(*y*^{*}) ≤ 2ε.

More comments

Complexity? $T = \frac{\ln n}{\varepsilon^2} \to O(nm\frac{\log n}{\varepsilon^2})$. Basically linear!

 Versus Linear Programming: *^O*(*ⁿ*³*m*) Basically quadratic. (Faster linear programming: *^O*(√*n*+ *^m*) linear system solves.) Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.

Only ln*n*/^ε 2 non-zero column variables.

Average 1/*T*, so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

Approximate Equilibrium: slightly different!

Experts: *^x^t* is strategy on day *^t*, *^y^t* is best column against *^x^t* . Let $x^* = \frac{1}{T} \sum_t x_t$ and $y^* = \frac{1}{T} \sum_t y_t$. **Claim:** (*^x*∗,*y*∗) are 2ε-optimal for matrix *^A*. Left as exercise.

Toll/Congestion

Given: *^G* = (*V*,*E*). Given $(s_1,t_1)...(s_k,t_k)$. Problem: Route path for each pair and minimize maximumcongestion.

Congestion is maximum number of paths that use any edge.

Note: Number of paths is exponential.

Can encode in polysized linear program, but large.

Comments

For any ^ε, there exists an ^ε-Approximate Equilibrium. Does an equilibrium exist? Yes.

Something about math here?Limit of a sequence on some closed set..hmmm..

Toll/Congestion

Given: *^G* = (*V*,*E*). Given (*^s*1,*t*1)...(*^s^k* ,*t^k*). Row: choose routing of all paths. (Exponential)Column: choose edge.Row pays if column chooses edge on any path.

Matrix: row for each routing: *^r*column for each edge: *^e*

A[*^r*,*^e*] is congestion on edge *^e* by routing *^r*

Offense: (Best Response.) Router: route along shortest paths.Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls. Route: minimize max congestion on any edge.

Two person game.

Row is router.

An exponential number of rows!Two person game with experts won't be so easy to implement.Version with row and column flipped may work.*A*[*^e*,*^r*] - congestion of edge *^e* on routing *^r*. *m* rows. Exponential number of columns. Multiplicative Weights only maintains *^m* weights. Adversary only needs to provide best column each day.Runtime only dependent on *^m* and *^T* (number of days.)

Fractional versus Integer.

Did we (approximately) solve path routing?Yes? No? No! Average of *^T* routings. We approximately solved fractional routing problem. No solution to the path routing problem that is $(1+\varepsilon)$ optimal! Decent solution to path routing problem? For each *^si*,*ti*, choose path *^pⁱ* at random from "daily" paths. Congestion *^c*(*e*) edge has expected congestion, *^c*˜(*e*), of *^c*(*e*). "Concentration" (law of large numbers)*c*(*e*) is relatively large (Ω(log*n*)) $\rightarrow \tilde{c}(e) \approx c(e).$ neentration rec Concentration results? later.

Congestion minimization and Experts.Will use gain and $[0,\rho]$ version of experts: $G \geq (1 - \varepsilon)G^* - \frac{\rho \log n}{\varepsilon}.$ Let $T = \frac{k \log n}{\varepsilon^2}$ 1. Row player runs multiplicative weights on edges: $w_i = w_i(1+\varepsilon)^{g_i/k}$. 2. Column routes all paths along shortest paths.3. Output the average of all routings: $\frac{1}{T} \sum_t f(t)$. **Claim:** The congestion, c_{max} is at most $C^* + 2k\varepsilon/(1-\varepsilon)$. Proof: $G \geq G^*(1-\varepsilon) - \frac{k \log n}{\varepsilon^T} \to G^* - G \leq \varepsilon G^* + \frac{k \log n}{\varepsilon}$
^{*} \qquad Post row povertisement everage *G*∗ ⁼ *^T* [∗] *^c*max – Best row payoff against average routing (times *^T*). *G* ≤ *T* × *C*^{*} – each day, gain is avg. congestion ≤ opt congestion. $T =$ $\mathcal{F} = \frac{k \log n}{\varepsilon^2} \to \mathcal{F}c_{\max} - \mathcal{F}C^* \leq \varepsilon \mathcal{F}c_{\max} + \frac{k \log n}{\varepsilon} \to c_{\max} - C^* \leq \varepsilon c_{\max} + \varepsilon$

Learning

Learning just a bit.Example: set of labelled points, find hyperplane that separates.+ [−] $+$ −+⁻ || ++Looks hard.1/2 of them? Easy. Arbitrary line. And Scan.Useless. A bit more than 1/2 Correct would be better. Weak Learner: Classify $\geq \frac{1}{2} + \varepsilon$ points correctly. Not really important but ...

Better setup.

