# Strategic Games.

# $\label{eq:states} \begin{array}{l} \textit{N} \text{ players.} \\ \textit{Each player has strategy set. } \{\textit{S}_1, \ldots, \textit{S}_N\}. \\ \textit{Vector valued payoff function: } \textit{u}(\textit{s}_1, \ldots, \textit{s}_n) (\textit{e.g.}, \in \Re^N). \\ \textit{Example:} \\ \textit{2} \text{ players} \\ \textit{Player 1: } \{\textit{ Defect, Cooperate } \}. \\ \textit{Player 2: } \{\textit{ Defect, Cooperate } \}. \\ \textit{Payoff:} \\ \hline \begin{array}{c|c} & \textit{C} & \textit{D} \\ (3,3) & (0,5) \\ \textit{D} & (5,0) & (1,1) \end{array} \end{array} \right.$

# Two Person Zero Sum Games

## 2 players.

Each player has strategy set: *m* strategies for player 1 *n* strategies for player 2 Payoff function: u(i,j) = (-a,a) (or just *a*).

"Player 1 pays *a* to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by *m* by *n* matrix: *A*. Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.



Any Nash Equilibrium?



## Famous because?

CD $\mathbf{D}$ (3,3)(0,5)(0,5) $\mathbf{D}$ (5,0)(1,1)What is the best thing for the players to do?Both cooperate. Payoff (3,3).If player 1 wants to do better, what do they do?Defects! Payoff (5,0)What does player 2 do now?Defects! Payoff (.1,.1).Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

# Mixed Strategies.

|                  |     | R   | Р   | S   |  |  |
|------------------|-----|-----|-----|-----|--|--|
|                  |     | .33 | .33 | .33 |  |  |
| R                | .33 | 0   | 1   | -1  |  |  |
| Ρ                | .33 | -1  | 0   | 1   |  |  |
| S                | .33 | 1   | -1  | 0   |  |  |
| How do you play? |     |     |     |     |  |  |

Player 1: play each strategy with equal probability. Player 2: play each strategy with equal probability.

## Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

# Digression..

## What situations?

| Prisoner's dilemma:<br>Two prisoners separated by jailors and asked to betray partner.                                                                                                                                                                                                                     |     |     |     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|--|--|--|--|
| Basis of the free market.<br>Companies compete, don't cooperate.<br>No Monopoly:<br>E.G., OPEC, Airlines, .<br>Should defect.<br>Why don't they?<br>Free market economicsnot so much?<br>More sophisticated models ,e.g, iterated dominance, coalitions,<br>complexity<br>Lots of interesting Game Theory! |     |     |     |  |  |  |  |
| This class(today): simpler version.                                                                                                                                                                                                                                                                        |     |     |     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |     |     |     |  |  |  |  |
| Payoffs: Equilibrium.                                                                                                                                                                                                                                                                                      |     |     |     |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                          | R   | Р   | S   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            | .33 | .33 | .33 |  |  |  |  |
| R .33                                                                                                                                                                                                                                                                                                      | 0   | 1   | -1  |  |  |  |  |

Payoffs? Can't just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space:  $\Omega = \{(i,j) : i, j \in [1,..,3]\}$ Random variable *X* (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].$$

Each player chooses independently:  $Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}.$ 

$$E[X] = 0.^{1}$$

<sup>1</sup>Remember zero sum games have one payoff.



## Another example plus notation.

## Two person zero sum games.

 $m \times n$  payoff matrix A.

Row mixed strategy:  $x = (x_1, ..., x_m)$ . Column mixed strategy:  $y = (y_1, ..., y_n)$ . Payoff for strategy pair (x, y):

 $p(x,y) = x^t A y$ 

That is,

$$\sum_{i} x_i \left( \sum_{j} a_{i,j} y_j \right) = \sum_{j} \left( \sum_{i} x_i a_{i,j} \right) y_j.$$

Recall row minimizes, column maximizes. Equilibrium pair:  $(x^*, y^*)$ ?

$$(x^*)^t A y^* = \max_{y} (x^*)^t A y = \min_{x} x^t A y^*.$$

(No better column strategy, no better row strategy.)

