Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
Yve V.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
Yve V.

d(s,v) - length of shortest path.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<,d(s) =0.
S=¢.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s,v)
YveV.
d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e = (u.v)) = 8(u) -~ 6(v) + w(e).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e = (u,v)) = 8(u) — o(v) + w(e).
Note: d(v) < d(u) +w(e)

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
cs(e= (u.v)) = 6(u) — o(v) + w(e).
Note: d(v) < d(u) +w(e) = d(u)+w(e)—d(v)>0.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
cs(e= (u.v)) = 6(u) — o(v) + w(e).
Note: d(v) < d(u) +w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
Co(e=(u,v)) =o(u)—o(v)+w(e).
Note: d(v) < d(u) +w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.
Shortest path under ¢, (e) is same as under w(e).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<0,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
Cp(e=(u,v)) = o(u) —o(v) +w(e).
Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.
Shortest path under ¢, (e) is same as under w(e).
Path p = [(1,v),(v.W)], G4 (P) = 0(u) + W(U,¥) —~ 9(v) + (V) + W(v, W) — 6 (w) = w(p) + 9(u) — $(w).
from s 10 1, Teep G (€) = 0(S) — 6 (t) + W(p).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, Vv)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<,d(s) =0.
S=¢.
Find u = argmin,,sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
Cp(e=(u,v)) = o(u) —o(v) +w(e).
Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.
Shortest path under ¢, (e) is same as under w(e).
Path p = [(1,v), (v.W)], G4 (P) = 0(u) + W(U,¥) ~ 9(v) +6(V) + W(v,w) — 6(w) = w(p) + 9(u) — 6(w). p
from s 10 1, Teep G (€) = 0(S) — 6 (t) + W(p).

Thus: d(s, V) is a price function whose reduced costs make all edge
weights positive.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.
Bellman/Djikstra Round: Have d(v).

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.
Bellman/Djikstra Round: Have d(v).

For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).

Forall e= (u,v), w(e) <0, d(v) = min(d(v),d(u)+ w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.

Claim: After k rounds, d(v) < path length with < k negative edges.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).

For all e = (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.

Find u=argmin,gsd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.

O(n) iterations of Bellman/Dijkstra is good.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn))

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn)) or slightly better.
Quadratic time.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e)).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m+/nlog nC) by Goldberg.

Example(Intuition?): fix one negative vertex.

Negative vertex: v.

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.
Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)
d(v)=0. S={v}
Run update (v).
...Djikstra..

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.
Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)
d(v)=0. S={v}
Run update (v).
...Djikstra..

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)

d(v)=0. S={v}

Run update (v).

...Djikstra..

Observe: vertices put in S once.

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)

d(v)=0. S={v}

Run update (v).

...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w'(e).

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)

d(v)=0. S={v}

Run update (v).

...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w'(e).
If no negative cycle in w'(e).

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)

d(v)=0. S={v}

Run update (v).

...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w'(e).
If no negative cycle in w'(e).

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.

Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)

d(v)=0. S={v}

Run update (v).

...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w'(e).
If no negative cycle in w'(e).

Reduced costs of w/(e) w.r.t d(-) are positive w.r.t.

Example(Intuition?): fix one negative vertex.

Negative vertex: v.
Has negative arcs from it.
Setall ve' € E,w(€') <0 set w/(e) =0.
Otherwise set w'(e) = w(e)
d(v)=0. S={v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w'(e).
If no negative cycle in w'(e).

Reduced costs of w/(e) w.r.t d(-) are positive w.r.t.
Reduce number of negative vertices by one.

Hop Distance

d"(u, v) shortest distance using at most h negative edges.

Hop Distance

d"(u, v) shortest distance using at most h negative edges.
u and v are h-hop connected: d"(u,v) <0 or d"(v,u) < 0.

Hop Distance

d"(u, v) shortest distance using at most h negative edges.
u and v are h-hop connected: d"(u,v) <0 or d"(v,u) < 0.

True/False: If u and v are not h-hop connected they are not h+ 1

connected.
True/False: If u and v are not h-hop connected they are not h— 1

connected.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.
else w'(u,v) = w(u,v).

