or..."Rules for taking duals"

or..."Rules for taking duals" Standard:

or..."Rules for taking duals" Standard:

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ 

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ min  $\leftrightarrow \max$ 

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ min  $\leftrightarrow \max$ 

 $\geq \leftrightarrow \leq$ 

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ 

 $\mathsf{min} \leftrightarrow \mathsf{max}$ 

 $\geq \leftrightarrow \leq$ 

"inequalities"  $\leftrightarrow$  "nonnegative variables"

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ 

 $\mathsf{min} \leftrightarrow \mathsf{max}$ 

 $\geq \leftrightarrow \leq$ 

"inequalities"  $\leftrightarrow$  "nonnegative variables"

"nonnegative variables"  $\leftrightarrow$  "inequalities"

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ 

 $\mathsf{min} \leftrightarrow \mathsf{max}$ 

 $\geq \leftrightarrow \leq$ 

"inequalities"  $\leftrightarrow$  "nonnegative variables"

"nonnegative variables"  $\leftrightarrow$  "inequalities"

One more useful trick: Equality constraints.

or..."Rules for taking duals" Standard:

 $Ax \leq b, \max cx, x \geq 0 \leftrightarrow y^T A \geq c, \min by, y \geq 0.$ 

 $\mathsf{min} \leftrightarrow \mathsf{max}$ 

 $\geq \leftrightarrow \leq$ 

"inequalities" ↔ "nonnegative variables"
"nonnegative variables" ↔ "inequalities"
One more useful trick: Equality constraints.
"equalities" ↔ "unrestricted variables."

#### Maximum Weight Matching. Bipartite Graph $G = (V, E), w : E \rightarrow Z$ .

Bipartite Graph G = (V, E),  $w : E \to Z$ .

Find maximum weight perfect matching.

Bipartite Graph  $G = (V, E), w : E \rightarrow Z$ .

Find maximum weight perfect matching.

Solution:  $x_e$  indicates whether edge e is in matching.

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$
$$x_{e} \ge 0$$

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$
$$x_{e} \ge 0$$

Dual.

Bipartite Graph  $G = (V, E), w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.

Bipartite Graph  $G = (V, E), w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$ 

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted.

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable.

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} \frac{w_e x_e}{w_e x_e}$$
$$\forall v : \sum_{e=(u,v)} x_e = 1 \qquad p_v$$
$$x_e \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ 

Bipartite Graph  $G = (V, E), w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.

Bipartite Graph  $\tilde{G} = (V, E), w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

Bipartite Graph  $G = (V, E), w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v}$$
  
 
$$\forall e = (u, v) : (p_{u} + p_{v}) \geq w_{e}$$

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} X_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v} \\ \forall e = (u, v) : (p_{u} + p_{v}) \geq w_{e}$$

Weak duality?

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v}$$
  
 
$$\forall \boldsymbol{e} = (\boldsymbol{u}, \boldsymbol{v}) : \quad (\boldsymbol{p}_{u} + \boldsymbol{p}_{v}) \geq w_{\boldsymbol{e}}$$

Weak duality? Price function upper bounds matching.

Bipartite Graph  $G = (V, E), w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\begin{aligned} \min \sum_{v} p_{v} \\ \forall e = (u, v) : \quad (p_{u} + p_{v}) \geq w_{e} \end{aligned}$$

Weak duality? Price function upper bounds matching.  $\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} (\rho_u + \rho_v) \leq \sum_v \rho_u.$ 

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v} \\ \forall e = (u, v) : \quad (p_{u} + p_{v}) \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e\in M} w_e x_e \leq \sum_{e=(u,v)\in M} (p_u + p_v) \leq \sum_v p_u.$$

Strong Duality?

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v} \\ \forall e = (u, v) : \quad (p_{u} + p_{v}) \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e\in M} w_e x_e \leq \sum_{e=(u,v)\in M} (p_u + p_v) \leq \sum_v p_u.$$

Strong Duality? Same value solutions.

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v} \\ \forall e = (u, v) : \quad (p_{u} + p_{v}) \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e\in M} w_e x_e \leq \sum_{e=(u,v)\in M} (p_u + p_v) \leq \sum_v p_u.$$

Strong Duality? Same value solutions. Hungarian algorithm

Bipartite Graph G = (V, E),  $w : E \to Z$ . Find maximum weight perfect matching. Solution:  $x_e$  indicates whether edge e is in matching.

$$\max \sum_{e} W_{e} x_{e}$$
$$\forall v : \sum_{e=(u,v)} x_{e} = 1 \qquad p_{v}$$
$$x_{e} \ge 0$$

Dual.

Variable for each constraint.  $p_v$  unrestricted. Constraint for each variable. Edge e,  $p_u + p_v \ge w_e$ Objective function from right hand side.  $\min \sum_v p_v$ 

$$\min \sum_{v} p_{v} \\ \forall e = (u, v) : \quad (p_{u} + p_{v}) \ge w_{e}$$

Weak duality? Price function upper bounds matching.

$$\sum_{e\in M} w_e x_e \leq \sum_{e=(u,v)\in M} (p_u + p_v) \leq \sum_v p_u.$$

Strong Duality? Same value solutions. Hungarian algorithm !!!

$$\max \sum_{e} W_{e} X_{e}$$
$$\forall v : \sum_{e=(u,v)} X_{e} = 1 \qquad p_{v}$$
$$X_{e} \ge 0$$

$$\forall \boldsymbol{e} = (\boldsymbol{u}, \boldsymbol{v}): \quad \boldsymbol{p}_{\boldsymbol{u}} + \boldsymbol{p}_{\boldsymbol{v}} \geq \boldsymbol{w}_{\boldsymbol{e}}$$

$$\max \sum_{e} W_{e} X_{e}$$
$$\forall v : \sum_{e=(u,v)} X_{e} = 1 \qquad p_{v}$$
$$X_{e} \ge 0$$

Dual:

$$\forall \boldsymbol{e} = (\boldsymbol{u}, \boldsymbol{v}): \quad \boldsymbol{p}_{\boldsymbol{u}} + \boldsymbol{p}_{\boldsymbol{v}} \geq \boldsymbol{w}_{\boldsymbol{e}}$$

Complementary slackness:

$$\max \sum_{e} W_{e} X_{e}$$
$$\forall v : \sum_{e=(u,v)} X_{e} = 1 \qquad p_{v}$$
$$X_{e} \ge 0$$

Dual:

$$\forall \boldsymbol{e} = (\boldsymbol{u}, \boldsymbol{v}): \quad \boldsymbol{p}_{\boldsymbol{u}} + \boldsymbol{p}_{\boldsymbol{v}} \geq \boldsymbol{w}_{\boldsymbol{e}}$$

Complementary slackness: Only match on tight edges.

$$\max \sum_{e} W_{e} X_{e}$$
$$\forall v : \sum_{e=(u,v)} X_{e} = 1 \qquad p_{v}$$
$$X_{e} \ge 0$$

Dual:

$$\min \sum_{v} p_{v}$$
  
 
$$\forall e = (u, v) : p_{u} + p_{v} \ge w_{e}$$

Complementary slackness: Only match on tight edges. Nonzero  $p_u$  on matched u.

#### Multicommodity Flow.

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ .

#### Multicommodity Flow.

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair,

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair, so every edge has  $\leq \mu c(e)$  flow

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair, so every edge has  $\leq \mu c(e)$  flow and minimize  $\mu$ .