Row has extra strategy:Cheat. Ties with Rock, Paper, beats scissors. Payoff matrix: Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)  $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ Note: column knows row cheats. Why play? Row is column's advisor. ... boss. Equilibrium. Equilibrium pair:  $(x^*, y^*)$ ?  $p(x,y) = (x^*)^t A y^* = \max_{y} (x^*)^t A y = \min_{y} x^t A y^*.$ (No better column strategy, no better row strategy.) No row is better:  $\min_i A^{(i)} \cdot y = (x^*)^t A y^*$ .<sup>2</sup> No column is better:  $\max_i (A^t)^{(j)} \cdot x = (x^*)^t A y^*.$  ${}^{2}A^{(i)}$  is *i*th row.

Playing the boss...

## Best Response

**Column goes first:** Find *y*, where best row is not too low..

 $R = \max_{y} \min_{x} (x^{t}Ay).$ 

Note: x can be  $(0, 0, \dots, 1, \dots, 0)$ . Example: Roshambo. Value of R?

**Row goes first:** Find *x*, where best column is not high.

 $C = \min_{x} \max_{y} (x^{t} A y).$ 

Agin: y of form  $(0, 0, \dots, 1, \dots, 0)$ . Example: Roshambo. Value of C?

# Aproximate equilibrium ...

$$\begin{split} & C(x) = \max_y x^t Ay \\ & R(y) = \min_x x^t Ay \\ & \text{Always: } R(y) \leq C(x) \\ & \text{ For } R(y), \text{ minimizer } x \text{ "goes second", but goes first for } C(x). \\ & \text{Strategy pair: } (x,y) \\ & \text{Equilibrium: } (x,y) \\ & R(y) = C(x) \rightarrow C(x) - R(y) = 0. \\ & \text{Approximate Equilibrium: } C(x) - R(y) \leq \varepsilon. \\ & \text{With } R(y) < C(x) \\ & \rightarrow \text{ "Defense } y \text{ to } x \text{ is within } \varepsilon \text{ of best response"} \\ & \rightarrow \text{ "Defense } x \text{ to } y \text{ is within } \varepsilon \text{ of best response"} \end{split}$$

## Duality.

 $R = \max_{y} \min_{x} (x^{t}Ay).$  $C = \min_{x} \max_{y} (x^{t}Ay).$ 

Weak Duality:  $R \le C$ . Proof: Better to go second. Blindly play go-first strategy. At Equilibrium  $(x^*, y^*)$ , payoff v: row payoffs  $(Ay^*)$  all  $\ge v \implies R \ge v$ . column payoffs  $((x^*)^tA)$  all  $\le v \implies v \ge C$ .  $\implies R \ge C$ Equilibrium  $\implies R = C$ ! Strong Duality: There is an equilibrium point! and R = C! Doesn't matter who plays first!

# Games and experts

Again: find  $(x^*, y^*)$ , such that  $(\max_y x^*Ay) - (\min_x xAy^*) \le \varepsilon$  $C(x^*) - R(y^*) \le \varepsilon$ 

Experts Framework: *n* Experts, *T* days, *L*<sup>\*</sup> -total loss of best expert. Multiplicative Weights Method yields loss *L* where  $L \le (1 + \varepsilon)L^* + \frac{\log n}{\varepsilon}$ 

## Equilibrium existence.

## Linear programs.

Column player: find *y* to maximize row payoffs.  $\max z, Ay \ge z, \sum_i y_i = 1$ Row player: find *x* to minimize column payoffs.  $\min z, A^T x \le z, \sum_i x_j = 1$ . Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

# Games and Experts.

Assume: *A* has payoffs in [0,1]. For  $T = \frac{\log n}{\epsilon^2}$  days: 1) *m* pure row strategies are experts. Use multiplicative weights, produce row distribution.

Let  $x_t$  be distribution (row strategy) on day t.

2) Each day, adversary plays best column response to  $x_t$ . Choose column of A that maximizes row's expected loss.

Let  $y_t$  be indicator vector for "best" response column.

