
Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .

Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).

update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).

S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .

cφ (e = (u,v)) = φ(u)−φ(v)+w(e).
Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.

φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e)

=⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.

φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.

Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).

Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p
from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman-Ford. Djikstra. Price Functions.

Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
Path p = [(u,v),(v ,w)], cφ (p) = φ(u)+w(u,v)−φ(v)+φ(v)+w(v ,w)−φ(w) = w(p)+φ(u)−φ(w). p

from s to t , ∑e∈p cφ (e) = φ(s)−φ(t)+w(p).

Thus: d(s,v) is a price function whose reduced costs make all edge
weights positive.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).

For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).
S = φ .

Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .

Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).

update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).

S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn))

or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e)).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .

Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.

Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).

If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Example(Intuition?): fix one negative vertex.

Negative vertex: v .
Has negative arcs from it.

Set all ∀e′ ∈ E ,w(e′)≤ 0 set w ′(e) = 0.
Otherwise set w ′(e) = w(e)

d(v) = 0. S = {v}
Run update (v).
...Djikstra..

Observe: vertices put in S once.
Correct distances, w.r.t. w ′(e).
If no negative cycle in w ′(e).

Reduced costs of w ′(e) w.r.t d(·) are positive w.r.t.

Reduce number of negative vertices by one.

Hop Distance

dh(u,v) shortest distance using at most h negative edges.

u and v are h-hop connected: dh(u,v)< 0 or dh(v ,u)< 0.

True/False: If u and v are not h-hop connected they are not h+1
connected.

True/False: If u and v are not h-hop connected they are not h−1
connected.

Hop Distance

dh(u,v) shortest distance using at most h negative edges.

u and v are h-hop connected: dh(u,v)< 0 or dh(v ,u)< 0.

True/False: If u and v are not h-hop connected they are not h+1
connected.

True/False: If u and v are not h-hop connected they are not h−1
connected.

Hop Distance

dh(u,v) shortest distance using at most h negative edges.

u and v are h-hop connected: dh(u,v)< 0 or dh(v ,u)< 0.

True/False: If u and v are not h-hop connected they are not h+1
connected.

True/False: If u and v are not h-hop connected they are not h−1
connected.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.

else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?

S are no longer negative vertices.

Eliminating many negative vertices.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running “Dijsktra” makes them all not-negative.

S is independent if all pairs u,v ∈ S are independent.

For e = (u,v), u ̸∈ S, set w ′(u,v) = 0 if w(u,v)< 0.
else w ′(u,v) = w(u,v).

update vertices in S, run Dijkstra.

Reduced costs of w ′(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?
S are no longer negative vertices.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,

connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.

and edge back from last to first
Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn))

= O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!!

Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

Remoteness
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of graph,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

“Computation dag” of r iterations of Dijkstra/Bellman. (except for
edge back.)

Do DAG computation. O((m+n logn)r) time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So n/r ×O(r(m+n logn)) = O(n(m+n logn))!!! Doh!!!!

No improvement.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,

connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.

and edge back from last to first
Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.

Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.

Thus, must use ≥ r negative nodes in S.
thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn))

= O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

This time use remoteness.
Set S is r -remote if S can reach ≤ n/r vertices with r -hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,
connect successive levels by (directed) negative edges.
And connect copies of vertices by 0-weight edges.
and edge back from last to first

Copies of positive edges are internal to level.
Zero out weights on negative v ̸∈ S.

The vertices v ̸∈ S are r -hop far.
Thus, must use ≥ r negative nodes in S.

thus the n/r iterations is enough to see all negative paths.

O(n/r)×O((r(n/r +m/r logn))+(n+m logn)) = O(n/r(n+m logn)).

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus n.

Thus, if |S|r ≥ n, it is win!

Find remote set with big r and big S.

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large?

Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.

Compute reduced costs using these potential functions.
Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!

And keep shortest paths ordered. So other nodes are
positive.

Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.

Thus, the |(B′)h(s, t)| ≤ n/b .

Betweenness

v is h-hop between s and t if dh(s,v)< 0 and dh(v , t)< 0.

For pair, s, t , Bh(s, t) is set of vertices between s and t .

How large? Could be a lot.

For b logn vertices, compute h-hop in-distances and out-distances.
Compute reduced costs using these potential functions.

Time: O(hb logn(m+n logn).

Lemma: W.h.p. |Bh(s, t)| ≤ n/b.

Proof sketch: Consider s, t , sort Bh(s, t) vertices by
dh(s,u)+dh(u, t).

W.h.p. vertex is in smallest n/b vertices of Bh(s, t).
Observe:

Price function adjustments, make paths positive!
And keep shortest paths ordered. So other nodes are

positive.
Thus, the |(B′)h(s, t)| ≤ n/b .

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.

Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich.

That is, |S|r ≥ n.

Negative Sandwich, Betweeness, Remoteness

(s, t ,S) is a h-hop negative sandwich if ∀u ∈ S,dh(s,u)+dh(u, t)< 0
for negative vertices S.

negative between vertices..

Price function: φ(u) = min(0,max(dh+r (s,u),−dh+r (u, t)).

Any vertex that is not r -between s and t is r -remote from S.
Recall: only n/r in between.

S is r -remote set.

Find large sandwich. That is, |S|r ≥ n.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,

(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .

If change, then exactly h+1 negative vertices.
Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.

Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.

Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.

Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Proper hop distance.

Hop distance is distance with ≤ h negative hops.

Proper is with exacty h negative hops.

Lemma: O(h(m+n logn)) time for set S of negative vertices,
(i) finds pair s, t ∈ S with proper h-hop distance ≤ h or

(ii) distance dS(t ,V) for all V in GS .

GS is G where negative weights are zero’d outside of S.

Proof: Consider GS . Compute dh(S, t) and dh+1(S, t) for all t .
If change, then exactly h+1 negative vertices.

Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).

Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.

Set q = 2
√

h/k .
Expected size of U is qk =Ω(

√
kh).

Expected size of S is h/q =Ω(
√

kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).

Expected size of S is h/q =Ω(
√

kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Large sandwich

Sample a set U with probability q.

Use proper hop lemma on U.
Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S.
At least h negative vertices sampled in (s, t ,S).
Expected size of S is h/q.

Let k be number of negative vertices.
Set q = 2

√
h/k .

Expected size of U is qk =Ω(
√

kh).
Expected size of S is h/q =Ω(

√
kh).

Putting it together.

Steps:

Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.

Proper hops: Õ(hm) time
to get remote Ω(

√
nh) vertices

Fix remote vertices O(
√

nh) in time Õ(
√

nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices

Fix remote vertices O(
√

nh) in time Õ(
√

nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.

Time: Õ(n/
√

nh(h2 +
√

nhh)m) = Õ(
√

n(h3/2 +
√

nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5

=⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

Putting it together.

Steps:
Betweeness: Õ(h2m) to get h-betweenness down to n/h.
Proper hops: Õ(hm) time

to get remote Ω(
√

nh) vertices
Fix remote vertices O(

√
nh) in time Õ(

√
nhrm)

Total time Õ((h2 +
√

nh/h)m) to fix
√

nh remote vertices.

Roughly n/
√

nh iterations.
Time: Õ(n/

√
nh(h2 +

√
nhh)m) = Õ(

√
n(h3/2 +

√
nh1/2)m).

h = n1/5 =⇒ Õ(n4/5m).

Oh my.