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair, so every edge has  $\leq \mu c(e)$  flow and minimize  $\mu$ .

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair, so every edge has  $\leq \mu c(e)$  flow and minimize  $\mu$ .

variables:  $f_p$  flow on path p.

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair, so every edge has  $\leq \mu c(e)$  flow and minimize  $\mu$ .

variables:  $f_p$  flow on path p.  $P_i$  -set of paths with endpoints  $s_i, t_i$ .

Given G = (V, E), and capacity function  $c : E \to Z$ , and pairs  $(s_1, t_1), \ldots, (s_k, t_k)$  with demands  $d_1, \ldots, d_k$ . Route  $D_i$  flow for each  $s_i, t_i$  pair, so every edge has  $\leq \mu c(e)$  flow and minimize  $\mu$ .

variables:  $f_p$  flow on path p.  $P_i$  -set of paths with endpoints  $s_i, t_i$ .

$$\forall \boldsymbol{e} : \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \le \mu c_{\boldsymbol{e}}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in P_{i}} f_{\boldsymbol{p}} = D_{i}$$
$$f_{\boldsymbol{p}} \ge 0$$

#### Take the dual.

 $\min \mu$  $\forall e : \sum_{p \ni e} f_p \le \mu c_e$  $\forall i : \sum_{p \in P_i} f_p = D_i$  $f_p \ge 0$ 

Modify to make it  $\geq$ , which "goes with" min.

#### Take the dual.

 $\min \mu$  $\forall e : \sum_{p \ni e} f_p \le \mu c_e$  $\forall i : \sum_{p \in P_i} f_p = D_i$  $f_p \ge 0$ 

Modify to make it  $\geq$ , which "goes with" min. And only constants on right hand side.

#### Take the dual.

$$\begin{aligned} \min \mu \\ \forall e : \sum_{p \ni e} f_p \le \mu c_e \\ \forall i : \sum_{p \in P_i} f_p = D_i \\ f_p \ge 0 \end{aligned}$$

Modify to make it  $\geq$ , which "goes with" min. And only constants on right hand side.

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge \boldsymbol{0}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{D}_{i}$$
$$f_{\boldsymbol{p}} \ge \boldsymbol{0}$$

Dual.

 $\min \mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \geq \boldsymbol{e}} f_{\boldsymbol{p}} \geq \boldsymbol{0}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{D}_{i}$$

min $\mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge 0 \qquad \boldsymbol{d}_{\boldsymbol{e}}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{\boldsymbol{i}}} f_{\boldsymbol{p}} = \boldsymbol{D}_{\boldsymbol{i}} \qquad \boldsymbol{d}_{\boldsymbol{i}}$$

Introduce variable for each constraint.

min $\mu$ 

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var: min <mark>µ</mark>

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

μ

min <mark>µ</mark>

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_e c_e d_e = 1.$ 

min $\mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} \boldsymbol{f}_{\boldsymbol{p}} \ge \boldsymbol{0} \qquad \boldsymbol{d}_{\boldsymbol{e}}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} \boldsymbol{f}_{\boldsymbol{p}} = \boldsymbol{D}_{i} \qquad \boldsymbol{d}_{i}$$

Introduce variable for each constraint. Introduce constraint for each var:

$$\mu \rightarrow \sum_e c_e d_e = 1$$
.  $f_p$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} \boldsymbol{f}_{\boldsymbol{p}} \ge \boldsymbol{0} \qquad \boldsymbol{d}_{\boldsymbol{e}}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} \boldsymbol{f}_{\boldsymbol{p}} = \boldsymbol{D}_{i} \qquad \boldsymbol{d}_{i}$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \ \rightarrow \sum_{e} c_{e} d_{e} = 1. \ f_{\rho} \ \rightarrow \forall p \in P_{i} \ d_{i} - \sum_{e \in \rho} d_{e} \leq 0.$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge \boldsymbol{0} \qquad \boldsymbol{d}_{\boldsymbol{e}}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{D}_{i} \qquad \boldsymbol{d}_{i}$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \ 
ightarrow \sum_{e} c_{e} d_{e} = 1. \ f_{p} \ 
ightarrow orall p \in P_{i} \ d_{i} - \sum_{e \in p} d_{e} \leq 0.$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge 0 \qquad \boldsymbol{d}_{\boldsymbol{e}} \\ \forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{D}_{i} \qquad \boldsymbol{d}_{i}$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_e c_e d_e = 1. \quad f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0.$ Objective: right hand sides.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_{e} d_{e} = 1.$   $f_{p} \rightarrow \forall p \in P_{i} d_{i} - \sum_{e \in p} d_{e} \leq 0.$ Objective: right hand sides. max $\sum_{i} D_{i} d_{i}$ 

$$\max \sum_{i} D_{i} d_{i}$$
 $orall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$ 
 $\sum_{e} c_{e} d_{e} = 1$ 

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_{e} d_{e} = 1.$   $f_{p} \rightarrow \forall p \in P_{i} d_{i} - \sum_{e \in p} d_{e} \leq 0.$ Objective: right hand sides. max $\sum_{i} D_{i} d_{i}$ 

$$egin{aligned} \max \sum_i D_i d_i \ orall p \in P_i : d_i &\leq \sum_{e \in p} d(e) \ \sum_e c_e d_e &= 1 \end{aligned}$$

 $d_i$  - shortest  $s_i, t_i$  path length.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\begin{array}{ll} \mu \ \rightarrow \sum_{e} c_{e} d_{e} = 1. \ f_{p} \ \rightarrow \forall p \in P_{i} \ d_{i} - \sum_{e \in p} d_{e} \leq 0. \\ \text{Objective: right hand sides. } \max \sum_{i} D_{i} d_{i} \end{array}$ 

$$\max \sum_{i} D_{i}d_{i}$$
  
 $\forall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$   
 $\sum_{e} c_{e}d_{e} = 1$   
 $d_{i}$  - shortest  $s_{i}, t_{i}$  path length. Toll problem!

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1$ .  $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0$ . Objective: right hand sides.  $\max \sum_i D_i d_i$ 

$$egin{aligned} \max \sum_i D_i d_i \ orall p \in P_i : d_i &\leq \sum_{e \in p} d(e) \ \sum_e c_e d_e &= 1 \end{aligned}$$

 $d_i$  - shortest  $s_i$ ,  $t_i$  path length. Toll problem! Weak duality: toll lower bounds routing.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1$ .  $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0$ . Objective: right hand sides.  $\max \sum_i D_i d_i$ 

$$\max \sum_{i} D_{i}d_{i}$$
 $orall p \in P_{i}: d_{i} \leq \sum_{e \in p} d(e)$ 
 $\sum_{e} c_{e}d_{e} = 1$ 

 $d_i$  - shortest  $s_i, t_i$  path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1$ .  $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0$ . Objective: right hand sides.  $\max \sum_i D_i d_i$ 

$$egin{aligned} \max \sum_i D_i d_i \ &orall p \in P_i : d_i \leq \sum_{e \in p} d(e) \ &\sum c_e d_e = 1 \end{aligned}$$

 $d_i$  - shortest  $s_i$ ,  $t_i$  path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1$ .  $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0$ . Objective: right hand sides.  $\max \sum_i D_i d_i$ 

$$egin{aligned} \max \sum_i D_i d_i \ &orall p \in P_i : d_i \leq \sum_{e \in p} d(e) \ &\sum c_e d_e = 1 \end{aligned}$$