#### Approximate Equilibrium: slightly different! Approximate Equilibrium! Comments Experts: $x_t$ is strategy on day t, $y_t$ is best column against $x_t$ . Let $y^* = \frac{1}{T} \sum_t y_t$ and $x^* = \operatorname{argmin}_{x_t} x_t A y_t$ . **Claim:** $(x^*, y^*)$ are 2 $\varepsilon$ -optimal for matrix A. Column payoff: $C(x^*) = \max_{v} x^* A v$ . Loss on day t, $\dot{x}_t A \dot{y}_t \ge x^* A \dot{y}_{t^*} = C(x^*)$ by the choice of $x^*$ . Experts: $x_t$ is strategy on day t, $y_t$ is best column against $x_t$ . For any $\varepsilon$ , there exists an $\varepsilon$ -Approximate Equilibrium. Thus, algorithm loss, L, is $\geq T \times C(x^*)$ . Does an equilibrium exist? Yes. Let $x^* = \frac{1}{T} \sum_t x_t$ and $y^* = \frac{1}{T} \sum_t y_t$ . Best expert: $L^*$ - best row against all the columns played. Something about math here? **Claim:** $(x^*, y^*)$ are 2 $\varepsilon$ -optimal for matrix A. best row against $\sum_{t} Ay_t$ and $T \times y^* = \sum_{t} y_t$ Limit of a sequence on some closed set..hmmm.. Left as exercise. $\rightarrow$ best row against $T \times Ay^*$ . $\rightarrow L^* \leq T \times \widetilde{R(y^*)}$ Multiplicative Weights: $L \leq (1 + \varepsilon)L^* + \frac{\ln n}{\varepsilon}$ $T \times C(x^*) \leq (1+\varepsilon)T \times R(y^*) + \frac{\ln n}{\varepsilon} \to C(x^*) \leq (1+\varepsilon)R(y^*) + \frac{\ln n}{\varepsilon T}$ $\rightarrow C(x^*) - R(y^*) \leq \varepsilon R(y^*) + \frac{\ln n}{\epsilon T}.$ $T = \frac{\ln n}{c^2}, R(y^*) \leq 1$ $\rightarrow C(x^*) - R(y^*) \leq 2\varepsilon.$ Toll/Congestion **Toll/Congestion** More comments Given: G = (V, E). Complexity? Given $(s_1, t_1) \dots (s_k, t_k)$ . $T = \frac{\ln n}{n^2} \rightarrow O(nm \frac{\log n}{n^2})$ . Basically linear! Row: choose routing of all paths. (Exponential) Given: G = (V, E). Column: choose edge. Versus Linear Programming: $O(n^3m)$ Basically guadratic. Given $(s_1, t_1) \dots (s_k, t_k)$ . Row pays if column chooses edge on any path. (Faster linear programming: $O(\sqrt{n+m})$ linear system solves.) Problem: Route path for each pair and minimize maximum Matrix: Still much slower ... and more complicated. congestion. row for each routing: r Dynamics: best response, update weight according to loss, ... column for each edge: e Congestion is maximum number of paths that use any edge. Near integrality. A[r, e] is congestion on edge e by routing r Note: Number of paths is exponential. Only $\ln n/\epsilon^2$ non-zero column variables. Offense: (Best Response.)

Average 1/T, so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

Defense: Toll: maximize shortest path under tolls. Route: minimize max congestion on any edge.

Router: route along shortest paths.

Toll: charge most loaded edge.

Can encode in polysized linear program, but large.

## Two person game.

### Row is router.

An exponential number of rows! Two person game with experts won't be so easy to implement. Version with row and column flipped may work. A[e, r] - congestion of edge e on routing r. m rows. Exponential number of columns. Multiplicative Weights only maintains m weights. Adversary only needs to provide best column each day. Runtime only dependent on m and T (number of days.)

# Fractional versus Integer.

Did we (approximately) solve path routing? Yes? No? No! Average of *T* routings. We approximately solved fractional routing problem. No solution to the path routing problem that is  $(1 + \varepsilon)$  optimal! Decent solution to path routing problem? For each  $s_i, t_i$ , choose path  $p_i$  at random from "daily" paths. Congestion c(e) edge has expected congestion,  $\tilde{c}(e)$ , of c(e). "Concentration" (law of large numbers) c(e) is relatively large ( $\Omega(\log n)$ )  $\rightarrow \tilde{c}(e) \approx c(e)$ . Concentration results? later.

# Congestion minimization and Experts. Will use gain and $[0, \rho]$ version of experts: $G \ge (1 - \varepsilon)G^* - \frac{\rho \log n}{\varepsilon}$ . Let $T = \frac{k \log n}{\varepsilon^2}$ 1. Row player runs multiplicative weights on edges: $w_i = w_i(1 + \varepsilon)^{g_i/k}$ . 2. Column routes all paths along shortest paths. 3. Output the average of all routings: $\frac{1}{T}\sum_t f(t)$ . Claim: The congestion, $c_{max}$ is at most $G^* + 2k\varepsilon/(1 - \varepsilon)$ . Proof: $G \ge G^*(1 - \varepsilon) - \frac{k \log n}{\varepsilon^T} \to G^* - G \le \varepsilon G^* + \frac{k \log n}{\varepsilon}$ $G^* = T * c_{max}$ – Best row payoff against average routing (times *T*). $G \le T \times C^*$ – each day, gain is avg. congestion $\le$ opt congestion. $T = \frac{k \log n}{\varepsilon^2} \to Tc_{max} - TC^* \le \varepsilon Tc_{max} + \frac{k \log n}{\varepsilon} \to c_{max} - C^* \le \varepsilon c_{max} + \varepsilon$

# Learning

# Learning just a bit.

Example: set of labelled points, find hyperplane that separates.



