Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0.$

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0.$ $S = \phi.$ Find $u = \operatorname{argmin}_{v = 0} d(v)$

Find $u = \operatorname{argmin}_{v \notin S} d(v)$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi : V \rightarrow Z$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi: V \to Z$. $_{c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)}$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi: V \to Z$. $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$. Note: $d(v) \leq d(u) + w(e)$

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi : V \to Z$. $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$. Note: $d(v) \le d(u) + w(e) \implies d(u) + w(e) - d(v) \ge 0$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

 $\begin{array}{l} \mbox{Find price Function: } \phi: V \rightarrow Z. \\ c_{\phi}(e = (u,v)) = \phi(u) - \phi(v) + w(e). \\ \mbox{Note: } d(v) \leq d(u) + w(e) \Longrightarrow d(u) + w(e) - d(v) \geq 0. \\ \phi(v) = d(v) \mbox{ produces non-negative edge weights.} \end{array}$

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi: V \to Z$. $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$. Note: $d(v) \le d(u) + w(e) \Longrightarrow d(u) + w(e) - d(v) \ge 0$. $\phi(v) = d(v)$ produces non-negative edge weights. Shortest path under $c_{\phi}(e)$ is same as under w(e).

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi: V \to Z$. $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$. Note: $d(v) \le d(u) + w(e) \Longrightarrow d(u) + w(e) - d(v) \ge 0$. $\phi(v) = d(v)$ produces non-negative edge weights. Shortest path under $c_{\phi}(e)$ is same as under w(e). Path $p = [(u, v), (v, w)], c_{\phi}(p) = \phi(u) + w(u, v) - \phi(v) + \phi(v) + w(v, w) - \phi(w) = w(p) + \phi(u) - \phi(w)$. pfrom s to t, $\sum_{e \in P} c_{\phi}(e) = \phi(s) - \phi(t) + w(p)$.

Given G = (V, E), $w : E \to Z$, on edges, and $s \in V$, find d(s, v) $\forall v \in V$.

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights: $d(v) = \infty, d(s) = 0$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: $\phi: V \to Z$. $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$. Note: $d(v) \le d(u) + w(e) \Longrightarrow d(u) + w(e) - d(v) \ge 0$. $\phi(v) = d(v)$ produces non-negative edge weights. Shortest path under $c_{\phi}(e)$ is same as under w(e). Path $p = [(u, v), (v, w)], c_{\phi}(p) = \phi(u) + w(u, v) - \phi(v) + \phi(v) + w(v, w) - \phi(w) = w(p) + \phi(u) - \phi(w)$. pfrom s to $t, \sum_{e \in P} c_{e_{e}}(e) = \phi(s) - \phi(t) + w(p)$.

Thus: d(s, v) is a price function whose reduced costs make all edge weights positive.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v).

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Claim: After k rounds, $d(v) \le$ path length with $\le k$ negative edges.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Claim: After *k* rounds, $d(v) \le$ path length with $\le k$ negative edges. Induction.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Claim: After *k* rounds, $d(v) \le$ path length with $\le k$ negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Claim: After *k* rounds, $d(v) \le$ path length with $\le k$ negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

 $O(n(n+m\log n))$

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Claim: After *k* rounds, $d(v) \le$ path length with $\le k$ negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

 $O(n(n + m \log n))$ or slightly better. Quadratic time.

Approach: Add *s*, with w(s, v) = 0 for all $v \in V$. Bellman/Djikstra Round: Have d(v). For all e = (u, v), $w(e) \le 0$, $d(v) = \min(d(v), d(u) + w(e))$. $S = \phi$. Find $u = \operatorname{argmin}_{v \notin S} d(v)$. update(u): for e = (u, v), $d(v) = \min(d(v), d(u) + w(e))$. S = S + u.

Claim: After *k* rounds, $d(v) \le$ path length with $\le k$ negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

 $O(n(n + m \log n))$ or slightly better. Quadratic time.