 $d_i$  - shortest  $s_i$ ,  $t_i$  path length. Toll problem! Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound. First lecture.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1.$   $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0.$ Objective: right hand sides. max $\sum_i D_i d_i$ 

$$\max \sum_{i} D_{i} d_{i}$$
 $orall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$ 
 $\sum_{e} c_{e} d_{e} = 1$ 

*d<sub>i</sub>* - shortest *s<sub>i</sub>*, *t<sub>i</sub>* path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1.$   $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0.$ Objective: right hand sides. max $\sum_i D_i d_i$ 

$$\max \sum_{i} D_{i} d_{i}$$
  
 $orall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$   
 $\sum_{e} c_{e} d_{e} = 1$ 

*d<sub>i</sub>* - shortest *s<sub>i</sub>*, *t<sub>i</sub>* path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness:

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1.$   $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0.$ Objective: right hand sides.  $\max \sum_i D_i d_i$ 

$$\max \sum_{i} D_{i} d_{i}$$
 $orall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$ 
 $\sum_{e} c_{e} d_{e} = 1$ 

*d<sub>i</sub>* - shortest *s<sub>i</sub>*, *t<sub>i</sub>* path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \qquad d_e$$
$$\forall i : \sum_{p \in P_i} f_p = D_i \qquad d_i$$

Introduce variable for each constraint. Introduce constraint for each var:

 $\mu \rightarrow \sum_{e} c_e d_e = 1.$   $f_p \rightarrow \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0.$ Objective: right hand sides. max $\sum_i D_i d_i$ 

$$\max \sum_{i} D_{i} d_{i}$$
  
 $\forall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$   
 $\sum_{i} c_{e} d_{e} = 1$ 

d<sub>i</sub> - shortest s<sub>i</sub>, t<sub>i</sub> path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths only have toll on congested edges.

# Exponential size. Multicommodity flow.

 $\min \mu$ 

$$orall e: \mu c_e - \sum_{p \ni e} f_p \ge 0$$
  
 $orall i: \sum_{p \in P_i} f_p = d_i$   
 $f_p \ge 0$ 

Multicommodity flow.

 $\min \mu$  $\forall e : \mu c_e - \sum_{p \ge e} f_p \ge 0$  $\forall i : \sum_{p \in P_i} f_p = d_i$  $f_p \ge 0$ 

Dual is.

$$ext{max} \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Multicommodity flow.

 $\min \mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge \boldsymbol{0}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{d}_{i}$$
$$f_{\boldsymbol{p}} \ge \boldsymbol{0}$$

Dual is.

$$ext{max} \sum_i D_i d_i$$
 $orall oldsymbol{p} \in oldsymbol{P}_i : oldsymbol{d}_i \leq \sum_{oldsymbol{e} \in oldsymbol{p}} oldsymbol{d}(oldsymbol{e})$ 

Exponential sized programs?

Multicommodity flow.

 $\begin{aligned} \min \mu \\ \forall \boldsymbol{e} : \mu \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} \boldsymbol{f}_{\boldsymbol{p}} \geq \boldsymbol{0} \\ \forall \boldsymbol{i} : \sum_{\boldsymbol{f}_{\boldsymbol{p}}} \boldsymbol{f}_{\boldsymbol{p}} = \boldsymbol{d}_{\boldsymbol{i}} \end{aligned}$ 

$$p \in P_i$$
  
 $f_p \ge 0$ 

Dual is.

$$ext{max} \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs? Answer 1:

Multicommodity flow.

 $\min \mu$  $\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$  $\forall i : \sum_{p \in P_i} f_p = d_i$  $f_p \ge 0$ 

Dual is.

$$ext{max} \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs? Answer 1: We solved anyway!

Multicommodity flow.

 $\min \mu$  $\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$  $\forall i : \sum_{p \in P} f_p = d_i$ 

$$p \in P_i$$
  
 $f_p \ge 0$ 

Dual is.

$$ext{max} \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs? Answer 1: We solved anyway! Answer 2:

Multicommodity flow.

 $\min \mu$  $\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$  $\forall i : \sum_{p \in P_i} f_p = d_i$  $f_p \ge 0$ 

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs? Answer 1: We solved anyway! Answer 2: Ellipsoid algorithm.

#### Exponential size.

Multicommodity flow.

min $\mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ge \boldsymbol{e}} f_{\boldsymbol{p}} \ge \boldsymbol{0}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{d}_{i}$$
$$f_{\boldsymbol{p}} \ge \boldsymbol{0}$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Find violated constraint  $\rightarrow$  poly time algorithm.

### Exponential size.

Multicommodity flow.

min $\mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge \boldsymbol{0}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{d}_{i}$$
$$f_{\boldsymbol{p}} \ge \boldsymbol{0}$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Find violated constraint  $\rightarrow$  poly time algorithm.

Answer 3: there is polynomial sized formulation.

### Exponential size.

Multicommodity flow.

min $\mu$ 

$$\forall \boldsymbol{e} : \boldsymbol{\mu} \boldsymbol{c}_{\boldsymbol{e}} - \sum_{\boldsymbol{p} \ni \boldsymbol{e}} f_{\boldsymbol{p}} \ge \boldsymbol{0}$$
$$\forall \boldsymbol{i} : \sum_{\boldsymbol{p} \in \boldsymbol{P}_{i}} f_{\boldsymbol{p}} = \boldsymbol{d}_{i}$$
$$f_{\boldsymbol{p}} \ge \boldsymbol{0}$$

Dual is.

$$\max \sum_i D_i d_i$$
 $orall p \in P_i: d_i \leq \sum_{e \in p} d(e)$ 

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Find violated constraint  $\rightarrow$  poly time algorithm.

Answer 3: there is polynomial sized formulation. Question: what is it?

Set of facilities: F, opening cost  $f_i$  for facility i

Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

 $d_{ij}$  - distance between *i* and *j*.

Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

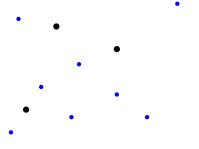
*d<sub>ij</sub>* - distance between *i* and *j*. (notation abuse: clients/facility confusion.)

Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

*d<sub>ij</sub>* - distance between *i* and *j*. (notation abuse: clients/facility confusion.)

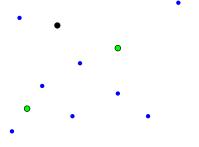
Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

*d<sub>ij</sub>* - distance between *i* and *j*. (notation abuse: clients/facility confusion.)



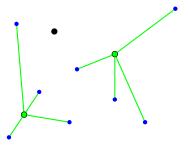
Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

*d<sub>ij</sub>* - distance between *i* and *j*. (notation abuse: clients/facility confusion.)



Set of facilities: F, opening cost  $f_i$  for facility iSet of clients: D.

*d<sub>ij</sub>* - distance between *i* and *j*. (notation abuse: clients/facility confusion.)



