
Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤

“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0 ↔ yT A ≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities” ↔ “nonnegative variables”

“nonnegative variables” ↔ “inequalities”

One more useful trick: Equality constraints.

“equalities” ↔ “unrestricted variables.”



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .

Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.

Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0

Dual.
Variable for each constraint.

pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv

unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.

Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable.

Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we

Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side.

min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality?

Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.

∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality?

Same value solutions. Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions.

Hungarian algorithm !!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm

!!!



Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .
Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual.
Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : (pu +pv )≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M(pu +pv )≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.
Nonzero pu on matched u.



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:

Only match on tight edges.
Nonzero pu on matched u.



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.

Nonzero pu on matched u.



Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.
Nonzero pu on matched u.



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .

Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,

so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow

and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.

Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .
Route Di flow for each si , ti pair,
so every edge has ≤ µc(e) flow
and minimize µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Take the dual.

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0

Modify to make it ≥, which “goes with” min.

And only constants on right hand side.

minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Take the dual.

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0

Modify to make it ≥, which “goes with” min.
And only constants on right hand side.

minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Take the dual.

minµ

∀e : ∑
p∋e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0

Modify to make it ≥, which “goes with” min.
And only constants on right hand side.

minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0

de

∀i : ∑
p∈Pi

fp = Di

di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.

Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:

µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ

→ ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1.

fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp

→ ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.

Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.

Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides.

max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length.

Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!

Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.

Strong Duality. Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality.

Tight lower bound. First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound.

First lecture. Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture.

Or Experts.
Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness:

only route on shortest paths
only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths

only have toll on congested edges.



Dual.
minµ

∀e :µce − ∑
p∋e

fp ≥ 0 de

∀i : ∑
p∈Pi

fp = Di di

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1

di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1:

We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2:

Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.

Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.

Question: what is it?



Exponential size.
Multicommodity flow. minµ

∀e :µce − ∑
p∋e

fp ≥ 0

∀i : ∑
p∈Pi

fp = di

fp ≥ 0

Dual is.
max∑

i
Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

Exponential sized programs?

Answer 1: We solved anyway!

Answer 2: Ellipsoid algorithm.
Find violated constraint → poly time algorithm.

Answer 3: there is polynomial sized formulation.
Question: what is it?



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .

(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



Facility location

Set of facilities: F , opening cost fi for facility i

Set of clients: D.

dij - distance between i and j .
(notation abuse: clients/facility confusion.)

Triangle inequality: dij ≤ dik +dkj .



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.

maximize price for client to connect!
Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.

Client j travels or pays to open facility i .
Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.

Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .

Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.

Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .
only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness:

xij ≥ 0 if and only if αj ≥ dij .
only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



LP and Dual. Interpretation?

min ∑
i∈F

yi fi + ∑
i∈F ,j∈D

xijdij

∀j ∈ D ∑
i∈F

xij ≥ 1

∀i ∈ F , j ∈ D xij ≤ yi ,

xij ,yi ≥ 0

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij xij

αj ,βij ≥ 0

αj charge to client.
maximize price for client to connect!

Objective: ∑j αj total payment.
Client j travels or pays to open facility i .

Costs client dij to get to there.
Savings is αj −dij .
Willing to pay βij = αj −dij .

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

Total payment to facility i at most fi before opening.
Complementary slackness: xij ≥ 0 if and only if αj ≥ dij .

only assign client to “paid to” facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.

Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Use Dual.

i

βij

j

j ′i ′ βi ′ j

βi ′ j ′

αj

αj ′

1. Find solution to primal, (x ,y), and dual, (α,β ).

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .
(“Balls” overlap.)

3. Removed assigned clients, goto 2.

Choose facilities to cover all clients.
Use “balls” of clients to pick which facilities.



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .

fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin

≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij

≤ fmin ∑i∈Nj
yi ≤ ∑i∈Nj

yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi

k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi

≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi

k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.

Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.

→ Any facility in ≤ 1 sum from step 2.
→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Integral facility cost at most LP facility cost.

Claim: Total facility cost is at most ∑i fiyi .

Note: Recall LP minimized: ∑i yi fi +xijdij .

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

fi

j

xij ≤ yi k

Proof: Step 2 picks client j .
fmin - min cost facility in Nj

fmin ≤ fmin ·∑i∈Nj
xij ≤ fmin ∑i∈Nj

yi ≤ ∑i∈Nj
yi fi .

For k ̸= j used in Step 2.
Nj ∩Nk = /0 for j and k in step 2.
→ Any facility in ≤ 1 sum from step 2.

→ total step 2 facility cost is ≤ ∑i yi fi .



Connection Cost.

2. For smallest (remaining) αj ,

(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.

(b) Open cheapest facility i in Nj .
Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j :

≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j :

≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .

Connection Cost of j ′:
≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj

≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .

since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:

≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Connection Cost.

2. For smallest (remaining) αj ,
(a) Let Nj = {i : xij > 0}.
(b) Open cheapest facility i in Nj .

Every client j ′ with Nj ′ ∩Nj ̸= /0 assigned to i .

Recall: Dual maximizes: ∑j αj

Client j is directly connected. Clients j ′ are indirectly connected.

j

j ′αj

αj ′

Connection Cost of j : ≤ αj .
Connection Cost of j ′:

≤ αj ′ +αj +αj ≤ 3αj ′ .
since αj ≤ αj ′

Total connection cost:
at most 3∑j αj ≤ 3 times Dual OPT.

Previous Slide: Facility cost:
≤ primal “facility” cost ≤ Primal OPT.

Total Cost: 4 OPT.



Twist on randomized rounding.

Client j :

∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1,

xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.

Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution!

→ Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost:

(note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)

∑i∈Nj
xij fi ≤ ∑i∈Nj

yi fi .
and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi

≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij

Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′

αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).

Connection cost: 2∑j αj +∑j Dj .
2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:

Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.

Connection cost at most 2OPT + connection cost of prmal.
→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Twist on randomized rounding.

Client j : ∑i xij = 1, xij ≥ 0.
Probability distribution! → Choose from distribution, xij , in step 2.

Expected opening cost: (note: larger than fmin.)
∑i∈Nj

xij fi ≤ ∑i∈Nj
yi fi .

and separate balls implies total ≤ ∑i yi fi .

Dj = ∑i xijdij Expected connection cost of primal for j .

Expected connection cost j ′ αj +αj ′ +Dj .

In step 2: pick in increasing order of αj +Dj .

→ Expected cost is ≤ (2αj ′ +Dj ′).
Connection cost: 2∑j αj +∑j Dj .

2OPT (D) plus connection cost of primal.

Total expected cost:
Facility cost is at most facility cost of primal.
Connection cost at most 2OPT + connection cost of prmal.

→ at most 3OPT .



Primal dual algorithm.
1. Feasible integer solution.

2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.

3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it.

Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program.

Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)

Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.

Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.

Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Primal dual algorithm.
1. Feasible integer solution.
2. Feasible dual solution.
3. Cost of integer solution ≤ α times dual value.

Just did it. Used linear program. Faster?

Typically. (If dual is maximization.)
Begin with feasible dual.
Raise dual variables until tight constraint.
Set corresponding primal variable to an integer.

Recall Dual:

max∑
j

αj

∀i ∈ F ∑
j∈D

βij ≤ fi

∀i ∈ F , j ∈ D αj −βij ≤ dij

αj ,βij ≤ 0



Facility location primal dual.
Phase 1:

1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.

2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.

When αj = dij for some i
raise βij at same rate Why? Dual: αj −βij ≤ dij .

Intuition:Paying βij to open i .
Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intuition: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate

Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why?

Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .

Intuition:Paying βij to open i .
Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intuition: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .

Why? Dual: ∑i βij ≤ fi
Intuition: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why?

Dual: ∑i βij ≤ fi
Intuition: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.

Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.

Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:

Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.

Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened.

Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.

Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open

→ exists client j ′ paid i and connected to open facility.
Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Facility location primal dual.
Phase 1: 1. Initially αj ,βij = 0.
2. Raise αj for every (unconnected) client.
When αj = dij for some i

raise βij at same rate Why? Dual: αj −βij ≤ dij .
Intuition:Paying βij to open i .

Stop when ∑i βij = fi .
Why? Dual: ∑i βij ≤ fi

Intuition: facility paid for.
Temporarily open i.
Connect all tight ji clients j to i .

3. Continue until all clients connected.

Phase 2:
Make “edge” between two facilities if paid by a common client.
Permanently open an independent set of facilities in graph.

For client j , connected facility i is opened. Good.
Connected facility not open
→ exists client j ′ paid i and connected to open facility.

Connect j to j ′’s open facility.



Example.

β = .5

α = 1.5

Constraints for dual.

∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi

αi −βij ≤ dij .
Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .

αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .

αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !

Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint:

αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .

Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).

∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.

Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi

LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi

LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj

= 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.

Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.

Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.

Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.

Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.

Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7

= 4.7.
A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.

A bit more than the LP cost.



Example.

β = .5

α = 1.5

Constraints for dual.
∑j βij ≤ fi
αi −βij ≤ dij .

Grow αj .
αj = dij !
Tight constraint: αj −βij ≤ dij .
Grow βij (and αj ).
∑j βij = fi for all facilities.
Tight: ∑j βij ≤ fi
LP Cost: ∑j αj = 4.5

Temporarily open all facilities.
Assign Clients to “paid to” open facility.
Connect facilities with common client.
Open independent set.
Connect to “killer” client’s facility.
Cost: 1 + 3.7 = 4.7.
A bit more than the LP cost.



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:

fi = ∑j∈Si
βij = ∑j∈Si

αj −dij .
Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij

= ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis

Claim: Client only pays one facility.

Independent set of facilities.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .

Proof:
fi = ∑j∈Si

βij = ∑j∈Si
αj −dij .

Since directly connected: βij = αj −dij .



Analysis.

Claim: Client j is indirectly connected to i

→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .

client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .
When i ′ opens, stops both αj and α ′

j .
αj ′ stopped no later (..maybe earlier..)

αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later

(..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)

αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .

Total distance from j to j ′.
dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +

di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +

dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i

≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Analysis.

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

j i ′ i

j ′

Directly connected to (temp open) i ′

has common client j ′ with some facility i .
client j ′ has αj ′ ≥ dij ′ and αj ≥ di ′ j ′ .

When i ′ opens, stops both αj and α ′
j .

αj ′ stopped no later (..maybe earlier..)
αj ′ ≤ αj .
Total distance from j to j ′.

dji ′ +di ′ j ′ +dj ′ i ≤ 3αj



Putting it together!

Claim: Client only pays one facility.

Claim: Si - directly connected clients to open facility i .
fi +∑j∈Si

dij ≤ ∑j αj .
Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i

→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:

direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.

plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.

Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.

feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast!

Cheap! Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap!

Safe!



Putting it together!

Claim: Client only pays one facility.
Claim: Si - directly connected clients to open facility i .

fi +∑j∈Si
dij ≤ ∑j αj .

Claim: Client j is indirectly connected to i
→ dij ≤ 3αj .

Total Cost:
direct clients dual (αj ) pays for facility and own connections.
plus no more than 3 times indirect client dual.
Total Cost: 3 times dual.
feasible dual upper bounds fractional (and integer) primal.

3 OPT.

Fast! Cheap! Safe!