Scaling algorithm: $O(m\sqrt{n}\log nC)$ by Goldberg.

Negative vertex: v.

Negative vertex: *v*. Has negative arcs from it.

Negative vertex: v. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0.

Otherwise set w'(e) = w(e)

Negative vertex: *v*. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e) $d(v) = 0. S = \{v\}$ Run update (v). ...Djikstra..

Negative vertex: *v*. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e) $d(v) = 0. S = \{v\}$ Run update (v). ...Djikstra..

Negative vertex: v. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e) $d(v) = 0. S = \{v\}$ Run update (v). ...Djikstra..

Observe: vertices put in S once.

Negative vertex: v. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e)d(v) = 0. $S = \{v\}$ Run update (v). ...Djikstra..

Observe: vertices put in *S* once. Correct distances, w.r.t. w'(e).

Negative vertex: v. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e)d(v) = 0. $S = \{v\}$ Run update (v). ...Djikstra..

Observe: vertices put in *S* once. Correct distances, w.r.t. w'(e). If no negative cycle in w'(e).

Example(Intuition?): fix one negative vertex.

Negative vertex: v. Has negative arcs from it. Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e)d(v) = 0. $S = \{v\}$ Run update (v). ...Djikstra..

Observe: vertices put in *S* once. Correct distances, w.r.t. w'(e). If no negative cycle in w'(e).

Example(Intuition?): fix one negative vertex.

Negative vertex: *v*. Has negative arcs from it.

Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e)

d(v) = 0. $S = \{v\}$ Run update (v). ...Djikstra..

> Observe: vertices put in *S* once. Correct distances, w.r.t. w'(e). If no negative cycle in w'(e).

Reduced costs of w'(e) w.r.t $d(\cdot)$ are positive w.r.t.

Example(Intuition?): fix one negative vertex.

Negative vertex: *v*. Has negative arcs from it.

Set all $\forall e' \in E, w(e') \leq 0$ set w'(e) = 0. Otherwise set w'(e) = w(e)

 $d(v) = 0. S = \{v\}$ Run update (v). ...Djikstra..

Observe: vertices put in *S* once. Correct distances, w.r.t. w'(e). If no negative cycle in w'(e).

Reduced costs of w'(e) w.r.t $d(\cdot)$ are positive w.r.t.

Reduce number of negative vertices by one.

Hop Distance

 $d^{h}(u, v)$ shortest distance using at most *h* negative edges.

 $d^{h}(u, v)$ shortest distance using at most *h* negative edges. *u* and *v* are *h*-hop connected: $d^{h}(u, v) < 0$ or $d^{h}(v, u) < 0$. $d^{h}(u, v)$ shortest distance using at most *h* negative edges.

u and *v* are *h*-hop connected: $d^{h}(u, v) < 0$ or $d^{h}(v, u) < 0$.

True/False: If u and v are not h-hop connected they are not h+1 connected.

True/False: If u and v are not h-hop connected they are not h-1 connected.

Negative vertices are independent if they are not 1-hop connected.

Negative vertices are independent if they are not 1-hop connected. Idea: Running "Dijsktra" makes them all not-negative.

Negative vertices are independent if they are not 1-hop connected. Idea: Running "Dijsktra" makes them all not-negative. *S* is independent if all pairs $u, v \in S$ are independent.

Negative vertices are independent if they are not 1-hop connected. Idea: Running "Dijsktra" makes them all not-negative. *S* is independent if all pairs $u, v \in S$ are independent. For $e = (u, v), u \notin S$, set w'(u, v) = 0 if w(u, v) < 0.

Negative vertices are independent if they are not 1-hop connected. Idea: Running "Dijsktra" makes them all not-negative. *S* is independent if all pairs $u, v \in S$ are independent. For $e = (u, v), u \notin S$, set w'(u, v) = 0 if w(u, v) < 0.

else w'(u, v) = w(u, v).

