Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e=(u,v)) =o(u)—o(v)+w(e).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.
(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.

co(e=(u,v))=o(u)—o(v)+w(e).
Note: d(v) < d(u)+ w(e)

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.
(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.

co(e=(u,v))=o(u)—o(v)+w(e).
Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.
Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.
(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e=(u,v))=o(u)—o(v)+w(e).
Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e = (u,v)) = o(u) — 9(v) +w(e).
Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.
Shortest path under ¢4 (e) is same as under w(e).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e = (u,v)) = o(u) — 9(v) +w(e).
Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.
Shortest path under ¢, (e) is same as under w(e).

p from sto t, Zeep C¢(e) =0(t)—o(s) +w(p).

Bellman-Ford. Djikstra. Price Functions.

Given G=(V,E), w: E— Z, on edges, and s € V, find d(s, v)
YveV.

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) =<, d(s) =0.
S=9¢.
Find u = argmin,sd(v).
update(u): for e = (u, v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: ¢ : V — Z.
co(e = (u,v)) = o(u) — 9(v) +w(e).

Note: d(v) < d(u)+w(e) = d(u)+w(e)—d(v)>0.
¢(v) = d(v) produces non-negative edge weights.
Shortest path under ¢, (e) is same as under w(e).

p from sto t, Zeep C¢(e) =0(t)—o(s) +w(p).

Thus: d(s, V) is a price fucntion whose reduced costs make all edge
weights positive.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.
Bellman/Djikstra Round: Have d(v).

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.
Bellman/Djikstra Round: Have d(v).

For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
Forall e= (u,v), w(e) <0, d(v) = min(d(v),d(u)+ w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=S+u.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).

For all e = (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=5+u.

Claim: After k rounds, d(v) < path length with < k negative edges.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).

For all e = (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.

Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=S+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.

O(n) iterations of Bellman/Dijkstra is good.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=5+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn))

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=5+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn)) or slightly better.
Quadratic time.

Bellman/Dijkstra.

Approach: Add s, with w(s,v)=0forallve V.

Bellman/Djikstra Round: Have d(v).
For all e= (u,v), w(e) <0, d(v) = min(d(v),d(u) + w(e)).
S=9¢.
Find u=argmin,gsd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u) + w(e).
S=5+u.
Claim: After k rounds, d(v) < path length with < k negative edges.
Induction.
O(n) iterations of Bellman/Dijkstra is good.

O(n(n+ mlogn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m+/nlog nC) by Goldberg.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.
Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)

Price function, phi, in G>_1.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)

Price function, phi, in G>_1.
wj(e=(u,v)) = w'(e) — 9(v) +9(u) > 0.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)
Price function, phi, in G>_1.
w (e = (u,v)) =w'(e)—¢(v)+¢(u) > 0.
— wy(e) =w(e)—¢(v)+¢(u) = —1.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)
Price function, phi, in G>_1.
wy(e=(u,v))=w'(e)—¢(v)+¢(u) > 0.
= wy(e)=w(e)—¢(v)+¢(u) = —1.
Some sort of “Scaling”..

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)
Price function, phi, in G>_1.
w (e = (u,v)) =w'(e)—¢(v)+¢(u) > 0.
— wy(e) =w(e)—¢(v)+¢(u) = —1.
Some sort of “Scaling”..
Max negative weight W — W/2 — W/4....

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)
Price function, phi, in G>_1.
wy(e=(u,v))=w'(e)—¢(v)+¢(u) > 0.
= wy(e)=w(e)—¢(v)+¢(u) = —1.
Some sort of “Scaling”..

Max negative weight W — W/2 — W/4....
O(log W).

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)
Price function, phi, in G>_1.
w (e = (u,v)) =w'(e)—¢(v)+¢(u) > 0.
— wy(e) =w(e)—¢(v)+¢(u) = —1.
Some sort of “Scaling”..
Max negative weight W — W/2 — W/4....
O(log W).
Some complications due to path length n.

Scaling Idea: Restricted Shortest Path Instance.

O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
Price function in G>_1 (w(e) <0 — w/(e) = w(e)—1)
Price function, phi, in G>_1.
w (e = (u,v)) =w'(e)—¢(v)+¢(u) > 0.
— wy(e) =w(e)—¢(v)+¢(u) = —1.
Some sort of “Scaling”..
Max negative weight W — W/2 — W/4....
O(log W).
Some complications due to path length n.
E.g. Maximum negative length path is nW.

Decomposition.

Working with G~ _1.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.
Decomposition Claim: Fast algorithm that finds S, s.t.,

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).

Algorithm:

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).
Algorithm:
(1) recursively build price functions.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).
Algorithm:
(1) recursively build price functions.
(2) do O(logn) iterations of Bellman/Dijkstra.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).
Algorithm:
(1) recursively build price functions.
(2) do O(logn) iterations of Bellman/Dijkstra.
All edges in clusters have positive weight.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).
Algorithm:
(1) recursively build price functions.
(2) do O(logn) iterations of Bellman/Dijkstra.
All edges in clusters have positive weight.
All paths cross clusters O(logn) times.

