
Bellman-Ford. Djikstra. Price Functions.
Given G = (V ,E), w : E → Z , on edges, and s ∈ V , find d(s,v)
∀v ∈ V .

d(s,v) - length of shortest path.

Djikstra: Non-Negative edge weights: d(v) = ∞,d(s) = 0.
S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e).
S = S+u.

(Reachable) Negative cycle, answer is undefined.

Find price Function: φ : V → Z .
cφ (e = (u,v)) = φ(u)−φ(v)+w(e).

Note: d(v)≤ d(u)+w(e) =⇒ d(u)+w(e)−d(v)≥ 0.
φ(v) = d(v) produces non-negative edge weights.
Shortest path under cφ (e) is same as under w(e).
p from s to t , ∑e∈p cφ (e) = φ(t)−φ(s)+w(p).

Thus: d(s,v) is a price fucntion whose reduced costs make all edge
weights positive.
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Bellman/Dijkstra.

Approach: Add s, with w(s,v) = 0 for all v ∈ V .

Bellman/Djikstra Round: Have d(v).
For all e = (u,v), w(e)≤ 0, d(v) = min(d(v),d(u)+w(e)).

S = φ .
Find u = argminv ̸∈Sd(v).
update(u): for e = (u,v),d(v) = min(d(v),d(u)+w(e).
S = S+u.

Claim: After k rounds, d(v)≤ path length with ≤ k negative edges.

Induction.

O(n) iterations of Bellman/Dijkstra is good.

O(n(n+m logn)) or slightly better.
Quadratic time.

Scaling algorithm: O(m
√

n lognC) by Goldberg.
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Scaling Idea: Restricted Shortest Path Instance.

O(logC) Reduction to the following problem.

Edge weights ≥−2, minimum cycle mean ≥ 1, add s with w(s,v) = 0.
Todo: price function that ensures all edge weights ≥−1.

Price function in G≥−1 (w(e)< 0 → w ′(e) = w(e)−1)

Price function, phi , in G≥−1.
w ′

φ
(e = (u,v)) = w ′(e)−φ(v)+φ(u)≥ 0.

=⇒ wφ (e) = w(e)−φ(v)+φ(u)≥−1.

Some sort of “Scaling”..
Max negative weight W → W/2 → W/4....
O(logW ).
Some complications due to path length n.

E.g. Maximum negative length path is nW .
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Decomposition.

Working with G≥−1.

κ(G) – maximum number of negative edges in any shortest path from
s.

Note: path is either “trivial” (single edge from s) or negative.

Decomposition Claim: Fast algorithm that finds S, s.t.,
(1) Progress: W.h.p. s.c.c, C, in G/S either

(i) either |C| ≤ 3
4 |V |

(ii) or κ(C)≤ κ/2.
(2) shortest path P, |P ∩S|= O(logn).

Algorithm:
(1) recursively build price functions.
(2) do O(logn) iterations of Bellman/Dijkstra.

All edges in clusters have positive weight.
All paths cross clusters O(logn) times.

O((m+n logn) log2 n) time.
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Low Diameter Strongly Connected Components.

G≥0

All negative weights set to 0.

Diameter of strongly connected component, C:
D(C) = maxu,v∈C d(u,v).

Claim: Any negative path uses at most D(C) negative edges in
G≥−1 in C.

Proof: κ - number of neg. edges in path.
Neg. edgeG≥−1 is one more negative in G.
path <−κ where κ is negative edges.
but path between endpoints of length ≤ D(C).
negative cycle in G.
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Low Diameter Decomposition.

Categorization:

In-Balls(∆,v): {u : d(u,v)≤∆}.
Out-Balls(∆,v): {u : d(u,v)≤∆}.

In-Light-Vertices: Size of In-Balls ≤ 3
4 |V |.

In-Heavy: otherwise.

Out-Light and Out-Heavy similar.

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/∆.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Out-Region growing....symmetric.
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Decomposition: analysis.

Graph is SCC of with kappa = κ(G)
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Even in Texas probabilities ≤ 1.
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path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :

Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.

Region: {u : d(u,v)≤ ℓ}
(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.

(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.

(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]

∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].

Note: ∑r Pr [x in r ]≤ 1.
Even in Texas probabilities ≤ 1.

Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.

Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC of with kappa = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex for ∆= κ/4.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: edge is between regions with probability
pw(e) = 20w(e) logn/κ

Proof: Pr[edge (x ,y) in different region.]
∑r Pr [y not in r |x in r ]Pr [x in r ].
Note: ∑r Pr [x in r ]≤ 1.

Even in Texas probabilities ≤ 1.
Pr [y ̸∈ r |x ∈ r ]≤ Pr [ℓ ∈ [d(v(r),x),d(v(r),y ]]]≤ pw(e)

Implies that O(logn) expected edges in weight ≤ κ positive weight
path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :

Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.

Region: {u : d(u,v)≤ ℓ}
(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.

(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.

(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.

(ii) Remaining vertices have heavy in-balls and out-balls.
In cycle of diameter ≤ κ/2

=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2

=⇒≤ κ/2 edges in neg path.



Decomposition: analysis.

Graph is SCC with κ = κ(G)

In-Region-growing around v :
Random geometric ℓ ∈ G(p), p = 20 logn/κ.
Region: {u : d(u,v)≤ ℓ}

(1) Region-grow from light vertex.
(2) Remove region from light-vertices.
(3) Repeat.

Claim: Removing between edge regions w.h.p. leave
(i) SCC of size ≤ 3

4 |V |.
(ii) or SCC’s C of κ(C)≤ κ/2.

(i) Regions from light vertices, thus are small, w.h.p.
(ii) Remaining vertices have heavy in-balls and out-balls.

In cycle of diameter ≤ κ/2
=⇒≤ κ/2 edges in neg path.



Quick Review.

Price functions: Find φ takes −W edges to −W/2 edges. Repeat.

O(lognW ) Subtlety is path length.

Small diameter SCC’s with many hop negative path in G≥−1
=⇒ have negative cycle in G≥−2.

Decompose graph by removing edges into smaller SCC’s
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Alg:
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(2) Dijkstra/Bellman with expected O(logn) iterations.
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