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.
else w'(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.
else w'(u,v) = w(u,v).

update vertices in S, run Dijkstra.
Reduced costs of w/(e) w.r.t. d(v) are non-negative.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.
else w'(u,v) = w(u,v).

update vertices in S, run Dijkstra.
Reduced costs of w/(e) w.r.t. d(v) are non-negative.
For reduced costs of w(e) w.r.t. d(v)?

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.
Idea: Running “Dijsktra” makes them all not-negative.
S is independent if all pairs u,v € S are independent.

Fore=(u,v),u¢g S, set w(u,v)=0if w(u,v) <0.
else w'(u,v) = w(u,v).

update vertices in S, run Dijkstra.
Reduced costs of w/(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.
Make r copies of graph,

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+ nlogn)r) time.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.
Only negative edges back to first level.

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.
Only negative edges back to first level.
Paths in this graph have only n/r negative arcs in their path!

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!
So n/r iterations of Bellman/Ford is enough!

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!
So n/r iterations of Bellman/Ford is enough!
So n/rx O(r(m+ nlogn))

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!
So n/r iterations of Bellman/Ford is enough!
So n/rx O(r(m+ nlogn)) = O(n(m+ nlog n))!!!

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!
So n/r iterations of Bellman/Ford is enough!
So n/r x O(r(m+ nlogn)) = O(n(m+ nlog n))!!! Doh!!!!

Remoteness

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m- nlogn)r) time.
Only negative edges back to first level.
Paths in this graph have only n/r negative arcs in their path!
So n/r iterations of Bellman/Ford is enough!
So n/r x O(r(m+ nlogn)) = O(n(m+ nlog n))!!! Doh!!!!
No improvement.

This time use remoteness.

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.
Make r copies of reachable vertices,

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)x O((r(n/r+m/rlogn))+ (n+ mlogn))

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)x O((r(n/r+m/rlogn))+ (n+ mlogn)) = O(n/r(n+ mlogn)).

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)x O((r(n/r+m/rlogn))+ (n+ mlogn)) = O(n/r(n+ mlog n)).
n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

This time use remoteness.

Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r) x O((r(n/r+m/rlogn))+(n+ mlogn)) = O(n/r(n+ mlogn)).
n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.
To get rid of all of them: (n/|S|)(n/r) versus n.

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r) x O((r(n/r+m/rlogn))+(n+ mlogn)) = O(n/r(n+ mlogn)).
n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.
To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r > n, itis win!

This time use remoteness.
Set Sis r-remote if S can reach < n/r vertices with r-hop paths.
Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ¢ S.

The vertices v ¢ S are r-hop far.
Thus, must use > r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r) x O((r(n/r+m/rlogn))+(n+ mlogn)) = O(n/r(n+ mlogn)).
n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.
To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r > n, itis win!

Find remote set with big r and big S.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large?

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.

For pair, s,t, B/(s,) is set of vertices between s and t.

How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).

Lemma: W.h.p. |B"(s,t)| < n/b.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).
Lemma: W.h.p. |B"(s,t)| < n/b.
Proof sketch: Consider s, t, sort B"(s, t) vertices by
dh(s,u)+d"(u,t).
W.h.p. vertex is in smallest n/b vertices of B(s, t).
Observe:

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).

Lemma: W.h.p. |B"(s,t)| < n/b.

Proof sketch: Consider s, t, sort B”(s, t) vertices by
dh(s,u)+d"(u,t).
W.h.p. vertex is in smallest n/b vertices of B(s, t).
Observe:
Price function adjustments, make paths positive!

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).

Lemma: W.h.p. |B"(s,t)| < n/b.

Proof sketch: Consider s, t, sort B”(s, t) vertices by
dh(s,u)+d"(u,t).
W.h.p. vertex is in smallest n/b vertices of B(s, t).
Observe:
Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are
positive.

Betweenness

v is h-hop between s and t if d(s,v) <0 and d"(v,t) < 0.
For pair, s,t, B/(s,) is set of vertices between s and t.
How large? Could be a lot.

For blog n vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.
Time: O(hblogn(m+ nlogn).

Lemma: W.h.p. |B"(s,t)| < n/b.

