
Today

Other algorithms.

For linear programming.

Online.

Perceptron Guarantees.

Separable set of points.

Perceptron.
Prove a performance bound.

Margin and Perceptron

+

+
+

+

−−

−

−
−

− −

−

−
−

γ

θ

Labelled points with x1, . . . ,xn.

Hyperplane separator.

Margins.

Inside unit ball.
Margin γ
Hyperplane:

w ·x ≥ γ for + points.
w ·x ≤−γ for − points.

Put points on unit ball.
w ·x = cosθ

Will assume positive labels!
negate the negative:

(x ,−1)→ (−x ,1)

Perceptron Algorithm
An aside: a hyperplane is a perceptron.

(single layer neural network, do you see? Linear programming!)

Alg: Given x1, . . . ,xn.

Let w1 = x1.
For each xi where wt ·xi has wrong sign (negative) Mistake

wt+1 = wt +xi
t = t +1

Theorem: Algorithm only makes 1
γ2 mistakes.

Idea: Mistake on positive xi :
wt+1 ·xi = (wt +xi) ·xi = wtxi +1.

A step in the right direction! wt+1 ·xi is bigger.

Claim 1: wt+1 ·w ≥ wt ·w + γ.

A γ in the right direction! wt+1 is more like w .

Mistake on positive xi ;
wt+1 ·w = (wt +xi) ·w = wt ·w +xi ·w

≥ wt ·w + γ.

Proof:continued.

Alg: Given x1, . . . ,xn.

Let w1 = x1.
For each xi where wt ·xi has wrong sign (negative) Mistake

wt+1 = wt +xi
t = t +1

Claim 2: |wt+1|2 ≤ |wt |2 +1

wt

xi
xiwt+1

wt+1 = wt +xi
Less than a right angle!
→ |wt+1|2 ≤ |wt |2 + |xi |2 ≤ |wt |2 +1.

Algebraically.
Positive xi , wt ·xi ≤ 0.
(wt +xi)

2 = |wt |2 +2wt ·xi + |xi |2.
≤ |wt |2 + |xi |2 = |wt |2 +1.

Claim 2 holds even if no separating hyperplane!

Putting it together...

Claim 1: wt+1 ·w ≥ wt ·w + γ. =⇒ wt ·w ≥ tγ

Claim 2: |wt+1|2 ≤ |wt |2 +1. =⇒ |wt |2 ≤ t

M-number of mistakes in algorithm.
Let t = M.

γM ≤ wM ·w
≤ ||wM || ≤

√
M.

→ M ≤ 1
γ2



Finding fat separator.
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There is a γ separating

hyperplane.

We might find the one.

May have bad margin.

Does perceptron find big
margin separator.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane.

Any point within γ/2 is still a mistake.

Let w1 = x1,

For each x2, . . .xn,
if wt ·xi < γ/2, wt+1 = wt +xi , t = t +1

Claim 1: wt+1 ·w ≥ wt ·w + γ.

Same (ish) as before.

Margin Approximation: Claim 2

Claim 2(?): |wt+1|2 ≤ |wt |2 +1??

wt

xi

< γ/2

wt+1

v

Adding xi to wt even if in correct
direction.

Obtuse triangle.

|v |2 ≤ |wt |2 +1
→ |v | ≤ |wt |+ 1

2|wt |
(square right hand side.)

Red bit is at most γ/2.
Together: |wt+1| ≤ |wt |+ 1

2|wt | +
γ
2

If |wt | ≥ 2
γ , then |wt+1| ≤ |wt |+ 3

4 γ.

M updates |wM | ≤ 2
γ +

3
4 γM.

Claim 1: Implies |wM | ≥ γM.

γM ≤ 2
γ +

3
4 γM→ M ≤ 8

γ2

The multiplicative weights framework. Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1
Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!



Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!



Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?
(A) A correct even days, B correct odd days
(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2 ],

−ε− ε2 ≤ ln(1− ε)≤−ε
ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)

= W (t)(1− εLt)

Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε .

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change
strategy.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Two Person Zero Sum Games
2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over
strategies.

Pure strategies: Each player plays single strategy.



Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 × 1
3 = 1

9 .

E [X ] = 0.1

1Remember zero sum games have one payoff.

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =




0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0




Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for
row.)

A =




0 1 −1
−1 0 1
1 −1 0
0 0 −1




Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Equilibrium: play the boss...

A =




0 1 −1
−1 0 1
1 −1 0
0 0 −1




Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2 ). Column: (1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6 )+
1
6 × (−1

6 )+
1
2 × (−1

6 ) =−1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other guy!

Next time: Multiplicative weights and games.


