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Nash’s Theorem



Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.

Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.

Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)
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Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does she do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium:
neither player has incentive to change strategy.
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Proving Nash.

n players.

Player i has strategy set {1, . . . ,mi}.

Payoff function for player i : ui(s1, . . . ,sn) (e.g., ∈ ℜn).

Mixed strategy for player i : xi is vector over strategy set.

Nash Equilibrium: x = (x1, . . . ,xN) where

∀i∀x ′
i ,ui(x−i ;x ′

i )≤ ui(x). (1)

What is x? A vector of vectors: vector i is length mi .
What is x−i ;z? x with xi replaced by z.
What (1) does say? No new strategy for player i that is better!

Theorem: There is a Nash Equilibrium.
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Brouwer Fixed Point Theorem.
Theorem: Every continuous function from a closed compact convex
(c.c.c.) set to itself has a fixed point.

0
0

1

1

y = x

y = f (x)

Fixed point!

What is the closed convex set here?
The unit square? Or the unit interval?
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Brouwer implies Nash.

The set of mixed strategies x is closed convex set.

That is, x = (x1, . . . ,xn) where |xi |1 = 1.

αx ′+(1−α)x ′′ is a mixed strategy.

Define φ(x1, . . . ,xn) = (z1, . . . ,zn)

where zi = argmaxz ′i

[
ui(x−i ;z ′i

)−∥zi −xi∥2
2

]
.

Unique minimum as it is quadratic.
zi is continuous in x .
Mixed strategy utilities is polynomial of entries of x

with coefficients being payoffs in game matrix.

φ(·) is continuous on the closed convex set.

Brouwer: Has a fixed point: φ(ẑ) = ẑ.
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Quick Almost Irrelevant Question.

Define φ(x1, . . . ,xn) = (z1, . . . ,zn)

where zi = argmaxz ′i

[
ui(x−i ;z ′i

)−∥zi −xi∥2
2

]
.

Question: which way will it go?
Some pure strategy is (tied for) best response.

Which way will it go?
Change coordinates proportional to utility differences.

Tradeoffs squared penalty function against benefit in utility.

Looks like a gradient.

This is (another) property of the quadratic “regularizer.”

Technically: need to project back to feasible set.
Distribution for each player.
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Fixed Point is Nash.

φ(x1, . . . ,xn) = (z1, . . . ,zn) where
zi = argmaxz ′i

[
ui(x−i ;z ′i

)−∥zi −xi∥2
2

]
.

Fixed point: φ(ẑ) = ẑ

If ẑ not Nash, there is i ,yi where

ui(ẑ−i ;yi)> ui(ẑ)+δ .

Consider ŷi = (1−α)ẑi +α(yi − ẑi).
(1−α)ui( ˆz−i ; ŷi)+∥ẑi − ŷi∥2?

(1−α)ui(ẑ)+α(ui(ẑ)+δ )−α2∥ẑi −yi∥2

= ui(ẑ)+αδ −α2∥yi − ẑi∥2 > ui(ẑ).

The last inequality true when α < δ

∥yi−zi∥2 .

Thus, ẑ not a fixed point!

Thus, fixed point is Nash.
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(1−α)ui( ˆz−i ; ŷi)+∥ẑi − ŷi∥2?
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(1−α)ui(ẑ)+α(ui(ẑ)+δ )−α2∥ẑi −yi∥2
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Thus, ẑ not a fixed point!

Thus, fixed point is Nash.



Fixed Point is Nash.

φ(x1, . . . ,xn) = (z1, . . . ,zn) where
zi = argmaxz ′i

[
ui(x−i ;z ′i

)−∥zi −xi∥2
2

]
.

Fixed point: φ(ẑ) = ẑ
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Thus, ẑ not a fixed point!

Thus, fixed point is Nash.



Fixed Point is Nash.

φ(x1, . . . ,xn) = (z1, . . . ,zn) where
zi = argmaxz ′i

[
ui(x−i ;z ′i

)−∥zi −xi∥2
2

]
.

Fixed point: φ(ẑ) = ẑ
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Thus, ẑ not a fixed point!

Thus, fixed point is Nash.



Fixed Point is Nash.

φ(x1, . . . ,xn) = (z1, . . . ,zn) where
zi = argmaxz ′i

[
ui(x−i ;z ′i

)−∥zi −xi∥2
2

]
.

Fixed point: φ(ẑ) = ẑ
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ui(ẑ−i ;yi)> ui(ẑ)+δ .
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Proof of Brouwer: outline.