Negative vertices are independent if they are not 1-hop connected.

Idea: Running "Dijsktra" makes them all not-negative.

S is independent if all pairs $u, v \in S$ are independent.

For
$$e = (u, v)$$
, $u \notin S$, set $w'(u, v) = 0$ if $w(u, v) < 0$.
else $w'(u, v) = w(u, v)$.

update vertices in S, run Dijkstra.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running "Dijsktra" makes them all not-negative.

S is independent if all pairs $u, v \in S$ are independent.

For
$$e = (u, v)$$
, $u \notin S$, set $w'(u, v) = 0$ if $w(u, v) < 0$.
else $w'(u, v) = w(u, v)$.

update vertices in S, run Dijkstra.

Reduced costs of w'(e) w.r.t. d(v) are non-negative.

Negative vertices are independent if they are not 1-hop connected.

Idea: Running "Dijsktra" makes them all not-negative.

S is independent if all pairs $u, v \in S$ are independent.

For
$$e = (u, v)$$
, $u \notin S$, set $w'(u, v) = 0$ if $w(u, v) < 0$.
else $w'(u, v) = w(u, v)$.

update vertices in S, run Dijkstra.

Reduced costs of w'(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?

Negative vertices are independent if they are not 1-hop connected.

Idea: Running "Dijsktra" makes them all not-negative.

S is independent if all pairs $u, v \in S$ are independent.

For
$$e = (u, v)$$
, $u \notin S$, set $w'(u, v) = 0$ if $w(u, v) < 0$.
else $w'(u, v) = w(u, v)$.

update vertices in S, run Dijkstra.

Reduced costs of w'(e) w.r.t. d(v) are non-negative.

For reduced costs of w(e) w.r.t. d(v)?

S are no longer negative vertices.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths. Elimination Algorithm.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make r copies of graph,

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make r copies of graph,

connect successive levels by (directed) negative edges.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make r copies of graph,

connect successive levels by (directed) negative edges.

And connect copies of vertices by 0-weight edges.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first*

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So $n/r \times O(r(m+n\log n))$

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So $n/r \times O(r(m+n\log n)) = O(n(m+n\log n))!!!$

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So $n/r \times O(r(m+n\log n)) = O(n(m+n\log n))!!!$ Doh!!!!

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of graph, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

"Computation dag" of *r* iterations of Dijkstra/Bellman. (except for edge back.)

Do DAG computation. $O((m + n \log n)r)$ time.

Only negative edges back to first level.

Paths in this graph have only n/r negative arcs in their path!

So n/r iterations of Bellman/Ford is enough!

So $n/r \times O(r(m + n \log n)) = O(n(m + n \log n))!!!$ Doh!!!!

No improvement.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths. Elimination Algorithm.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make r copies of reachable vertices,

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first*

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far. Thus, must use $\geq r$ negative nodes in *S*.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

 $O(n/r) \times O((r(n/r+m/r\log n)) + (n+m\log n))$

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

 $O(n/r) \times O((r(n/r+m/r\log n)) + (n+m\log n)) = O(n/r(n+m\log n)).$

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

 $O(n/r) \times O((r(n/r+m/r\log n)) + (n+m\log n)) = O(n/r(n+m\log n)).$

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

 $O(n/r) \times O((r(n/r+m/r\log n)) + (n+m\log n)) = O(n/r(n+m\log n)).$

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus *n*.

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

 $O(n/r) \times O((r(n/r+m/r\log n)) + (n+m\log n)) = O(n/r(n+m\log n)).$

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus *n*.

Thus, if $|S|r \ge n$, it is win!

Set *S* is *r*-remote if *S* can reach $\leq n/r$ vertices with *r*-hop paths.

Elimination Algorithm.

Make *r* copies of reachable vertices, connect successive levels by (directed) negative edges. And connect copies of vertices by 0-weight edges. *and edge back from last to first* Copies of positive edges are internal to level. Zero out weights on negative $v \notin S$.