$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in \mathcal{F} \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in \mathcal{F}, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{x}_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
  
 
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
  
 
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
  
 
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in \mathcal{F} \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in \mathcal{F}, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{x}_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in \mathcal{F} \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in \mathcal{F}, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad x_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_j$  charge to client. maximize price for client to connect!

$$\begin{split} \min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij} \\ \forall j \in D \quad \sum_{i \in F} x_{ij} \geq 1 \\ \forall i \in F, j \in D \quad x_{ij} \leq y_i, \\ x_{ij}, y_i \geq 0 \end{split}$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{x}_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_i \alpha_i$  total payment.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{x}_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in \mathcal{F} \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in \mathcal{F}, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{x}_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad \textbf{x}_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

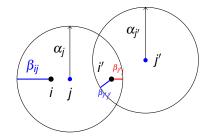
maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there. Savings is  $\alpha_{i} - d_{ij}$ .

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$egin{aligned} \max \sum_{j} lpha_{j} \ orall i \in \mathcal{F} \quad \sum_{j \in \mathcal{D}} eta_{ij} \leq f_{i} \ orall i \in \mathcal{F}, j \in \mathcal{D} \quad lpha_{j} - eta_{ij} \leq d_{ij} \quad x_{ij} \ lpha_{j}, eta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there. Savings is  $\alpha_{j} - d_{ij}$ . Willing to pay  $\beta_{ij} = \alpha_{j} - d_{ij}$ .

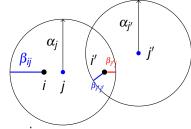


$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$egin{aligned} \max \sum_{j} lpha_{j} \ orall i \in \mathcal{F} & \sum_{j \in \mathcal{D}} eta_{ij} \leq f_{i} \ orall i \in \mathcal{F}, j \in \mathcal{D} & lpha_{j} - eta_{ij} \leq d_{ij} \quad x_{ij} \ lpha_{j}, eta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there. Savings is  $\alpha_{j} - d_{ij}$ . Willing to pay  $\beta_{ij} = \alpha_{i} - d_{ij}$ .



Total payment to facility i at most  $f_i$  before opening.

$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$\begin{aligned} \max \sum_{j} \alpha_{j} \\ \forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i} \\ \forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij} \quad x_{ij} \\ \alpha_{j}, \beta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there. Savings is  $\alpha_{j} - d_{ij}$ . Willing to pay  $\beta_{ij} = \alpha_{i} - d_{ij}$ .

$$\begin{array}{c|c} \alpha_{j} \\ \beta_{ij} \\ i \\ j \end{array}$$

Total payment to facility i at most  $f_i$  before opening. Complementary slackness:

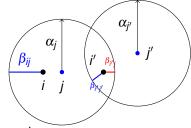
$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$egin{aligned} \max \sum_{j} lpha_{j} \ orall i \in \mathcal{F} \quad \sum_{j \in \mathcal{D}} eta_{ij} \leq f_{i} \ orall i \in \mathcal{F}, j \in \mathcal{D} \quad lpha_{j} - eta_{ij} \leq d_{ij} \quad x_{ij} \ lpha_{j}, eta_{ij} \geq 0 \end{aligned}$$

 $\alpha_i$  charge to client.

maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there. Savings is  $\alpha_{j} - d_{ij}$ .

Willing to pay 
$$\beta_{ij} = \alpha_j - d_{ij}$$
.



Total payment to facility *i* at most  $f_i$  before opening. Complementary slackness:  $x_{ij} \ge 0$  if and only if  $\alpha_j \ge d_{ij}$ .

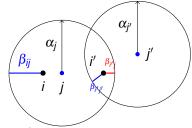
$$\min \sum_{i \in F} y_i f_i + \sum_{i \in F, j \in D} x_{ij} d_{ij}$$
$$\forall j \in D \quad \sum_{i \in F} x_{ij} \ge 1$$
$$\forall i \in F, j \in D \quad x_{ij} \le y_i,$$
$$x_{ij}, y_i \ge 0$$

$$egin{aligned} \max \sum_{j} lpha_{j} \ orall i \in \mathcal{F} \quad \sum_{j \in \mathcal{D}} eta_{ij} \leq f_{i} \ orall i \in \mathcal{F}, j \in \mathcal{D} \quad lpha_{j} - eta_{ij} \leq d_{ij} \quad x_{ij} \ lpha_{j}, eta_{ij} \geq 0 \end{aligned}$$

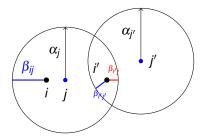
 $\alpha_i$  charge to client.

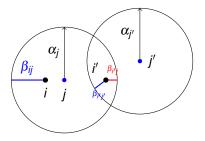
maximize price for client to connect! Objective:  $\sum_{j} \alpha_{j}$  total payment. Client *j* travels or pays to open facility *i*. Costs client  $d_{ij}$  to get to there.

Savings is  $\alpha_j - d_{ij}$ . Willing to pay  $\beta_{ij} = \alpha_j - d_{ij}$ .

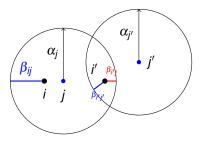


Total payment to facility *i* at most  $f_i$  before opening. Complementary slackness:  $x_{ij} \ge 0$  if and only if  $\alpha_j \ge d_{ij}$ . only assign client to "paid to" facilities.

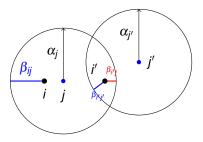




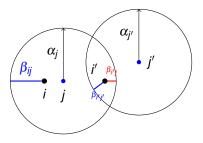
1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .



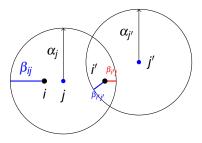
- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_i$ ,



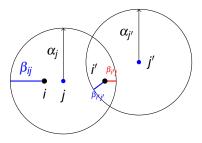
- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ , (a) Let  $N_j = \{i : x_{ij} > 0\}$ .



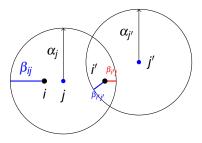
- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining) α<sub>j</sub>,
  (a) Let N<sub>j</sub> = {i : x<sub>ij</sub> > 0}.
  (b) Open cheapest facility *i* in N<sub>j</sub>.



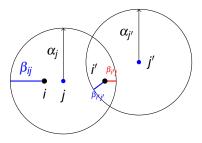
- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.



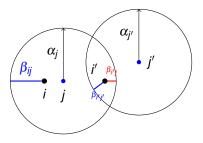
- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>j'</sub> ∩ N<sub>j</sub> ≠ Ø assigned to *i*.
     ("Balls" overlap.)



- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>j'</sub> ∩ N<sub>j</sub> ≠ Ø assigned to *i*.
     ("Balls" overlap.)

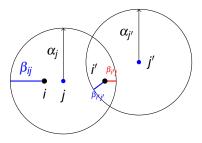


- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>j'</sub> ∩ N<sub>j</sub> ≠ Ø assigned to *i*.
     ("Balls" overlap.)
- 3. Removed assigned clients, goto 2.



- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>j'</sub> ∩ N<sub>j</sub> ≠ Ø assigned to *i*.
     ("Balls" overlap.)
- 3. Removed assigned clients, goto 2.

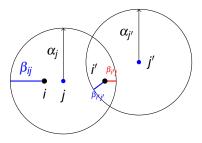
Choose facilities to cover all clients.



- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>j'</sub> ∩ N<sub>j</sub> ≠ Ø assigned to *i*.
     ("Balls" overlap.)
- 3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.

Use "balls" of clients to pick which facilities.



- 1. Find solution to primal, (x, y), and dual,  $(\alpha, \beta)$ .
- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>j'</sub> ∩ N<sub>j</sub> ≠ Ø assigned to *i*.
     ("Balls" overlap.)
- 3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.

