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Lagrangian Dual and Central Path.
min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition? Take Derivative.
t∇f0(x)−∑i=1

∇fi (x)
fi (x)

= 0

∇f0(x)−∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) = ∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)
Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? Found λ where:
minx L(λ ,x) = f0(x)+∑i=1 λi fi(x) = f0(x)− m

t

Central point x(t) within m
t of optimal primal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)
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Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:

µtf0(x)−∑
m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).

L(λ ,x ′)≤ m
t since minx L(λ ,x)≤ m

t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t

since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



Central Path evolution.
Old point x = x(t) versus x+ = x(µt)?

Minimizing: µtf0(x)−∑
n
i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑

m
i=1 ln(−fi(x))−µtf0(x+)+∑

m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(
fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
L(λ ,x ′)≤ m

t since minx L(λ ,x)≤ m
t

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ

ln(−x) = ln(1− (1+x))≤−(1+x)
≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ

= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ

= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ

≤ µt(m
t )−m−m lnµ

= m(µ −1− lnµ)



...Central Path Evolution
Old point x = x(t) versus x+ = x(µt)?

Minimizing: F (x) = µtf0(x)+∑
n
i=0 ln(−fi(t)).

We proved: F (x)−F (x+)≤ m(µ −1− lnµ).

Choose µ = 1+δ .
ln(1+x)≈ x −x2/2. =⇒ ln(1+δ ) = δ −δ 2/2

F (x)−F (x+) = m(1+δ −1− (δ −δ 2/2)) = m(δ 2/2).

Choose δ = 1√
m or µ = (1+δ ).

F (x)−F (x+) = (δ 2/2)) = 1
2 .

Modifying t by factor of (1+ 1√
m ), optimal still close!

t can be arbitrarily large!

The value of the objective function can be gigantic
and change by an enormous amount.
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An attempt at intuition.

min∑i xi ,x ≥ 0.

optimum is 0.

Central path: Ft(x) = t ∑i xi +∑i lnxi

Optimum: xi =
1
t .

t → µt

New optimum: x+
i = 1

µt .

Notice: the change in x is quite small.
Roughly (µ −1)1

t =
1√
mt where t is large.

Intuitively: new point is very close to old point.
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Slightly more generally.
Only one vertex on polytope.

n inequalities, n unkonwns: mincx ,Ax ≥ b.

Is solution bounded or unbounded?

Alg: Linear equation solve for intersection of n inequalities,
check if there is some direction of improvement.

Evolution of central path.

Optimal x(t): ∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

tc =−∑i
ai

ai x−bi

si = aix −bi . “Distance’ to constraint.
Recall previous example: x ≥ 0, the xi are slack variables.
s = Ax −b.

Given solution to x(t) with b−Ax(t) = s(t).
Then Ax(µt)−b = s(t)/µ works.

Since only n inequalities, can just solve to get next point.
Answer is easy too.
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More generally.
General Ax ≥ b,mincx .

Given solution to x(t) with b−Ax(t) = s(t).
Then b−Ax(µt) = s(t)/µ is optimal: µtc =−∑i

ai
ai x−bi

Overdetermined if more than n inequalities, so maybe not
possible.

So, need to find solution to: µtc =−∑i
ai

ai x−bi

Showed solution is at least close in value to old solution on
F (x).

One thing to note:
if you know the optimal vertex (tight constraints).
then you are done.

Idea: close enough to tight constraints. Done.

Close enough to a vertex, can jump to vertex.

Cramer’s rule, gives estimate of how close the closest two
vertices can be.
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Interior Point Method.

Find central point.

Recall: F (x) = tf0(x)−∑i log(−fi(x)).

Find point: G(x) = ∇F (x) = 0.

Newton: find all zeros of vector valued G(x)!

g1(x) =
t∂ f0(x)

∂x1
−∑i

∂ fi (x)
∂x1

1
fi (x)

Newton:
=⇒ |(xn+1 −α)| ≤ | g′(ψ)

2g′′(xn)
|(xn −α)2.

Recall, distance for x to x+ is pretty small.
On the order of 1/t .

What about the ratio? | g′′(ψ)
2g′(xn)

|
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Behavior of log barrier.

What about the ratio? | g′′(ψ)
2g′(xn)

|

What if f (x) = logx and recall g(x) = f ′(x)?

(logx)′ = 1/x , (logx)′′ =−1/x2, (logx)′′′ = 2/x3.

|(logx)′′′|= 2|(logx)′′|3/2.

Thus, this ratio is around 1/x .

Newton analysis we did: | g′′(ψ)
2g′(xn)

|(x −x+)< 1.

Quadratic convergence: ratio is small.
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Another Type of IPM strategy.

minxc,Ax ≥ b.

F (x) = tcx −∑i log(aix −bi).

∇F (x) = tc−∑i
ai
si

Introduce dual variables: λi .
Approximate Complementary slackness.
λisi =

1
t verse λisi = 0

s = b−Ax

Predictor-Corrector:
(1) decrease F (x)
(2) Fix complementary slackness.

Gives another possibility:
Explicitly maintain primal-dual soluion: (x ,s)
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Gradient descent and Newton.
minimize f (x).

Gradient descent.

x = x −αf ′(x).

Decreases function until gradient changes sign.

If f ′′(y)≤ M for y = x −αf ′(x).

Improve when: f ′(y)> f ′(x)−
∫ y

x f ′′(y)dx > 0.
Also: f ′(y)> f ′(x)−M(y −x)> 0.
When: (y −x)≤ f ′(x)/M.

set α = 1/M.

For linear function: f ′(x)? Optimum? Is infinitely far.

Newton: x = x − f ′(x)
f ′′(x) .

If f ′′(x)≥ m, then f ′(x) = 0. x : (x ′−x)≤ f ′(x)/m.

Estimate of how far is f ′(x)/f ′′(x). Analysis: the estimate
decreases.

...as long as f ′′(x) does not change too much.

Bound on f ′′′(x) relative to f ′′(x).
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