Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0.$ 

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0.$  $S = \phi.$ Find  $u = \operatorname{argmin}_{v \notin S} d(v).$ 

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e)$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \rightarrow Z$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \to Z$ .  $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \to Z$ .  $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ . Note:  $d(v) \le d(u) + w(e)$ 

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: 
$$\phi : V \to Z$$
.  
 $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ .  
Note:  $d(v) \le d(u) + w(e) \implies d(u) + w(e) - d(v) \ge 0$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \to Z$ .  $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ . Note:  $d(v) \le d(u) + w(e) \implies d(u) + w(e) - d(v) \ge 0$ .  $\phi(v) = d(v)$  produces non-negative edge weights.

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \to Z$ .  $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ . Note:  $d(v) \le d(u) + w(e) \implies d(u) + w(e) - d(v) \ge 0$ .  $\phi(v) = d(v)$  produces non-negative edge weights. Shortest path under  $c_{\phi}(e)$  is same as under w(e).

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \to Z$ .  $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ . Note:  $d(v) \le d(u) + w(e) \implies d(u) + w(e) - d(v) \ge 0$ .  $\phi(v) = d(v)$  produces non-negative edge weights. Shortest path under  $c_{\phi}(e)$  is same as under w(e). p from s to t,  $\sum_{e \in p} c_{\phi}(e) = \phi(t) - \phi(s) + w(p)$ .

Given G = (V, E),  $w : E \to Z$ , on edges, and  $s \in V$ , find d(s, v) $\forall v \in V$ .

d(s, v) - length of shortest path.

Djikstra: Non-Negative edge weights:  $d(v) = \infty, d(s) = 0$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for  $e = (u, v), d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

(Reachable) Negative cycle, answer is undefined.

Find price Function:  $\phi : V \to Z$ .  $c_{\phi}(e = (u, v)) = \phi(u) - \phi(v) + w(e)$ . Note:  $d(v) \le d(u) + w(e) \implies d(u) + w(e) - d(v) \ge 0$ .  $\phi(v) = d(v)$  produces non-negative edge weights. Shortest path under  $c_{\phi}(e)$  is same as under w(e). p from s to t,  $\sum_{e \in p} c_{\phi}(e) = \phi(t) - \phi(s) + w(p)$ .

Thus: d(s, v) is a price function whose reduced costs make all edge weights positive.

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ .

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v).

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ .

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ .

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e)$ .

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e)$ . S = S + u.

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

Claim: After *k* rounds,  $d(v) \le$  path length with  $\le k$  negative edges.

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e)$ . S = S + u.

Claim: After *k* rounds,  $d(v) \le$  path length with  $\le k$  negative edges. Induction.

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e)$ . S = S + u.

Claim: After *k* rounds,  $d(v) \le$  path length with  $\le k$  negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e)$ . S = S + u.

Claim: After *k* rounds,  $d(v) \le$  path length with  $\le k$  negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

 $O(n(n+m\log n))$ 

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e)$ . S = S + u.

Claim: After *k* rounds,  $d(v) \le$  path length with  $\le k$  negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

 $O(n(n + m \log n))$  or slightly better. Quadratic time.

Approach: Add *s*, with w(s, v) = 0 for all  $v \in V$ . Bellman/Djikstra Round: Have d(v). For all e = (u, v),  $w(e) \le 0$ ,  $d(v) = \min(d(v), d(u) + w(e))$ .  $S = \phi$ . Find  $u = \operatorname{argmin}_{v \notin S} d(v)$ . update(u): for e = (u, v),  $d(v) = \min(d(v), d(u) + w(e))$ . S = S + u.

Claim: After k rounds,  $d(v) \le$  path length with  $\le k$  negative edges. Induction.

O(n) iterations of Bellman/Dijkstra is good.

 $O(n(n + m \log n))$  or slightly better. Quadratic time.

Scaling algorithm:  $O(m\sqrt{n}\log nC)$  by Goldberg.

 $O(\log C)$  Reduction to the following problem.