Proof sketch: Consider s, t, sort B”(s, t) vertices by
dh(s,u)+d"(u,t).
W.h.p. vertex is in smallest n/b vertices of B(s, t).
Observe:
Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are
positive.
Thus, the |(B)"(s,t)| < n/b

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Any vertex that is not r-between s and t is r-remote from S.

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Any vertex that is not r-between s and t is r-remote from S.
Recall: only n/r in between.

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Any vertex that is not r-between s and t is r-remote from S.
Recall: only n/r in between.

S is r-remote set.

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Any vertex that is not r-between s and t is r-remote from S.
Recall: only n/r in between.

S is r-remote set.
Find large sandwich.

Negative Sandwich, Betweeness, Remoteness

(s,1,8) is a h-hop negative sandwich if Yu € S,d"(s,u) + d"(u,t) <0
for negative vertices S.

negative between vertices..
Price function: ¢(u) = min(0, max(d""(s,u),—d""(u,1t)).

Any vertex that is not r-between s and t is r-remote from S.
Recall: only n/r in between.

S is r-remote set.
Find large sandwich. That s, |S|r > n.

Proper hop distance.

Hop distance is distance with < h negative hops.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.
Lemma: O(h(m+ nlogn)) time for set S of negative vertices,

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.
Gs is G where negative weights are zero’d outside of S.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.
Gs is G where negative weights are zero’d outside of S.
Proof: Consider Gs. Compute d”(S, t) and d"+'(S, 1) for all t.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.
Gs is G where negative weights are zero’d outside of S.

Proof: Consider Gs. Compute d”(S, t) and d"+'(S, 1) for all t.
If change, then exactly h+ 1 negative vertices.

Proper hop distance.

Hop distance is distance with < h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.

Gs is G where negative weights are zero’d outside of S.

Proof: Consider Gs. Compute d”(S, t) and d"+'(S, 1) for all t.
If change, then exactly h+ 1 negative vertices.
Pick subpath starting and ending in S.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.
Gs is G where negative weights are zero’d outside of S.

Proof: Consider Gs. Compute d”(S, t) and d"+'(S, 1) for all t.
If change, then exactly h+ 1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Proper hop distance.

Hop distance is distance with < h negative hops.
Proper is with exacty h negative hops.

Lemma: O(h(m+ nlogn)) time for set S of negative vertices,
(i) finds pair s, t € S with proper h-hop distance < h or

(ii) distance ds(t, V) for all V in Gg.
Gs is G where negative weights are zero’d outside of S.

Proof: Consider Gs. Compute d”(S, t) and d"+'(S, 1) for all t.
If change, then exactly h+ 1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.
Case (i): Can be used to make sandwich.

Large sandwich

Sample a set U with probability g.

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Let k be number of negative vertices.

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Let k be number of negative vertices.

Set g =2,/h/k.

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Let k be number of negative vertices.

Set g =2,/h/k.

Expected size of U is gk = Q(Vkh).

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Let k be number of negative vertices.
Set g=2./h/k.
Expected size of U is gk = Q(Vkh).
Expected size of Sis h/q = Q(Vkh).

Large sandwich

Sample a set U with probability g.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s,t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s,t,S).
Expected size of S'is h/q.

Let k be number of negative vertices.
Set g=2./h/k.
Expected size of U is gk = Q(Vkh).
Expected size of Sis h/q = Q(Vkh).

Putting it together.

Steps:

Putting it together.

Steps:
Betweeness: O(h?m) to get h-betweenness down to n/h.

Putting it together.

Steps:
Betweeness: Q(hzm) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/'nh) vertices

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

h:n1/5

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

h=n'5 — O(n**m).

Putting it together.

Steps:
Betweeness: O(h2m) to get h-betweenness down to n/h.
Proper hops: O(hm) time
to get remote Q(v/nh) vertices
Fix remote vertices O(v/nh) in time O(v/nhrm)
Total time O((H? ++/nh/h)m) to fix v/nh remote vertices.

Roughly n/+/nh iterations.
Time: O(n/v/nh(h? ++/nhh)m) = O(v/n(h*/2 +\/nh'/2)m).

h=n'5 — O(n**m).
Oh my.