 $\label{eq:linear} \begin{array}{l} 1/2 \text{ of them? Easy.} \\ \text{Arbitrary line. And Scan.} \\ \text{Useless. A bit more than } 1/2 \text{ Correct would be better.} \\ \text{Weak Learner: Classify} \geq \frac{1}{2} + \varepsilon \text{ points correctly.} \\ \text{Not really important but ...} \end{array}$ 

## Better setup.

Runtime:  $O(k m \log n)$  to route in each step (using Dijkstra's)  $O(\frac{k \log n}{c^2})$  steps

to get  $c_{max} - C^* < \varepsilon C^*$  (assuming  $C^* > 1$ ) approximation.

To get constant *c* error.  $\rightarrow O(k^2 m \log n/\epsilon^2)$  to get a constant approximation. Exercise:  $O(km \log n/\epsilon^2)$  algorithm !!!

# Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner: produce hypothesis correctly classifies  $\frac{1}{2} + \varepsilon$  fraction Strong Learner: produce hyp. correctly classifies  $1 + \mu$  fraction That's a really strong learner! Strong Learner: produce hypothesis correctly classifies  $1 - \mu$  fraction Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

| Poll.                                                                                                                                                                                                                                              | Boosting/MW Framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Given a weak learning method (produce ok hypotheses.)<br>produce a great hypothesis.<br>Can we do this?<br>(A) Yes<br>(B) No<br>If yes. How?<br>The idea: Multiplicative Weights.<br>Standard online optimization method reinvented in many areas. | Points lose when classified correctly.<br>The little devils want to fool the learner.<br>Learner classifies weighted majority of points correctly.<br>Strong learner algorithm from many weak learners!<br>Initialize: all points have weight 1.<br>Do $T = \frac{2}{\varepsilon^2} \ln \frac{1}{\mu}$ rounds<br>1. Find $h_t(\cdot)$ correct on $1/2 + \gamma$ of weighted points.<br>2. Multiply each point that is correct by $(1 - \varepsilon)$ .<br>Output hypotheses $h(x)$ : majority of $h_1(x), h_2(x), \dots, h_T(x)$ .<br>Claim: $h(x)$ is correct on $1 - \mu$ of the points !!!<br>Cool!<br>Really? Proof? | $\begin{aligned} & \ln(1-x) = (-x - x^2/2 - x^3/3) & \text{Taylors formula for }  x  < 1. \\ & \text{Implies: for } x \leq 1/2, \text{ that } -x - x^2 \leq \ln(1-x) \leq -x. \\ & \text{The first inequality is from geometric series.} \\ & x^3/3 + = x^2(x/3 + x^2/4 +) \leq x^2(1/2) \text{ for }  x  < 1/2. \\ & \text{The second is from truncation.} \\ & \text{Second implies: } (1 - \varepsilon)^x \leq e^{-\varepsilon x}, \text{ by exponentiation.} \end{aligned}$ |
| Adaboost proof.                                                                                                                                                                                                                                    | Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Some details                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Claim:</b> $h(x)$ is correct on $1 - \mu$ of the points!                                                                                                                                                                                        | $ S_{bad} (1-\varepsilon)^{T/2} \le ne^{-\varepsilon(rac{1}{2}+\gamma)T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Let  $S_{bad}$  be the set of points where h(x) is incorrect. majority of  $h_t(x)$  are wrong for  $x \in S_{bad}$ . point  $x \in S_{bad}$  is winning – loses less than  $\frac{1}{2}$  the time.  $W(T) \ge (1-\varepsilon)^{\frac{T}{2}} |S_{bad}|$ Each day t, weak learner penalizes  $\ge \frac{1}{2} + \gamma$  of the weight. Loss  $L_t \ge (1/2 + \gamma)$   $\rightarrow W(t+1) \le W(t)(1-\varepsilon(L_t)) \le W(t)e^{-\varepsilon L_t}$   $\rightarrow W(T) \le ne^{-\varepsilon \Sigma_t L_t} \le ne^{-\varepsilon(\frac{1}{2}+\gamma)T}$ Combining  $|S_{bad}|(1-\varepsilon)^{T/2} \le W(T) \le ne^{-\varepsilon(\frac{1}{2}+\gamma)T}$  
$$\begin{split} |S_{bad}|(1-\varepsilon)^{T/2} &\leq n e^{-\varepsilon(\frac{1}{2}+\gamma)T} \\ \text{Set } \varepsilon &= \gamma, \text{ take logs.} \\ & \ln\left(\frac{|S_{bad}|}{n}\right) + \frac{\tau}{2}\ln(1-\gamma) \leq -\gamma T(\frac{1}{2}+\gamma) \\ \text{Again, } -\gamma - \gamma^2 &\leq \ln(1-\gamma), \\ & \ln\left(\frac{|S_{bad}|}{n}\right) + \frac{\tau}{2}(-\gamma-\gamma^2) \leq -\gamma T(\frac{1}{2}+\gamma) \rightarrow \ln\left(\frac{|S_{bad}|}{n}\right) \leq -\frac{\gamma^2 T}{2} \\ \text{And } T &= \frac{2}{\gamma^2}\log\mu, \\ & \rightarrow \ln\left(\frac{|S_{bad}|}{n}\right) \leq \log\mu \rightarrow \frac{|S_{bad}|}{n} \leq \mu. \\ \text{The misclassified set is at most } \mu \text{ fraction of all the points.} \\ \text{The hypothesis correctly classifies } 1 - \mu \text{ of the points } ! \\ \text{Claim: Multiplicative weights: } h(x) \text{ is correct on } 1 - \mu \text{ of the points!} \end{split}$$