Use "balls" of clients to pick which facilities.

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ . Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_{i} y_i f_i + x_{ij} d_{ij}$ .

2. For smallest (remaining)  $\alpha_j$ ,

**Claim:** Total facility cost is at most  $\sum_{i} f_{i} y_{i}$ . Note: Recall LP minimized:  $\sum_{i} y_{i} f_{i} + x_{ii} d_{ii}$ .

- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$

**Claim:** Total facility cost is at most  $\sum_{i} f_{i} y_{i}$ . Note: Recall LP minimized:  $\sum_{i} y_{i} f_{i} + x_{ii} d_{ii}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility i in  $N_j$ .

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

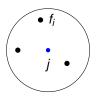
- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>i'</sub> ∩ N<sub>i</sub> ≠ Ø assigned to *i*.

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_{i} y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_j$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>i'</sub> ∩ N<sub>i</sub> ≠ Ø assigned to *i*.

Proof: Step 2 picks client j.



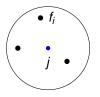
**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.

**Proof:** Step 2 picks client *j*.  $f_{min}$  - min cost facility in  $N_j$ 



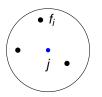
**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.

**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$ 



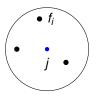


**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_{i} y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in N<sub>j</sub>.
     Every client *j'* with N<sub>i'</sub> ∩ N<sub>i</sub> ≠ Ø assigned to *i*.

**Proof:** Step 2 picks client *j*.  $f_{min}$  - min cost facility in  $N_j$ 



$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij}$$

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

2. For smallest (remaining)  $\alpha_i$ ,

(a) Let 
$$N_j = \{i : x_{ij} > 0\}.$$

(b) Open cheapest facility *i* in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.

**Proof:** Step 2 picks client *j*.  $f_{min}$  - min cost facility in  $N_j$ 



$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i$$

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

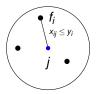
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let 
$$N_j = \{i : x_{ij} > 0\}$$
.

(b) Open cheapest facility *i* in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.

**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$ 



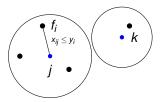
$$f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i.$$

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility i in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.



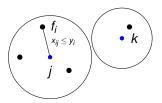
**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$   $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$ . For  $k \neq j$  used in Step 2.

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility i in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.



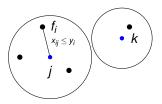
**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$   $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$ . For  $k \neq j$  used in Step 2.  $N_j \cap N_k = \emptyset$  for *j* and *k* in step 2.

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_{i} y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility i in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.



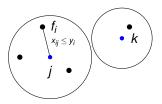
**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$   $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$ . For  $k \neq j$  used in Step 2.  $N_j \cap N_k = \emptyset$  for *j* and *k* in step 2.  $\rightarrow$  Any facility in  $\leq 1$  sum from step 2.

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_i y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility *i* in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.



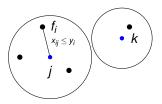
**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$   $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$ . For  $k \neq j$  used in Step 2.  $N_j \cap N_k = \emptyset$  for *j* and *k* in step 2.  $\rightarrow$  Any facility in  $\leq 1$  sum from step 2.  $\rightarrow$  total step 2 facility cost is  $\leq \sum_i y_i f_i$ .

**Claim:** Total facility cost is at most  $\sum_i f_i y_i$ .

Note: Recall LP minimized:  $\sum_{i} y_i f_i + x_{ij} d_{ij}$ .

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}$ .
  - (b) Open cheapest facility *i* in  $N_i$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.



**Proof:** Step 2 picks client *j*.  $f_{\min}$  - min cost facility in  $N_j$   $f_{\min} \leq f_{\min} \cdot \sum_{i \in N_j} x_{ij} \leq f_{\min} \sum_{i \in N_j} y_i \leq \sum_{i \in N_j} y_i f_i$ . For  $k \neq j$  used in Step 2.  $N_j \cap N_k = \emptyset$  for *j* and *k* in step 2.  $\rightarrow$  Any facility in  $\leq 1$  sum from step 2.  $\rightarrow$  total step 2 facility cost is  $\leq \sum_i y_i f_i$ .

2. For smallest (remaining)  $\alpha_i$ ,

2. For smallest (remaining)  $\alpha_j$ , (a) Let  $N_j = \{i : x_{ij} > 0\}$ .

2. For smallest (remaining) α<sub>j</sub>,
(a) Let N<sub>j</sub> = {i : x<sub>ij</sub> > 0}.
(b) Open cheapest facility *i* in N<sub>j</sub>.

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility i in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.

- 2. For smallest (remaining)  $\alpha_i$ ,
  - (a) Let  $N_j = \{i : x_{ij} > 0\}.$
  - (b) Open cheapest facility i in  $N_j$ .

Every client j' with  $N_{j'} \cap N_j \neq \emptyset$  assigned to i.

2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_{j} \alpha_{j}$ 

Client *j* is directly connected. Clients j' are indirectly connected.

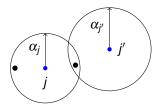
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_{j} \alpha_{j}$ 

Client *j* is directly connected. Clients j' are indirectly connected.



2. For smallest (remaining)  $\alpha_i$ ,

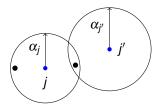
(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in N<sub>j</sub>.
 Every client *j'* with N<sub>i'</sub> ∩ N<sub>i</sub> ≠ Ø assigned to *i*.

Recall: Dual maximizes:  $\sum_{j} \alpha_{j}$ 

Client *j* is directly connected. Clients j' are indirectly connected.

Connection Cost of j:



2. For smallest (remaining)  $\alpha_i$ ,

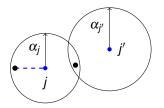
(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_{j} \alpha_{j}$ 

Client *j* is directly connected. Clients j' are indirectly connected.

Connection Cost of j:



2. For smallest (remaining)  $\alpha_i$ ,

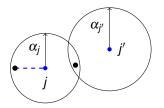
(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_{j} \alpha_{j}$ 

Client *j* is directly connected. Clients j' are indirectly connected.

Connection Cost of *j*:  $\leq \alpha_j$ .



2. For smallest (remaining)  $\alpha_i$ ,

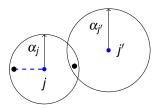
(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.

Connection Cost of *j*:  $\leq \alpha_j$ . Connection Cost of *j*':



2. For smallest (remaining)  $\alpha_i$ ,

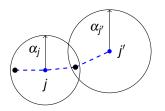
(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.

Connection Cost of *j*:  $\leq \alpha_j$ . Connection Cost of *j*':



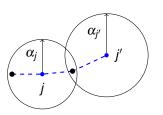
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of *j*:  $\leq \alpha_j$ . Connection Cost of *j'*:  $\leq \alpha_{i'} + \alpha_i + \alpha_i$ 

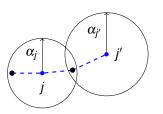
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_j \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of 
$$j: \leq \alpha_j$$
.  
Connection Cost of  $j': \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$ .