The vertices $v \notin S$ are *r*-hop far.

Thus, must use $\geq r$ negative nodes in *S*.

thus the n/r iterations is enough to see all negative paths.

 $O(n/r) \times O((r(n/r+m/r\log n)) + (n+m\log n)) = O(n/r(n+m\log n)).$

n/r iterations of Bellman/Dijkstra to get rid of |S| negative vertices.

To get rid of all of them: (n/|S|)(n/r) versus *n*.

Thus, if $|S| r \ge n$, it is win!

Find remote set with big *r* and big *S*.

v is *h*-hop between *s* and *t* if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

v is *h*-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

v is *h*-hop between *s* and *t* if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$. For pair, *s*, *t*, $B^{h}(s, t)$ is set of vertices between *s* and *t*. How large?

v is *h*-hop between *s* and *t* if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$. For pair, *s*, *t*, $B^{h}(s, t)$ is set of vertices between *s* and *t*. How large? Could be a lot.

v is *h*-hop between *s* and *t* if $d^h(s, v) < 0$ and $d^h(v, t) < 0$. For pair, *s*, *t*, $B^h(s, t)$ is set of vertices between *s* and *t*. How large? Could be a lot.

For *b*log *n* vertices, compute *h*-hop in-distances and out-distances.

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For *b*log *n* vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions.

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For $b\log n$ vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions. Time: $O(hb\log n(m+n\log n))$.

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For $b\log n$ vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions. Time: $O(hb\log n(m+n\log n))$.

Lemma: W.h.p. $|B^h(s,t)| \le n/b$.

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For $b\log n$ vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions. Time: $O(hb\log n(m+n\log n))$.

Lemma: W.h.p. $|B^h(s,t)| \le n/b$.

Proof sketch: Consider s, t, sort $B^h(s, t)$ vertices by $d^h(s, u) + d^h(u, t)$.

W.h.p. vertex is in smallest n/b vertices of $B^h(s,t)$. Observe:

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For $b\log n$ vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions. Time: $O(hb\log n(m+n\log n))$.

Lemma: W.h.p. $|B^h(s,t)| \le n/b$.

Proof sketch: Consider s, t, sort $B^h(s, t)$ vertices by $d^h(s, u) + d^h(u, t)$.

W.h.p. vertex is in smallest n/b vertices of $B^h(s,t)$. Observe:

Price function adjustments, make paths positive!

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For $b\log n$ vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions. Time: $O(hb\log n(m+n\log n))$.

Lemma: W.h.p. $|B^h(s,t)| \le n/b$.

Proof sketch: Consider s, t, sort $B^h(s, t)$ vertices by $d^h(s, u) + d^h(u, t)$.

W.h.p. vertex is in smallest n/b vertices of $B^h(s, t)$. Observe:

Price function adjustments, make paths positive!

And keep shortest paths ordered. So other nodes are positive.

v is h-hop between s and t if $d^{h}(s, v) < 0$ and $d^{h}(v, t) < 0$.

For pair, $s, t, B^h(s, t)$ is set of vertices between s and t.

How large? Could be a lot.

For $b\log n$ vertices, compute *h*-hop in-distances and out-distances. Compute reduced costs using these potential functions. Time: $O(hb\log n(m+n\log n))$.

Lemma: W.h.p. $|B^h(s,t)| \le n/b$.

Proof sketch: Consider s, t, sort $B^h(s, t)$ vertices by $d^h(s, u) + d^h(u, t)$.

W.h.p. vertex is in smallest n/b vertices of $B^h(s,t)$. Observe:

Price function adjustments, make paths positive!

And keep shortest paths ordered. So other nodes are positive.

Thus, the $|(B')^h(s,t)| \le n/b$

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

Price function: $\phi(u) = \min(0, \max(d^{h+r}(s, u), -d^{h+r}(u, t)))$.