# Weak learner learns over distributions of points not points. Make copies of points to simulate distributions. Used often in machine learning.

Blending learning methods.

# Theme:Good on average, hyperplane.

"Duality"

 $\min cx, Ax \ge b, x \ge 0.$ 

Linear combination of constraints:  $y^T Ax \ge y^T c$ Find a solution for just one constraint!!! Best response.

Multiplicative weights: two person games (linear programs) *y* is exponential weights on "how unsatisfied" each equation is.  $y_i \propto \sum_t (1 + \varepsilon)^{(a_i x^{(t)} - b_i)}$  *y* "wins"  $\equiv$  unsatisfiable linear combo of constraints. Otherwise, *x* eventually "wins".

Or pair that are pretty close.

(Apologies: switched *x* and *y* in game setup.)

"Separating" Hyperplane?  $y^{T}$  "separates" affine subspace Ax from  $\geq y^{T}c$ .

The math:  $e = \lim_{n \to \infty} (1 + 1/n)^n$ .

# Reinforcement learning == Bandits.

Multiplicative Weights framework: Update all experts.

Bandits.

Only update experts you choose. No information about others. (Named after one-armed bandit slot machine.)

Idea: "Learn" which expert is best. Prof. Dragan's mantra: formulation as optimization.

Exploration: choose new bandit to get "data". Exploitation: choose best bandit.

Strategy: Multiplicative weights. Update by  $(1 + \varepsilon)$ .

Big  $\varepsilon$ . Exploit or explore more? Exploit.

Perceptron also like bandits. One point at a time.

Online optimization: limited information.

## A step closer.

Another Algorithm.

Finding a feasible point:  $x^*$  for constraints. If  $x^{(t)}$  point violates constraint by  $> \varepsilon$ move toward constraint. Closer.

The Math:

Wrong side, angle to correct point is less than  $90^\circ$ 

This is the idea in perceptron. But can do analysis directly.

# Multiplicative weights and a step closer.

## The solution is a distribution: $p^*$ .

Every day each strategy loses (or not),  $\ell_i^{(t)}$ . Assumption: Solution doesn't lose (much).

## MW: keeps a distribution.

Closer?

Distance is  $\sum_i \log(p_i^*/q_i)$ . Step in MW gets closer to  $p^*$  with this distance. Idea:  $p^*$  loses less, so new distribution plays losers less. Move toward playing losers less. Thus closer to  $p^*$ .

The math:

linear (and quadratic) approximation of  $e^x$ . Advantage? Distributions have entropy at most  $O(\log n)$ .