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0.

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ .

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in  $G_{\geq -1}$ .

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in  $G_{\geq -1}$ .  $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0.$ 

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in 
$$G_{\geq -1}$$
.  
 $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0$ .  
 $\implies w_{\phi}(e) = w(e) - \phi(v) + \phi(u) \geq -1$ .

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, 
$$phi$$
, in  $G_{\geq -1}$ .  
 $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0$ .  
 $\implies w_{\phi}(e) = w(e) - \phi(v) + \phi(u) \geq -1$ .

Some sort of "Scaling" ..

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in 
$$G_{\geq -1}$$
.  
 $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0$ .  
 $\implies w_{\phi}(e) = w(e) - \phi(v) + \phi(u) \geq -1$ .

Some sort of "Scaling".. Max negative weight  $W \rightarrow W/2 \rightarrow W/4...$ 

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in 
$$G_{\geq -1}$$
.  
 $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0$ .  
 $\implies w_{\phi}(e) = w(e) - \phi(v) + \phi(u) \geq -1$ .

Some sort of "Scaling".. Max negative weight  $W \rightarrow W/2 \rightarrow W/4...$  $O(\log W)$ .

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in 
$$G_{\geq -1}$$
.  
 $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0$ .  
 $\implies w_{\phi}(e) = w(e) - \phi(v) + \phi(u) \geq -1$ .

Some sort of "Scaling" ...

Max negative weight  $W \rightarrow W/2 \rightarrow W/4...$ 

 $O(\log W)$ .

Some complications due to path length n.

 $O(\log C)$  Reduction to the following problem.

Edge weights  $\geq -2$ , minimum cycle mean  $\geq 1$ , add *s* with w(s, v) = 0. Todo: price function that ensures all edge weights  $\geq -1$ . Price function in  $G_{\geq -1}$  ( $w(e) < 0 \rightarrow w'(e) = w(e) - 1$ )

Price function, *phi*, in 
$$G_{\geq -1}$$
.  
 $w'_{\phi}(e = (u, v)) = w'(e) - \phi(v) + \phi(u) \geq 0$ .  
 $\implies w_{\phi}(e) = w(e) - \phi(v) + \phi(u) \geq -1$ .

Some sort of "Scaling" ...

Max negative weight  $W \rightarrow W/2 \rightarrow W/4...$ 

 $O(\log W)$ .

Some complications due to path length *n*.

E.g. Maximum negative length path is *nW*.

Working with  $G_{\geq -1}$ .

Working with  $G_{\geq -1}$ .  $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from s) or negative.

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds *S*, s.t., (1) Progress: W.h.p. s.c.c, *C*, in *G*/*S* either (i) either  $|C| \leq \frac{3}{4}|V|$ 

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds *S*, s.t., (1) Progress: W.h.p. s.c.c, *C*, in *G*/*S* either (i) either  $|C| \leq \frac{3}{4}|V|$ (ii) or  $\kappa(C) \leq \kappa/2$ .

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,

(1) Progress: W.h.p. s.c.c, C, in G/S either

(i) either  $|C| \leq \frac{3}{4}|V|$ 

(ii) or  $\kappa(C) \leq \kappa/2$ .

(2) shortest path P,  $|P \cap S| = O(\log n)$ .

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds *S*, s.t., (1) Progress: W.h.p. s.c.c, *C*, in *G*/*S* either (i) either  $|C| \le \frac{3}{4}|V|$ (ii) or  $\kappa(C) \le \kappa/2$ . (2) shortest path *P*,  $|P \cap S| = O(\log n)$ .

Algorithm:

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,

(1) Progress: W.h.p. s.c.c, C, in G/S either

(i) either  $|C| \leq \frac{3}{4}|V|$ 

(ii) or  $\kappa(C) \leq \kappa/2$ .

(2) shortest path P,  $|P \cap S| = O(\log n)$ .

Algorithm:

(1) recursively build price functions.