 \Box

Runtime: *^O*(*km*log*n*) to route in each step (using Dijkstra's) $O(\frac{k \log n}{\varepsilon^2})$ steps to get $c_{\text{max}} - C^* < \varepsilon C^*$ (assuming $C^* > 1$) approximation. To get constant *^c* \rightarrow 0(k²mlog n/ ε^2) to get a constant approximation. \rightarrow *O*(*k*²*m*log*n*/ε²) to get a constant
Exercise: *O*(*km*log*n*/ε²) algorithm ! ! ! Weak Learner/Strong LearnerInput: *ⁿ* labelled points. Weak Learner:produce hypothesis correctly classifies $\frac{1}{2} + \varepsilon$ fraction Strong Learner:produce hyp. correctly classifies $1+\mu$ fraction That's a really strong learner!Strong Learner:produce hypothesis correctly classifies 1 $- \mu$ fraction Same thing? Can one use weak learning to produce strong learner?Boosting: use a weak learner to produce strong learner.

γ ²*T* 2

Make copies of points to simulate distributions.

Used often in machine learning.Blending learning methods.

And $T = \frac{2}{\gamma^2} \log \mu$,

 \rightarrow ln $\left(\frac{|S_{bad}|}{n}\right) \leq \log \mu \rightarrow \frac{|S_{bad}|}{n} \leq \mu.$

The misclassified set is at most μ fraction of all the points. The hypothesis correctly classifies $1-\mu$ of the points !

Claim: Multiplicative weights: *^h*(*x*) is correct on 1[−] ^µ of the points!

 $W(T) \ge (1 - \varepsilon)^{\frac{T}{2}} |S_{bad}|$

Loss *^L^t* [≥] (1/2+γ)

Combining

Each day *t*, weak learner penalizes $\geq \frac{1}{2} + \gamma$ of the weight.

 $→$ *W*(*t*+1) ≤ *W*(*t*)(1 − ε(*L*_{*t*})) ≤ *W*(*t*)*e*^{−ε*L*}*t*</sub>
W(*x*) = $e^{S}L$ *t*</sub> = $e^{(1+x)T}$ $→ W(T) ≤ ne^{-ε}Σ_t L_t ≤ ne^{-ε(1/2+\gamma)T}$

 $|S_{bad}|(1-\varepsilon)^{T/2} \leq W(T) \leq n e^{-\varepsilon(\frac{1}{2}+\gamma)T}$

Theme:Good on average, hyperplane.

"Duality"

min $cx, Ax \geq b, x \geq 0.$

Linear combination of constraints: $y^T A x \ge y^T c$
Find a solution for just one constraint!!! Find a solution for just one constraint!!!Best response.

Multiplicative weights: two person games (linear programs) *y* is exponential weights on "how unsatisfied" each equation is. *y*_{*i*} \propto \sum *t*(1+ ε)^{(a_{*i*} x ^(*t*)−*b_i*)} $y_i \propto \sum_l (1+\varepsilon)^{(a_i \times 11-b_l)}$
y "wins" ≡ unsatisfiable linear combo of constraints.
Otherwise x eventually "wins" Otherwise, *^x* eventually "wins".

Or pair that are pretty close.

(Apologies: switched *^x* and *^y* in game setup.)

"Separating" Hyperplane?

 y^T "separates" affine subspace *Ax* from $\ge y^T c$.

The math: $e = \lim_{n \to \infty} (1 + 1/n)^n$.

Reinforcement learning == Bandits.

Multiplicative Weights framework:Update all experts.

Bandits.

 Only update experts you choose.No information about others.(Named after one-armed bandit slot machine.)

Idea: "Learn" which expert is best.Prof. Dragan's mantra: formulation as optimization.

Exploration: choose new bandit to get "data".Exploitation: choose best bandit.

Strategy: Multiplicative weights.Update by $(1+\varepsilon)$.

Big ^ε. Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

A step closer.

Another Algorithm.

Finding a feasible point: *^x*∗for constraints.If $x^{(t)}$ point violates constraint by $> \varepsilon$
move toward constraint move toward constraint.**Closer**

The Math:Wrong side, angle to correct point is less than 90° This is the idea in perceptron. But can do analysis directly. Multiplicative weights and a step closer.

The solution is a distribution: *p*∗.

Every day each strategy loses (or not), $\ell^{\left(\prime}_i t)$. Assumption: Solution doesn't lose (much).

MW: keeps a distribution.

Closer?

 Distance is [∑]*ⁱ* log(*p*∗ *i* /*qi*). Step in MW gets closer to *p*[∗] with this distance.
Idea: n* lasse lass Idea: *p*∗loses less, so new distribution plays losers less.Move toward playing losers less.Thus closer to *^p* ∗.

The math: linear (and quadratic) approximation of *^ex*.Advantage? Distributions have entropy at most *^O*(log*n*).