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

Price function: $\phi(u) = \min(0, \max(d^{h+r}(s, u), -d^{h+r}(u, t)))$.

Any vertex that is not *r*-between *s* and *t* is *r*-remote from *S*.

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

Price function: $\phi(u) = \min(0, \max(d^{h+r}(s, u), -d^{h+r}(u, t)))$.

Any vertex that is not *r*-between *s* and *t* is *r*-remote from *S*. Recall: only n/r in between.

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

Price function: $\phi(u) = \min(0, \max(d^{h+r}(s, u), -d^{h+r}(u, t)))$.

Any vertex that is not *r*-between *s* and *t* is *r*-remote from *S*. Recall: only n/r in between.

S is r-remote set.

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

Price function: $\phi(u) = \min(0, \max(d^{h+r}(s, u), -d^{h+r}(u, t)))$.

Any vertex that is not *r*-between *s* and *t* is *r*-remote from *S*. Recall: only n/r in between.

S is r-remote set.

Find large sandwich.

(s, t, S) is a *h*-hop negative sandwich if $\forall u \in S, d^h(s, u) + d^h(u, t) < 0$ for negative vertices *S*.

negative between vertices..

Price function: $\phi(u) = \min(0, \max(d^{h+r}(s, u), -d^{h+r}(u, t)))$.

Any vertex that is not *r*-between *s* and *t* is *r*-remote from *S*. Recall: only n/r in between.

S is r-remote set.

Find large sandwich. That is, $|S|r \ge n$.

Hop distance is distance with $\leq h$ negative hops.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices,

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

 G_S is G where negative weights are zero'd outside of S.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

 G_S is G where negative weights are zero'd outside of S.

Proof: Consider G_S . Compute $d^h(S,t)$ and $d^{h+1}(S,t)$ for all t.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

 G_S is G where negative weights are zero'd outside of S.

Proof: Consider G_S . Compute $d^h(S,t)$ and $d^{h+1}(S,t)$ for all t. If change, then *exactly* h+1 negative vertices.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

 G_S is G where negative weights are zero'd outside of S.

Proof: Consider G_S . Compute $d^h(S,t)$ and $d^{h+1}(S,t)$ for all t. If change, then *exactly* h+1 negative vertices. Pick subpath starting and ending in S.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

 G_S is G where negative weights are zero'd outside of S.

Proof: Consider G_S . Compute $d^h(S,t)$ and $d^{h+1}(S,t)$ for all t. If change, then *exactly* h+1 negative vertices. Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Hop distance is distance with $\leq h$ negative hops.

Proper is with *exacty h* negative hops.

Lemma: $O(h(m + n \log n))$ time for set *S* of negative vertices, (i) finds pair $s, t \in S$ with proper *h*-hop distance $\leq h$ or

(ii) distance $d_S(t, V)$ for all V in G_S .

 G_S is G where negative weights are zero'd outside of S.

Proof: Consider G_S . Compute $d^h(S,t)$ and $d^{h+1}(S,t)$ for all t. If change, then *exactly* h+1 negative vertices. Pick subpath starting and ending in S.

Note: Case (ii), gives price function to make S non-negative.

Case (i): Can be used to make sandwich.

Sample a set U with probability q.

Sample a set *U* with probability *q*. Use proper hop lemma on *U*.

Either fix |U| negative vertices.

Sample a set U with probability q.

Use proper hop lemma on U. Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S. At least h negative vertices sampled in (s, t, S).

Sample a set U with probability q.

Use proper hop lemma on U. Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S. At least h negative vertices sampled in (s, t, S). Expected size of S is h/q.

Sample a set U with probability q.

Use proper hop lemma on U. Either fix |U| negative vertices.

Or: find pair s, t in S with negative proper h hop distance using S. At least h negative vertices sampled in (s, t, S). Expected size of S is h/q.

Sample a set U with probability q.

Use proper hop lemma on U. Either fix |U| negative vertices.