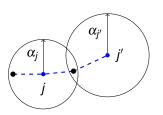
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in N<sub>j</sub>.
 Every client *j'* with N<sub>i'</sub> ∩ N<sub>i</sub> ≠ Ø assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of 
$$j: \leq \alpha_j$$
.  
Connection Cost of  $j': \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$ .  
since  $\alpha_j \leq \alpha_{j'}$ 

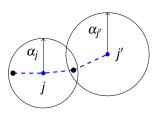
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of *j*:  $\leq \alpha_j$ . Connection Cost of *j'*:  $\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$ . since  $\alpha_j \leq \alpha_{j'}$ Total connection cost:

at most  $3\sum_{i} \alpha_{i} \leq 3$  times Dual OPT.

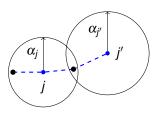
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of  $j: \leq \alpha_j$ . Connection Cost of  $j': \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$ . since  $\alpha_j \leq \alpha_{j'}$ Total connection cost: at most  $3\sum_j \alpha_j \leq 3$  times Dual OPT. Previous Slide: Facility cost:

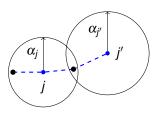
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of *j*:  $\leq \alpha_j$ . Connection Cost of *j'*:  $\leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$ . since  $\alpha_j \leq \alpha_{j'}$ Total connection cost:

at most  $3\sum_{j} \alpha_{j} \leq 3$  times Dual OPT.

Previous Slide: Facility cost:  $\leq$  primal "facility" cost  $\leq$  Primal OPT.

## Connection Cost.

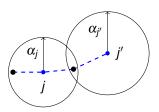
2. For smallest (remaining)  $\alpha_i$ ,

(a) Let  $N_j = \{i : x_{ij} > 0\}.$ 

(b) Open cheapest facility *i* in  $N_j$ . Every client *j'* with  $N_{i'} \cap N_i \neq \emptyset$  assigned to *i*.

Recall: Dual maximizes:  $\sum_j \alpha_j$ 

Client *j* is directly connected. Clients j' are indirectly connected.



Connection Cost of  $j: \leq \alpha_j$ . Connection Cost of  $j': \leq \alpha_{j'} + \alpha_j + \alpha_j \leq 3\alpha_{j'}$ . since  $\alpha_j \leq \alpha_{j'}$ Total connection cost: at most  $3\sum_j \alpha_j \leq 3$  times Dual OPT. Previous Slide: Facility cost:

 $\leq$  primal "facility" cost  $\leq$  Primal OPT.

Total Cost: 4 OPT.

Client j:

Client *j*:  $\sum_i x_{ij} = 1$ ,

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ .

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2. Expected opening cost:

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ .

Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{min}$ .)

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ .

Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than fmin.)

 $\sum_{i \in N_j} x_{ij} f_i$ 

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ii}$ , in step 2.

Expected opening cost: (note: larger than fmin.)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than fmin.)

 $\sum_{i \in N_j} x_{ij} f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total  $\leq \sum_i y_i f_i.$ 

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than fmin.)

 $\sum_{i \in N_j} x_{ij} f_i \leq \sum_{i \in N_j} y_i f_i.$ and separate balls implies total  $\leq \sum_i y_i f_i.$ 

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$ 

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)  $\sum_{i \in N_j} x_{ij} f_i \leq \sum_{i \in N_j} y_i f_i$ . and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)  $\sum_{i \in N_i} x_{ij} f_i \leq \sum_{i \in N_i} y_i f_i$ .

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost j'

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)  $\sum_{i \in N_i} x_{ij} f_i \leq \sum_{i \in N_i} y_i f_i$ .

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)  $\sum_{i \in N_i} x_{ij} f_i \leq \sum_{i \in N_i} y_i f_i$ .

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)  $\sum_{i \in N_i} x_{ij} f_i \leq \sum_{i \in N_i} y_i f_i$ .

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

ightarrow Expected cost is  $\leq (2 lpha_{j'} + D_{j'}).$ 

Client *j*:  $\sum_i x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{min}$ .)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

ightarrow Expected cost is  $\leq (2\alpha_{j'} + D_{j'})$ . Connection cost:  $2\sum_j \alpha_j + \sum_j D_j$ .

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{min}$ .)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

 $\rightarrow$  Expected cost is  $\leq (2\alpha_{j'} + D_{j'})$ . Connection cost:  $2\sum_{j} \alpha_{j} + \sum_{j} D_{j}$ . 2OPT(D) plus connection cost of primal.

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{min}$ .)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

 $\begin{array}{l} \rightarrow \text{ Expected cost is } \leq (2\alpha_{j'} + D_{j'}).\\ \text{Connection cost: } 2\sum_j \alpha_j + \sum_j D_j.\\ 2OPT(D) \text{ plus connection cost of primal.} \end{array}$ 

Total expected cost:

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than  $f_{\min}$ .)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

→ Expected cost is  $\leq (2\alpha_{j'} + D_{j'})$ . Connection cost:  $2\sum_{j} \alpha_{j} + \sum_{j} D_{j}$ . 2OPT(D) plus connection cost of primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than fmin.)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

→ Expected cost is  $\leq (2\alpha_{j'} + D_{j'})$ . Connection cost:  $2\sum_j \alpha_j + \sum_j D_j$ .

2OPT(D) plus connection cost of primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.

Client *j*:  $\sum_{i} x_{ij} = 1$ ,  $x_{ij} \ge 0$ . Probability distribution!  $\rightarrow$  Choose from distribution,  $x_{ij}$ , in step 2.

Expected opening cost: (note: larger than fmin.)

 $\sum_{i\in N_j} x_{ij} f_i \leq \sum_{i\in N_j} y_i f_i.$ 

and separate balls implies total  $\leq \sum_i y_i f_i$ .

 $D_j = \sum_i x_{ij} d_{ij}$  Expected connection cost of primal for *j*.

Expected connection cost  $j' = \alpha_j + \alpha_{j'} + D_j$ .

In step 2: pick in increasing order of  $\alpha_j + D_j$ .

 $\rightarrow \text{Expected cost is } \leq (2\alpha_{j'} + D_{j'}).$ Connection cost:  $2\sum_{j} \alpha_{j} + \sum_{j} D_{j}.$ 

2OPT(D) plus connection cost of primal.

Total expected cost:

Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.

 $\rightarrow$  at most 3*OPT*.

1. Feasible integer solution.

- 1. Feasible integer solution.
- 2. Feasible dual solution.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.) Begin with feasible dual.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

Begin with feasible dual.

Raise dual variables until tight constraint.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

## Primal dual algorithm.

- 1. Feasible integer solution.
- 2. Feasible dual solution.
- 3. Cost of integer solution  $\leq \alpha$  times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

Begin with feasible dual.

Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

$$\max \sum_{j} \alpha_{j}$$

$$\forall i \in F \quad \sum_{j \in D} \beta_{ij} \leq f_{i}$$

$$\forall i \in F, j \in D \quad \alpha_{j} - \beta_{ij} \leq d_{ij}$$

$$\alpha_{j}, \beta_{ij} \leq 0$$

Phase 1:

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ .

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_i$  for every (unconnected) client.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_i = d_{ij}$  for some *i* 

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why?

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ .

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition:Paying  $\beta_{ij}$  to open *i*.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition:Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ .

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition:Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why?

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition:Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ 

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

Phase 2:

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

For client *j*, connected facility *i* is opened.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

For client *j*, connected facility *i* is opened. Good.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

For client j, connected facility i is opened. Good. Connected facility not open

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

For client *j*, connected facility *i* is opened. Good. Connected facility not open

 $\rightarrow$  exists client *j*<sup>'</sup> paid *i* and connected to open facility.