Sperner: any subdivision of a simplex and “proper” coloring of its
vertices

=⇒ a simplex in subdivision which is multicolored.

Given a function, f (·), on the simplex.
Take a sequence of subdivisons, define colorings using f (·).
Multicolored simplices have property that f (x)i ≤ xi at vertex i .

=⇒ that the limit point has f (x)i = xi for all i .
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Sperner’s Lemma

For any n+1-dimensional simplex and a subdivion into smaller
simplices.

All vertices are colored {1, . . . ,n+1}.

The coloring is proper if the extremal vertices are differently colored.

Each face only contains the colors of the incident corners.

Lemma: There exist a simplex that has all the colors.

Oops.
Where is multicolored?
Where is multicolored? And now?

By induction!
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Proof of Sperner’s.

One dimension:

Subdivision of [0,1].

Endpoints colored differently.
Odd number of multicolored edges.

Two dimensions.
Consider (r ,g) edges.
Separates two regions.
Dual edge connects regions with r on right.

Exterior region has excess out-degree:
one more (r ,g) than (g, r).

There exist a region with excess in-degree.

(r ,g, r) triangle has in-degree=out-degree.
(g, r ,g) triangle has in-degree=out-degree.

Must be (r ,g,b) triangle.
Must be odd number!
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n+1-dimensional Sperner.

R: counts “rainbow” cells; has all n+1 colors.

Claim: there is an odd number of rainbow cells.

Q: counts “almost rainbow” cells; has {1, . . . ,n}.
Note: exactly one color in {1, . . . ,n} used twice.

Rainbow face: n−1-dimensional, vertices colored with {1, . . . ,n}.
X : number of boundary rainbow faces.
Y : number of internal rainbow faces.

Number of Rainbow Face to Cell Adjacencies: R+2Q = X +2Y

Rainbow faces only on one face of big simplex: {1, . . . ,n}
Induction =⇒ Odd number of rainbow faces.
=⇒ X is odd =⇒ X +2Y is odd =⇒ R+2Q is odd.

R is odd.
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Sperner to Brouwer
Consider simplex:S.

Closed compact sets can be mapped to simplex. Somehow?

Let f : S → S. (Note from n-dimensions to n-dimensions.)

Infinite sequence of subdivisions: S1,S2, . . .

Sj is subdivision of Sj−1. Size of cell → 0 as j → ∞.

A coloring of Sj . Recall ∑i xi = 1 in simplex.
Big simplex vertices ej = (0,0, . . . ,1, . . . ,0) get j .

For a vertex at x .
Assign smallest i with f (x)i < xi .
Exists? Yes. Since ∑i f (x)i = ∑i xi . And not fixed point.

Proper Coloring? Simplex face is at xj = 0 for opposite j .
Thus f (x)j cannot be smaller and is not colored j .

Rainbow cell, in Sj with vertices x j ,1, . . . ,x j ,n+1.
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Rainbow Cells to Brower.

Rainbow cell, in Sj with vertices x j ,1, . . . ,x j ,n+1
j .

Each set of points x j ,k is an infinite set in S.

→ This is a convergent subsequence → has limit point.
→ All have same limit point as they get closer together.

x∗ is (common) limit point.

f (x∗) not fixed point =⇒ f (x∗)i > x∗
i for some i . (Since ∑i x∗

i = 1).

But f (x j ,i)i < x j ,i
i for all j and i and

limj→∞ x j ,i = x∗.

Thus, f (x∗)i ≤ x∗
i by continuity. Contradiction.
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Computing Nash Equilibrium.

PPAD - “Polynomial Parity Argument on Directed Graphs.”

“Graph with unbalanced node (indegree ̸= outdegree) has another.”

Exponentially large graph with vertex set {0,1}n.

Circuit given name of graph finds previous, P(v), and next, N(v).

Sperner: local information gives neighbor.

END OF THE LINE. Given circuits P and N as above, if On is
unbalanced node in the graph, find another unbalanced node.

PPAD is search problems poly-time reducibile to END OF LINE.

NASH → BROUWER → SPERNER → END OF LINE ∈ PPAD.
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Other classes.

PPA: “If undirected graph has a node of odd degree, it has another.

PLS: “Every directed acyclic graph must have a sink.”

PPP:
“If a function maps n elements to n−1 elements, there is a collision.”

All exist: not NP!!! Answer is yes. How to find quickly?

Reduction:
END OF LINE → Piecewise Linear Brouwer → 3D−Sperner→ Nash.