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,

- (1) Progress: W.h.p. s.c.c, C, in G/S either
  - (i) either  $|C| \leq \frac{3}{4}|V|$
  - (ii) or  $\kappa(C) \leq \kappa/2$ .

(2) shortest path P,  $|P \cap S| = O(\log n)$ .

Algorithm:

(1) recursively build price functions.

(2) do  $O(\log n)$  iterations of Bellman/Dijkstra.

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,

- (1) Progress: W.h.p. s.c.c, C, in G/S either
  - (i) either  $|C| \leq \frac{3}{4}|V|$
  - (ii) or  $\kappa(C) \leq \kappa/2$ .

(2) shortest path P,  $|P \cap S| = O(\log n)$ .

Algorithm:

- (1) recursively build price functions.
- (2) do O(log n) iterations of Bellman/Dijkstra.All edges in clusters have positive weight.

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds *S*, s.t.,

- (1) Progress: W.h.p. s.c.c, C, in G/S either
  - (i) either  $|C| \leq \frac{3}{4}|V|$
  - (ii) or  $\kappa(C) \leq \kappa/2$ .

(2) shortest path P,  $|P \cap S| = O(\log n)$ .

Algorithm:

- (1) recursively build price functions.
- (2) do  $O(\log n)$  iterations of Bellman/Dijkstra. All edges in clusters have positive weight. All paths cross clusters  $O(\log n)$  times.

Working with  $G_{\geq -1}$ .

 $\kappa(G)$  – maximum number of negative edges in any shortest path from *s*.

Note: path is either "trivial" (single edge from *s*) or negative.

Decomposition Claim: Fast algorithm that finds *S*, s.t.,

(1) Progress: W.h.p. s.c.c, C, in G/S either

(i) either  $|C| \leq \frac{3}{4}|V|$ 

(ii) or  $\kappa(C) \leq \kappa/2$ .

(2) shortest path P,  $|P \cap S| = O(\log n)$ .

Algorithm:

(1) recursively build price functions.

(2) do O(log n) iterations of Bellman/Dijkstra.
 All edges in clusters have positive weight.
 All paths cross clusters O(log n) times.

 $O((m+n\log n)\log^2 n)$  time.



 $G_{\geq 0}$  All negative weights set to 0.

 $G_{\geq 0}$  All negative weights set to 0.

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, C:

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, *C*:  $D(C) = \max_{u \in C} d(u, v).$ 

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, C:

 $D(C) = \max_{u,v \in C} d(u,v).$ 

Claim: Any negative path uses at most D(C) negative edges in  $G_{\geq -1}$  in C.

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, C:

 $D(C) = \max_{u,v \in C} d(u,v).$ 

Claim: Any negative path uses at most D(C) negative edges in  $G_{\geq -1}$  in C.

Proof:  $\kappa$  - number of neg. edges in path.

Neg. edge  $G_{\geq -1}$  is one more negative in G.

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, C:

 $D(C) = \max_{u,v \in C} d(u,v).$ 

Claim: Any negative path uses at most D(C) negative edges in  $G_{\geq -1}$  in C.

Proof:  $\kappa$  - number of neg. edges in path.

Neg. edge  $G_{\geq -1}$  is one more negative in *G*. path  $< -\kappa$  where  $\kappa$  is negative edges.

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, C:

 $D(C) = \max_{u,v \in C} d(u,v).$ 

Claim: Any negative path uses at most D(C) negative edges in  $G_{\geq -1}$  in C.

Proof:  $\kappa$  - number of neg. edges in path.

Neg. edge $G_{\geq -1}$  is one more negative in *G*. path  $< -\kappa$  where  $\kappa$  is negative edges. but path between endpoints of length  $\leq D(C)$ .

 $G_{\geq 0}$  All negative weights set to 0.

Diameter of strongly connected component, C:

 $D(C) = \max_{u,v \in C} d(u,v).$ 

Claim: Any negative path uses at most D(C) negative edges in  $G_{\geq -1}$  in C.

Proof:  $\kappa$  - number of neg. edges in path.

