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Scaling algorithm: O(m+/nlog nC) by Goldberg.
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O(log C) Reduction to the following problem.

Edge weights > —2, minimum cycle mean > 1, add s with w(s,v) =0.
Todo: price function that ensures all edge weights > —1.
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Some sort of “Scaling”..
Max negative weight W — W/2 — W/4....
O(log W).
Some complications due to path length n.
E.g. Maximum negative length path is nW.
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k(G) — maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either
(i) either [C| < 2|V
(i) or x(C) < x/2.
(2) shortest path P, |[PN S| = O(logn).

Algorithm:
(1) recursively build price functions.
(2) do O(logn) iterations of Bellman/Dijkstra.
All edges in clusters have positive weight.
All paths cross clusters O(logn) times.

O((m+ nlog n)log? n) time.
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Categorization:
In-Balls(A, v): {u:d(u,v) < A}.
Out-Balls(A, v): {u: d(u,v) < A}.

In-Light-Vertices: Size of In-Balls < %\ V.
In-Heavy: otherwise.
Out-Light and Out-Heavy similar.

In-Region-growing around v:
Random geometric ¢ € G(p), p =20logn/A.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Out-Region growing....symmetric.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)



Decomposition: analysis.

Graph is SCC of with kappa = x(G)



Decomposition: analysis.

Graph is SCC of with kappa = x(G)
In-Region-growing around v:



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y. Prly notin r|x in r]Pr[x in r].



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.
Claim: edge is between regions with probability
pw(e)=20w(e)logn/x
Proof: Prledge (x,y) in different region.]

Y, Prly notin rixin r]Pr[x in r].

Note: Y, Pr[x in r] < 1.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.

Even in Texas probabilities < 1.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly & rix e r] < Pr{t € [d(v(r), x),d(v(r),y]I] < pw(e)



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x

Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly & rix e r] < Pr{t € [d(v(r), x),d(v(r),y]I] < pw(e)



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x
Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly ¢ rix € r] < Pr[t € [d(v(r),x),d(v(r), y]]] < pw(e)

Implies that O(log n) expected edges in weight < k positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p=20logn/x.
Region: {u: d(u,v) </}

(1) Region-grow from light vertex for A = k /4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e)=20w(e)logn/x
Proof: Prledge (x,y) in different region.]
Y, Prly notin rixin r]Pr[x in r].
Note: Y, Pr[x in r] < 1.
Even in Texas probabilities < 1.
Prly ¢ rix € r] < Pr[t € [d(v(r),x),d(v(r), y]]] < pw(e)

Implies that O(log n) expected edges in weight < k positive weight
path.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)



Decomposition: analysis.

Graph is SCC with k¥ = x(G)



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.

(2) Remove region from light-vertices.
(3) Repeat.

i) SCC of size < 2|V/|.

)
)
)
Claim: Removing between edge regions w.h.p. leave
(
(il) or SCC’s C of x(C) < k/2.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.

(i) Regions from light vertices, thus are small, w.h.p.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.
(i) Regions from light vertices, thus are small, w.h.p.
(il) Remaining vertices have heavy in-balls and out-balls.



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
Region: {u: d(u,v) < (¢}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.

(i) Regions from light vertices, thus are small, w.h.p.

(il) Remaining vertices have heavy in-balls and out-balls.
In cycle of diameter < x/2



Decomposition: analysis.

Graph is SCC with k¥ = x(G)

In-Region-growing around v:
Random geometric ¢ € G(p), p = 20log n/x.
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(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size < 2|V/|.
(il) or SCC’s C of x(C) < k/2.

(i) Regions from light vertices, thus are small, w.h.p.
(il) Remaining vertices have heavy in-balls and out-balls.
In cycle of diameter < x/2
= < k/2 edges in neg path.
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Quick Review.

Price functions: Find ¢ takes —W edges to —W/2 edges. Repeat.
O(log nW) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G>_1
= have negative cycle in G>_».

Decompose graph by removing edges into smaller SCC’s
or smaller diameter SCC’s.
And:
Expected edges between components on short path O(log n).

Alg:
(1) Local price functions with recursion.
(2) Dijkstra/Bellman with expected O(log n) iterations.
Slightly subtle, expected requeing is O(log n) per vertex.



