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Find u = argmin,,sd(v).
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from s 10 1, Teep G (€) = 0(S) — 6 (t) + W(p).

Thus: d(s, V) is a price function whose reduced costs make all edge
weights positive.
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Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m+/nlog nC) by Goldberg.
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Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.
Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)
d(v)=0. S={v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w'(e).
If no negative cycle in w'(e).

Reduced costs of w/(e) w.r.t d(-) are positive w.r.t.
Reduce number of negative vertices by one.
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d"(u, v) shortest distance using at most h negative edges.
u and v are h-hop connected: d"(u,v) <0 or d"(v,u) < 0.

True/False: If u and v are not h-hop connected they are not h+ 1

connected.
True/False: If u and v are not h-hop connected they are not h— 1

connected.
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Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.
else w'(u,v) = w(u,v).

update vertices in S, run Dijkstra.
Reduced costs of w/(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.
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Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.
Only negative edges back to first level.
Paths in this graph have only n/r negative arcs in their path!
So n/r iterations of Bellman/Ford is enough!
So n/r x O(r(m+ nlogn)) = O(n(m+ nlog n))!!! Doh!!!!
No improvement.
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This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r) x O((r(n/r+m/rlogn))+(n+ mlogn)) = O(n/r(n+ mlogn)).
n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.
To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r > n, itis win!

Find remote set with big r and big S.
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Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s, ) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).

Lemma: W.h.p. |B"(s,t)| < n/b.

Proof sketch: Consider s, t, sort B”(s, t) vertices by
dh(s,u)+d"(u,t).
W.h.p. vertex is in smallest n/b vertices of B(s, t).
Observe:
Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are
positive.
Thus, the |(B)"(s,t)| < n/b
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Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Any vertex that is not r-between s and t is r-remote from S.
Recall: only n/r in between.

S is r-remote set.
Find large sandwich. That s, |S|r > n.
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Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.
Gs is G where negative weights are zero’d outside of S.

Proof: Consider Gs. Compute d”(S, t) and d"+'(S, 1) for all t.
If change, then exactly h+ 1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.
Case (i): Can be used to make sandwich.
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to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).



Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

h:n1/5



Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

h=n'5 — O(n**m).



Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

h=n'5 — O(n**m).
Oh my.