Decomposition.

Working with G~ _1.

k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).

Algorithm:
(1) recursively build price functions.
(2) do O(logn) iterations of Bellman/Dijkstra.
All edges in clusters have positive weight.
All paths cross clusters O(logn) times.

O((m+ nlog n)log? n) time.

Low Diameter Strongly Connected Components.

G>o

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.
Diameter of strongly connected component, C:

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = max, yecd(u, v).

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = max, yecd(u, v).

Claim: Any negative path uses at most D(C) negative edges in
6271 in C.

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = maxy yec d(u,v).
Claim: Any negative path uses at most D(C) negative edges in
6271 in C.
Proof: k - number of neg. edges in path.
Neg. edgeG-_1 is one more negative in G.

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = max, yecd(u, v).

Claim: Any negative path uses at most D(C) negative edges in
6271 in C.
Proof: k - number of neg. edges in path.
Neg. edgeG-_1 is one more negative in G.
path < —x where x is negative edges.

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = max, yecd(u, v).

Claim: Any negative path uses at most D(C) negative edges in
6271 in C.
Proof: k - number of neg. edges in path.
Neg. edgeG-_1 is one more negative in G.
path < —x where x is negative edges.
but path between endpoints of length < D(C).

Low Diameter Strongly Connected Components.

G>o All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = max, yecd(u, v).

Claim: Any negative path uses at most D(C) negative edges in
6271 in C.
Proof: k - number of neg. edges in path.
Neg. edgeG-_1 is one more negative in G.
path < —x where x is negative edges.
but path between endpoints of length < D(C).
negative cycle in G.

Low Diameter Decomposition.

Categorization:

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.

In-Light-Vertices: Size of In-Balls < %\ V.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.

In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.

In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.
In-Region-growing around v:

Low Diameter Decomposition.

Categorization:

In-Balls(A, v): {u:d(u,v) < A}.

Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

Low Diameter Decomposition.

Categorization:

In-Balls(A, v): {u:d(u,v) < A}.

Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.

Low Diameter Decomposition.

Categorization:

In-Balls(A, v): {u:d(u,v) < A}.

Out-Balls(A, v): {u: d(u,v) < A}.
In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Low Diameter Decomposition.

Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.

In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.
Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Out-Region growing....symmetric.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

Decomposition: analysis.

Graph is SCC of with kappa = x(G)
In-Region-growing around v:

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y. Prly notin r|x in r]Pr[x in r].

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.
Claim: edge is between regions with probability
pw(e)=20w(e)logn/x
Proof: Prledge (x,y) in different region.]

Y, Prly notin rixin r]Pr[x in r].

Note: Y, Pr[x in r] < 1.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.

Even in Texas probabilities < 1.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly & rix e r] < Pr{t € [d(v(r), x),d(v(r),y]I] < pw(e)

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly & rix e r] < Pr{t € [d(v(r), x),d(v(r),y]I] < pw(e)

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x
Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly ¢ rix € r] < Pr[t € [d(v(r),x),d(v(r), y]]] < pw(e)

Implies that O(log n) expected edges in weight < k positive weight
path.

Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x
Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly ¢ rix € r] < Pr[t € [d(v(r),x),d(v(r), y]]] < pw(e)

Implies that O(log n) expected edges in weight < k positive weight
path.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.

(2) Remove region from light-vertices.
(3) Repeat.

i) SCC of size < 2|V/|.

)
)
)
Claim: Removing between edge regions w.h.p. leave
(
(il) or SCC’s C of x(C) < k/2.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.

(i) Regions from light vertices, thus are small, w.h.p.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.
(i) Regions from light vertices, thus are small, w.h.p.
(il) Remaining vertices have heavy in-balls and out-balls.

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.

(i) Regions from light vertices, thus are small, w.h.p.

(il) Remaining vertices have heavy in-balls and out-balls.
In cycle of diameter < x/2

Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.

(i) Regions from light vertices, thus are small, w.h.p.
(il) Remaining vertices have heavy in-balls and out-balls.
In cycle of diameter < x/2
= < k/2 edges in neg path.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW)

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:
Expected edges between components on short path O(log n).

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:
Expected edges between components on short path O(log n).

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:
Expected edges between components on short path O(log n).
Alg:
(1) Local price functions with recursion.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:
Expected edges between components on short path O(log n).

Alg:
(1) Local price functions with recursion.
(2) Dijkstra/Bellman with expected O(log n) iterations.

Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:
Expected edges between components on short path O(log n).

Alg:
(1) Local price functions with recursion.
(2) Dijkstra/Bellman with expected O(log n) iterations.
Slightly subtle, expected requeing is O(log n) per vertex.