Neg. edge $G_{\geq -1}$  is one more negative in *G*. path  $< -\kappa$  where  $\kappa$  is negative edges. but path between endpoints of length  $\leq D(C)$ . negative cycle in *G*.

Categorization:

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \leq \Delta$ }.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ .

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. In-Light-Vertices: Size of In-Balls  $\le \frac{3}{4}|V|$ .

In-Heavy: otherwise.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*:

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*:

Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\Delta$ .

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n / \Delta$ . Region:  $\{u : d(u, v) \le \ell\}$ 

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n / \Delta$ . Region:  $\{u : d(u, v) \le \ell\}$ 

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n / \Delta$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n / \Delta$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex.

(2) Remove region from light-vertices.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\Delta$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.
- (3) Repeat.

Categorization: In-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }. Out-Balls( $\Delta$ , v): { $u : d(u, v) \le \Delta$ }.

In-Light-Vertices: Size of In-Balls  $\leq \frac{3}{4}|V|$ . In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\Delta$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex.

(2) Remove region from light-vertices.

(3) Repeat.

Out-Region growing....symmetric.

Graph is SCC of with  $kappa = \kappa(G)$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

Graph is SCC of with  $kappa = \kappa(G)$ In-Region-growing around *v*:

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ .

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n / \kappa$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n/\kappa$ 

Proof: Pr[edge(x, y) in different region.]

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n / \kappa$ 

Proof: Pr[edge (x, y) in different region.]

 $\sum_r \Pr[y \text{ not in } r | x \text{ in } r] \Pr[x \text{ in } r].$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n/\kappa$ 

Proof: Pr[edge (x, y) in different region.]  $\sum_{r} Pr[y \text{ not in } r | x \text{ in } r]Pr[x \text{ in } r].$ Note:  $\sum_{r} Pr[x \text{ in } r] \leq 1.$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n/\kappa$ 

Proof: Pr[edge (x, y) in different region.]  $\sum_{r} Pr[y \text{ not in } r | x \text{ in } r]Pr[x \text{ in } r].$ Note:  $\sum_{r} Pr[x \text{ in } r] \leq 1.$ Even in Texas probabilities  $\leq 1.$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n / \kappa$ 

Proof: Pr[edge (x, y) in different region.]  $\sum_{r} Pr[y \text{ not in } r|x \text{ in } r]Pr[x \text{ in } r].$ Note:  $\sum_{r} Pr[x \text{ in } r] \leq 1.$ Even in Texas probabilities  $\leq 1.$  $Pr[y \notin r|x \in r] \leq Pr[\ell \in [d(v(r), x), d(v(r), y]]] \leq pw(e)$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n/\kappa$ 

Proof: Pr[edge (x, y) in different region.]  $\sum_{r} Pr[y \text{ not in } r|x \text{ in } r]Pr[x \text{ in } r].$ Note:  $\sum_{r} Pr[x \text{ in } r] \leq 1.$ Even in Texas probabilities  $\leq 1.$  $Pr[y \notin r|x \in r] \leq Pr[\ell \in [d(v(r), x), d(v(r), y]]] \leq pw(e)$ 

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n/\kappa$ 

Proof: Pr[edge (x, y) in different region.]  $\sum_r Pr[y \text{ not in } r|x \text{ in } r]Pr[x \text{ in } r].$ Note:  $\sum_r Pr[x \text{ in } r] \leq 1.$ Even in Texas probabilities  $\leq 1.$  $Pr[y \notin r|x \in r] \leq Pr[\ell \in [d(v(r), x), d(v(r), y]]] \leq pw(e)$ 

Implies that  $O(\log n)$  expected edges in weight  $\leq \kappa$  positive weight path.

Graph is SCC of with  $kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex for  $\Delta = \kappa/4$ .