**Phase 1:** 1. Initially  $\alpha_j, \beta_{ij} = 0$ . 2. Raise  $\alpha_j$  for every (unconnected) client. When  $\alpha_j = d_{ij}$  for some *i* raise  $\beta_{ij}$  at same rate Why? Dual:  $\alpha_j - \beta_{ij} \le d_{ij}$ . Intuition: Paying  $\beta_{ij}$  to open *i*. Stop when  $\sum_i \beta_{ij} = f_i$ . Why? Dual:  $\sum_i \beta_{ij} \le f_i$ Intuition: facility paid for. *Temporarily open i*. *Connect* all tight *ji* clients *j* to *i*.

3. Continue until all clients connected.

#### Phase 2:

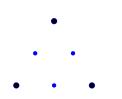
Make "edge" between two facilities if paid by a common client. Permanently open an independent set of facilities in graph.

For client j, connected facility i is opened. Good. Connected facility not open

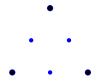
 $\rightarrow$  exists client *j*<sup>'</sup> paid *i* and connected to open facility. Connect *j* to *j*<sup>'</sup>'s open facility.



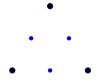
Constraints for dual.



Constraints for dual.  $\sum_{j} \beta_{ij} \leq f_i$ 



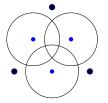
Constraints for dual.  $\sum_{j} \beta_{ij} \leq f_i$   $\alpha_i - \beta_{ij} \leq d_{ij}.$ 



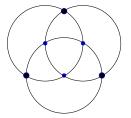
Constraints for dual.  $\sum_{j} \beta_{ij} \leq f_i$   $\alpha_i - \beta_{ij} \leq d_{ij}.$ Grow  $\alpha_j.$ 



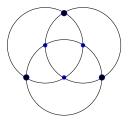
Constraints for dual.  $\sum_{j} \beta_{ij} \leq f_i$   $\alpha_i - \beta_{ij} \leq d_{ij}.$ Grow  $\alpha_j.$ 



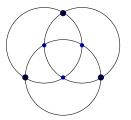
Constraints for dual. 
$$\begin{split} & \sum_{j} \beta_{ij} \leq f_i \\ & \alpha_i - \beta_{ij} \leq d_{ij}. \\ & \text{Grow } \alpha_j. \\ & \alpha_j = d_{ij}! \end{split}$$

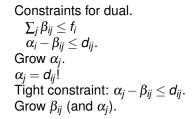


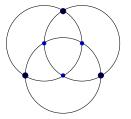
Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:

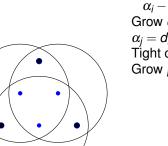


Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}.$ 

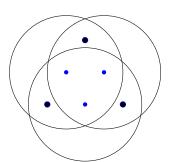






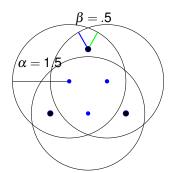


Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}.$ Grow  $\beta_{ij}$  (and  $\alpha_j$ ).

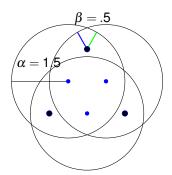


Constraints for dual.  

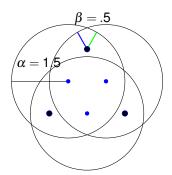
$$\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$$
Grow  $\alpha_j$ .  
 $\alpha_j = d_{ij}!$   
Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}.$   
Grow  $\beta_{ij}$  (and  $\alpha_j$ ).



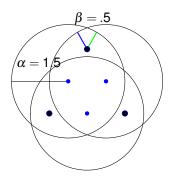
Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities.



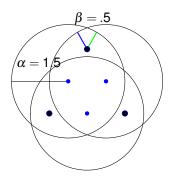
Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_j$ ).  $\sum_{j} \beta_{ij} = f_i$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_i$ 



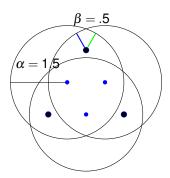
Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_j$ ).  $\sum_{j} \beta_{ij} = f_i$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_i$ 



Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j}$ 

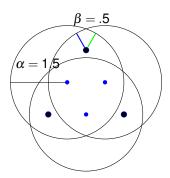


Constraints for dual.  $\sum_{j} \beta_{ij} \leq f_i$   $\alpha_i - \beta_{ij} \leq d_{ij}.$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}.$ Grow  $\beta_{ij}$  (and  $\alpha_j$ ).  $\sum_{j} \beta_{ij} = f_i \text{ for all facilities.}$ Tight:  $\sum_{j} \beta_{ij} \leq f_i$ LP Cost:  $\sum_{j} \alpha_j = 4.5$ 



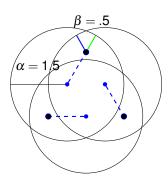
Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}.$ Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.



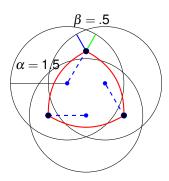
Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}.$ Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.



Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}.$ Grow  $\beta_{ij}$  (and  $\alpha_j$ ).  $\sum_{j} \beta_{ij} = f_i$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_i$ LP Cost:  $\sum_{j} \alpha_j = 4.5$ 

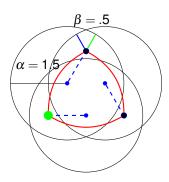
*Temporarily open all facilities.* Assign Clients to "paid to" open facility.



Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.

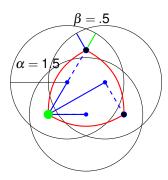
Assign Clients to "paid to" open facility. Connect facilities with common client.



Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with common client. Open independent set.

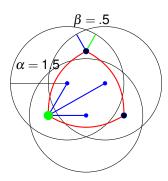


Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_i \\ \alpha_i - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_j$ .  $\alpha_j = d_{ij}!$ Tight constraint:  $\alpha_j - \beta_{ij} \leq d_{ij}.$ Grow  $\beta_{ij}$  (and  $\alpha_j$ ).  $\sum_{j} \beta_{ij} = f_i$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_i$ LP Cost:  $\sum_{j} \alpha_j = 4.5$ 

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with common client. Open independent set.

Connect to "killer" client's facility.

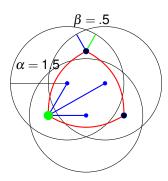


Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with common client. Open independent set.

Connect to "killer" client's facility. Cost: 1 + 3.7

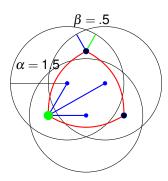


Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with common client. Open independent set.

Connect to "killer" client's facility. Cost: 1 + 3.7 = 4.7.



Constraints for dual.  $\begin{array}{l} \sum_{j} \beta_{ij} \leq f_{i} \\ \alpha_{i} - \beta_{ij} \leq d_{ij}. \end{array}$ Grow  $\alpha_{j}$ .  $\alpha_{j} = d_{ij}!$ Tight constraint:  $\alpha_{j} - \beta_{ij} \leq d_{ij}$ . Grow  $\beta_{ij}$  (and  $\alpha_{j}$ ).  $\sum_{j} \beta_{ij} = f_{i}$  for all facilities. Tight:  $\sum_{j} \beta_{ij} \leq f_{i}$ LP Cost:  $\sum_{j} \alpha_{j} = 4.5$ 

Temporarily open all facilities.