Or: find pair *s*, *t* in *S* with negative proper *h* hop distance using *S*. At least *h* negative vertices sampled in (s, t, S). Expected size of *S* is h/q.

Let *k* be number of negative vertices.

Sample a set U with probability q.

Use proper hop lemma on U. Either fix |U| negative vertices.

Or: find pair *s*, *t* in *S* with negative proper *h* hop distance using *S*. At least *h* negative vertices sampled in (s, t, S). Expected size of *S* is h/q.

Let *k* be number of negative vertices. Set $q = 2\sqrt{h/k}$.

Sample a set U with probability q.

Use proper hop lemma on U. Either fix |U| negative vertices.

Or: find pair *s*, *t* in *S* with negative proper *h* hop distance using *S*. At least *h* negative vertices sampled in (s, t, S). Expected size of *S* is h/q.

Let *k* be number of negative vertices. Set $q = 2\sqrt{h/k}$. Expected size of *U* is $qk = \Omega(\sqrt{kh})$.

Sample a set U with probability q.

- Use proper hop lemma on U. Either fix |U| negative vertices.
 - Or: find pair s, t in S with negative proper h hop distance using S. At least h negative vertices sampled in (s, t, S). Expected size of S is h/q.

Let *k* be number of negative vertices. Set $q = 2\sqrt{h/k}$. Expected size of *U* is $qk = \Omega(\sqrt{kh})$. Expected size of *S* is $h/q = \Omega(\sqrt{kh})$.

Sample a set U with probability q.

- Use proper hop lemma on U. Either fix |U| negative vertices.
 - Or: find pair s, t in S with negative proper h hop distance using S. At least h negative vertices sampled in (s, t, S). Expected size of S is h/q.

Let *k* be number of negative vertices. Set $q = 2\sqrt{h/k}$. Expected size of *U* is $qk = \Omega(\sqrt{kh})$. Expected size of *S* is $h/q = \Omega(\sqrt{kh})$.

Steps:

Steps: Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h.

Steps: Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nhrm})$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices.

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nhrm})$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices.

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nh}rm)$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices. Roughly n/\sqrt{nh} iterations.

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nh}rm)$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices. Roughly n/\sqrt{nh} iterations. Time: $\tilde{O}(n/\sqrt{nh}(h^2 + \sqrt{nh}h)m) = \tilde{O}(\sqrt{n}(h^{3/2} + \sqrt{nh^{1/2}})m)$.

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nhrm})$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices. Roughly n/\sqrt{nh} iterations. Time: $\tilde{O}(n/\sqrt{nh}(h^2 + \sqrt{nhh})m) = \tilde{O}(\sqrt{n}(h^{3/2} + \sqrt{nh^{1/2}})m)$. $h = n^{1/5}$

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nhrm})$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices. Roughly n/\sqrt{nh} iterations. Time: $\tilde{O}(n/\sqrt{nh}(h^2 + \sqrt{nhh})m) = \tilde{O}(\sqrt{n}(h^{3/2} + \sqrt{nh^{1/2}})m)$. $h = n^{1/5} \implies \tilde{O}(n^{4/5}m)$.

Steps:

Betweeness: $\tilde{O}(h^2m)$ to get *h*-betweenness down to n/h. Proper hops: $\tilde{O}(hm)$ time to get remote $\Omega(\sqrt{nh})$ vertices Fix remote vertices $O(\sqrt{nh})$ in time $\tilde{O}(\sqrt{nh}rm)$ Total time $\tilde{O}((h^2 + \sqrt{nh}/h)m)$ to fix \sqrt{nh} remote vertices.

Roughly n/\sqrt{nh} iterations. Time: $\tilde{O}(n/\sqrt{nh}(h^2 + \sqrt{nh}h)m) = \tilde{O}(\sqrt{n}(h^{3/2} + \sqrt{nh^{1/2}})m)$. $h = n^{1/5} \implies \tilde{O}(n^{4/5}m)$.

Oh my.