(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability  $pw(e) = 20w(e) \log n/\kappa$ 

Proof: Pr[edge (x, y) in different region.]  $\sum_r Pr[y \text{ not in } r|x \text{ in } r]Pr[x \text{ in } r].$ Note:  $\sum_r Pr[x \text{ in } r] \leq 1.$ Even in Texas probabilities  $\leq 1.$  $Pr[y \notin r|x \in r] \leq Pr[\ell \in [d(v(r), x), d(v(r), y]]] \leq pw(e)$ 

Implies that  $O(\log n)$  expected edges in weight  $\leq \kappa$  positive weight path.

Graph is SCC with  $\kappa = \kappa(G)$ 

Graph is SCC with  $\kappa = \kappa(G)$ 

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around v:

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ .

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex.

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

(1) Region-grow from light vertex.

(2) Remove region from light-vertices.

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.

(3) Repeat.

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.

(3) Repeat.

Claim: Removing between edge regions w.h.p. leave (i) SCC of size  $\leq \frac{3}{4}|V|$ . (ii) or SCC's *C* of  $\kappa(C) \leq \kappa/2$ .

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.

(3) Repeat.

Claim: Removing between edge regions w.h.p. leave (i) SCC of size  $\leq \frac{3}{4}|V|$ . (ii) or SCC's *C* of  $\kappa(C) \leq \kappa/2$ .

(i) Regions from light vertices, thus are small, w.h.p.

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around v: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.

(3) Repeat.

Claim: Removing between edge regions w.h.p. leave (i) SCC of size  $\leq \frac{3}{4}|V|$ . (ii) or SCC's *C* of  $\kappa(C) \leq \kappa/2$ .

(i) Regions from light vertices, thus are small, w.h.p.

(ii) Remaining vertices have heavy in-balls and out-balls.

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.

(3) Repeat.

Claim: Removing between edge regions w.h.p. leave (i) SCC of size  $\leq \frac{3}{4}|V|$ . (ii) or SCC's *C* of  $\kappa(C) \leq \kappa/2$ .

- (i) Regions from light vertices, thus are small, w.h.p.
- (ii) Remaining vertices have heavy in-balls and out-balls. In cycle of diameter  $\leq \kappa/2$

# Decomposition: analysis.

Graph is SCC with  $\kappa = \kappa(G)$ 

In-Region-growing around *v*: Random geometric  $\ell \in G(p)$ ,  $p = 20 \log n/\kappa$ . Region:  $\{u : d(u, v) \le \ell\}$ 

- (1) Region-grow from light vertex.
- (2) Remove region from light-vertices.

(3) Repeat.

Claim: Removing between edge regions w.h.p. leave (i) SCC of size  $\leq \frac{3}{4}|V|$ . (ii) or SCC's *C* of  $\kappa(C) \leq \kappa/2$ .

- (i) Regions from light vertices, thus are small, w.h.p.
- (ii) Remaining vertices have heavy in-balls and out-balls. In cycle of diameter  $\leq \kappa/2$

 $\Longrightarrow \le \kappa/2$  edges in neg path.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$ 

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{\geq -1}$ 

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{\geq -1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{\geq -1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's. And:

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's.

And:

Expected edges between components on short path  $O(\log n)$ .

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's.

And:

Expected edges between components on short path  $O(\log n)$ .

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's.

And:

Expected edges between components on short path  $O(\log n)$ .

Alg:

(1) Local price functions with recursion.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's.

And:

Expected edges between components on short path  $O(\log n)$ .

Alg:

(1) Local price functions with recursion.

(2) Dijkstra/Bellman with expected  $O(\log n)$  iterations.

Price functions: Find  $\phi$  takes -W edges to -W/2 edges. Repeat.  $O(\log nW)$  Subtlety is path length.

Small diameter SCC's with many hop negative path in  $G_{>-1}$ 

 $\implies$  have negative cycle in  $G_{\geq -2}$ .

Decompose graph by removing edges into smaller SCC's or smaller diameter SCC's.

And:

Expected edges between components on short path  $O(\log n)$ .

Alg:

- (1) Local price functions with recursion.
- (2) Dijkstra/Bellman with expected O(log n) iterations.Slightly subtle, expected requeing is O(log n) per vertex.