Assign Clients to "paid to" open facility. Connect facilities with common client. Open independent set.

Connect to "killer" client's facility.

Cost: 1 + 3.7 = 4.7.

A bit more than the LP cost.

Claim: Client only pays one facility.

**Claim:** Client only pays one facility. Independent set of facilities.

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$ .

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$ .

Proof:

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Proof:**  $f_i = \sum_{j \in S_i} \beta_{ij}$ 

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Proof:** 

 $f_i = \sum_{i \in S_i} \beta_{ii} = \sum_{i \in S_i} \alpha_i - d_{ii}.$ 

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$ .

Proof:

$$\begin{split} f_i &= \sum_{j \in S_i} \beta_{ij} = \sum_{j \in S_i} \alpha_j - d_{ij}. \\ \text{Since directly connected: } \beta_{ij} &= \alpha_j - d_{ij}. \end{split}$$

Claim: Client only pays one facility.

Independent set of facilities.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ .

Proof:

$$\begin{split} f_i &= \sum_{j \in S_i} \beta_{ij} = \sum_{j \in S_i} \alpha_j - d_{ij}. \\ \text{Since directly connected: } \beta_{ij} &= \alpha_j - d_{ij}. \end{split}$$

Claim: Client *j* is indirectly connected to *i* 

# **Claim:** Client *j* is indirectly connected to $i \rightarrow d_{ij} \leq 3\alpha_j$ .

#### Claim: Client *j* is indirectly connected to *i*

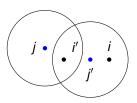
 $ightarrow d_{ij} \leq 3 lpha_j.$ 

Directly connected to (temp open) i'



#### Claim: Client *j* is indirectly connected to *i*

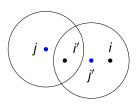
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) i' has common client j' with some facility *i*.

#### Claim: Client *j* is indirectly connected to *i*

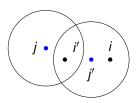
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) i'has common client j' with some facility i. client j' has  $\alpha_{j'} \ge d_{jj'}$  and  $\alpha_j \ge d_{i'j'}$ .

#### Claim: Client *j* is indirectly connected to *i*

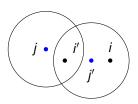
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) i'has common client j' with some facility i. client j' has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When i' opens, stops both  $\alpha_j$  and  $\alpha'_j$ .

#### Claim: Client *j* is indirectly connected to *i*

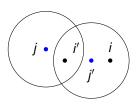
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) i'has common client j' with some facility i. client j' has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When i' opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later

#### Claim: Client *j* is indirectly connected to *i*

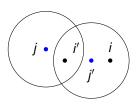
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) i'has common client j' with some facility i. client j' has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When i' opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)

#### Claim: Client *j* is indirectly connected to *i*

 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) i'has common client j' with some facility i. client j' has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When i' opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ .

#### Claim: Client *j* is indirectly connected to *i*

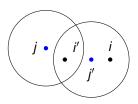
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) *i'* has common client *j'* with some facility *i*. client *j'* has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When *i'* opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ . Total distance from *j* to *j'*.

#### Claim: Client *j* is indirectly connected to *i*

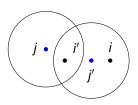
 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) *i'* has common client *j'* with some facility *i*. client *j'* has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When *i'* opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ . Total distance from *j* to *j'*.  $d_{jj'} +$ 

#### Claim: Client *j* is indirectly connected to *i*

 $ightarrow d_{ij} \leq 3 lpha_j.$ 

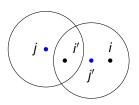


Directly connected to (temp open) *i'* has common client *j'* with some facility *i*. client *j'* has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When *i'* opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ . Total distance from *j* to *j'*.  $d_{ij'} + d_{i'j'} +$ 

### Analysis.

#### Claim: Client *j* is indirectly connected to *i*

 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) *i'* has common client *j'* with some facility *i*. client *j'* has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When *i'* opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ . Total distance from *j* to *j'*.  $d_{ij'} + d_{i'j'} + d_{i'j}$ 

### Analysis.

#### Claim: Client *j* is indirectly connected to *i*

 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) *i'* has common client *j'* with some facility *i*. client *j'* has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When *i'* opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ . Total distance from *j* to *j'*.  $d_{ij'} + d_{i'j'} + d_{i'j} \le 3\alpha_i$ 

### Analysis.

#### Claim: Client *j* is indirectly connected to *i*

 $ightarrow d_{ij} \leq 3 lpha_j.$ 



Directly connected to (temp open) *i'* has common client *j'* with some facility *i*. client *j'* has  $\alpha_{j'} \ge d_{ij'}$  and  $\alpha_j \ge d_{i'j'}$ . When *i'* opens, stops both  $\alpha_j$  and  $\alpha'_j$ .  $\alpha_{j'}$  stopped no later (...maybe earlier..)  $\alpha_{j'} \le \alpha_j$ . Total distance from *j* to *j'*.  $d_{ji'} + d_{i'j'} + d_{i'j} \le 3\alpha_j$ 

Claim: Client only pays one facility.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Claim:** Client *j* is indirectly connected to *i* 

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Claim:** Client *j* is indirectly connected to *i*  $\rightarrow d_{ij} \le 3\alpha_j$ .

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j$ . **Claim:** Client *j* is indirectly connected to *i*  $\rightarrow d_{ij} \leq 3\alpha_j$ .

Total Cost:

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Claim:** Client *j* is indirectly connected to *i*  $\rightarrow d_{ij} \le 3\alpha_j$ .

Total Cost:

direct clients dual  $(\alpha_i)$  pays for facility and own connections.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Claim:** Client *j* is indirectly connected to *i*  $\rightarrow d_{ij} \le 3\alpha_j$ .

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.  $f_i + \sum_{j \in S_i} d_{ij} \le \sum_j \alpha_j$ . **Claim:** Client *j* is indirectly connected to i $\rightarrow d_{ij} \le 3\alpha_j$ .

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual. Total Cost: 3 times dual.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j.$ 

Claim: Client *j* is indirectly connected to *i* 

 $ightarrow {\it d}_{\it ij} \leq 3 lpha_{\it j}.$ 

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j.$ 

Claim: Client *j* is indirectly connected to *i* 

 $ightarrow {\it d}_{\it ij} \leq 3 lpha_{\it j}.$ 

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j.$ 

Claim: Client *j* is indirectly connected to *i* 

 $ightarrow {\it d}_{\it ij} \leq 3 lpha_{\it j}.$ 

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j.$ 

Claim: Client *j* is indirectly connected to *i* 

 $ightarrow {\it d}_{\it ij} \leq$  3 $lpha_{\it j}$ .

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Claim: Client only pays one facility.

**Claim:**  $S_i$  - directly connected clients to open facility *i*.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j.$ 

Claim: Client *j* is indirectly connected to *i* 

 $ightarrow {\it d}_{\it ij} \leq$  3 $lpha_{\it j}$ .

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap!

**Claim:** Client only pays one facility. **Claim:**  $S_i$  - directly connected clients to open facility *i*.

 $f_i + \sum_{j \in S_i} d_{ij} \leq \sum_j \alpha_j.$ 

Claim: Client *j* is indirectly connected to *i* 

 $ightarrow {\it d}_{\it ij} \leq 3 lpha_{\it j}.$ 

Total Cost:

direct clients dual ( $\alpha_j$ ) pays for facility and own connections. plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!