Uh oh. Nash is PPAD-complete.

Who invented? Papadimitriou PapaD and PPAD. Perfect together!
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Sparsest cut approximation

Sparsity of a cut S: E(S,S)

|S|×|S| .

Similar to h(G) from Cheeger: E(S,S)
d |S| .

Factor of two approximations of each other.

Sparsity of a graph is minS
E(S,S)

|S|×|S| .

What is the sparsity of cuts in a the complete graph, Kn?

for |S|= k , sparsity is (k)(n−k)
(n

2)
.

minimum at k = n/2, and is ≈ 1/4.
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Sparsity, complete graph and embeddings.

Graph, G = (V ,E), with sparsity α.
Minimum congestion to embed complete graph?
Cut: (S,S) has |E(S,S)|= α|S|× |S|
Complete |S|× |S| routed over |E(S,S)| edges.

Average edge has to carry |S|× |S|/|E(S,S)| paths.
Congestion is ≥ 1/α.

Linear program gives lower bound on α.

Multicommodity flow (path routing) computes minimum congestion?

Is this an approximation to the minimum sparsity?

Theorem: the complete graph can be routed with O(logn/α)
congestion.

Gives upper bound on α. O(logn) approximation.
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Dual linear program.

Toll problem.

Assign d(e) for edge e ∈ E with ∑e d(e) = 1, to maximize ∑i ,j d(i , j).

Consider cut: (S,S),
assign d(e) = 1/|E(S,S| for e ∈ E(S,S).

∑i ,j d(i , j) =
|S|×|S|
E(S,S)

= 1
α

.

Theorem: The value of the dual is O( logn
α

).
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Region Growing: Warmup.
Length × Width = Area.

Width ≤ Area/Length at some point in region.

Lemma: If ∃i , j ,d(i , j)≥∆, then ∃S with E(S,S)≤ ∑e d(e)
∆ .

Length is d(i , j) or ∆.
d(i ,x) is distance to x .
Sℓ with d(i ,x)≤ ℓ is a cut.

Think Djikstra’s or “Breadth First Search”.
Technically fraction of edges inside Sℓ.

Area is ∑e d(e).
Width is cut-size. Rate of growth at each d(Sℓ).

Or with natural numbers:
Breadth first search tree of depth D.
Each level is a cut.
There exists a cut of size m/D.

Cuz:
Length (depth) times width (cut size) is area (number of edges.)

Problem is that it is not “balanced.”
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Region Growing.

Lemma: ∃x ,y d(x ,y)≥∆ =⇒ cut, S, where |E(S,S)| ≤ O(d(S) logn
∆ ).

Extend, d(·) to vertices: d(v) = ∑e d(e)
n .

Let Sℓ be v where d(x ,v)≤ ℓ..
Define D(x , ℓ) to be the sum of:

(1) d(v) for v ∈ Sℓ.
(2) For e = (u,v), d(e) where u,v ∈ Sℓ

(3) For e = (u,v), u ∈ Sℓ,v ̸∈ Sℓ, ℓ−d(u).

W.L.O.G. D(x ,∆/2)≤ 2∑e d(e)
2 . Ball contains ≤ half the weight.

Let Di = D(x , i ∆
(2 logn) ).

Claim: Exists i such that Di+1 ≤ 2Di .
Proof: Can’t double more than logn times.

Claim: Exists a cut, S, where d(Sℓ)≥ Di and E(S, |S|)≤ 2Di logn
∆

Proof: Interval i : has length ∆
2 logn and area ≤ Di

Width 2Di logn
∆ .
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Approximation Algorithm

Claim: E(S,S)
D(S)

≤ 2 logn
∆ .

Linear program value: ∑i ,j d(i , j)≥ α =minS
E(S,S)

|S||S| .

There exists vertex i , j , where d(i , j) = ∆ =≥ α/n2.

=⇒ E(S,S)

n2D(S)
≤ 2 logn

α
.

Scenario: D(S) = Ω(1) and |S|=Ω(n).
Finds cut of sparsity O(logn/α). Optimal is ≥ 1

α
.

O(logn) approximation.

Do some averaging to get real result.
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A structure.

Low diameter decomposition.

Procedure produces cluster of Diameter O(∆).

O( logn
∆ ) fraction of edges in between.

Repeat until every vertex in a cluster.
Produces:

Decompositon into low-diameter clusters: O(∆).
Edges between “Small”: Õ( 1

∆ ).

Õ(·) hides log factors.
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