

n |.

Analyzing random walks on graph.Start at vertex, go to random neighbor. For *^d*-regular graph: eventually uniform. if not bipartite. Odd /even step! How to analyse? Random Walk Matrix: *^M*. *M* - normalized adjacency matrix.
Svmmetric. Σ*. M*I*i. i*l = 1. Symmetric, ∑*^j ^M*[*i*,*j*] =Symmetric, $\sum_j M[i,j] = 1$.
M[*i*,*j*]- probability of going to *j* from *i*. Probability distribution at time *^t*: *^v^t* . *^vt*+¹ ⁼ *Mv^t* Each node is average over neighbors. Evolution? Random walk starts at 1, distribution $e_1 = [1, 0, \ldots, 0]$. $M^t v_1 = \frac{1}{N} v_1 + \sum_{i>1} \lambda_i^t \alpha_i v_i$. $w_1v_1 = \frac{1}{N}v_1 + \sum_{i>1} \lambda_i^i \alpha_i v_i.$
 $w_1 = \begin{bmatrix} 1 & 1 \\ N & 1 \end{bmatrix}$ \rightarrow Uniform distribution. Doh! What if bipartite? Negative eigenvalues of value -1: (+1,[−]1) on two sides. Side question: Why the same size? Assumed regular graph. Khachiyan's algorithm for counting partial orders.Given partial order on *^x*1,...,*xn*. Sample from uniform distribution over total orders.Start at an ordering. Swap random pair and go if consistent with partial order. Rapidly mixing chain? Map into *^d*-dimensional unit cube. $x_i < x_j$ corresponds to halfspace (one side of hyperplane) of cube.
"dimension *i* = dimension *i*" "dimension *ⁱ* = dimension *^j*" total order is intersection of *ⁿ* halfspaces. each of volume: $\frac{1}{p!}$. since each total order is disjointand together cover cube. $(0, 0)$ *^x*1 $_1$ *^x*² *^x*1 $_1$ $>x_2$ *x*₁ *x*₁ $_1$ *^x*³ *^x*2 \geq *^x*³

Fix-it-up chappie!

Miller-Rabin.

Pick a random *a*, check if $a^{N-1} = 1 \pmod{N}$. If *^N* not prime and any *^a* fails test, half the *^a*'s fail test. Repeat *^k* times. *n* possibilities, log*ⁿ* bits, half the possibilities are good. Total: *^O*(*^k* log*n*) random bits. Failure probability is 1/²*k* .Another view: *n*-vertex degree *d* graph with $λ_1 - λ_2 ≥ Ω(√d)$. Half the vertices correspond to good *^a*'s. Choose random vertex, and do random walk of length *ck*. $\ell = \log n + ck$ random bits. Given a random walk of length ^ℓ in an expander graph (*N*,*d*,λ), what is the probability that you stay in a bad set *B*, with $|B|/n \le \beta = \frac{1}{2}$, for
all the stens? all the steps?

Pr[stay in *B*] $\leq ((1 - \lambda)\sqrt{\beta} + \lambda)^{\ell}$

Also.

Flip *k* coins: don't get heads with probability $(1/2)^k$. Analagous statement for expanders: $(f(\lambda,1/2))^k$, where *f*(λ,1/2)) < 1.

Flip *^k* coins: get roughly *^k*/2 heads.

Something analagous for walk in expanders.

Proof: set up walk.

Claim: *Pr*[stay in *B*] $\leq ((1 - \lambda)\sqrt{\beta} + \lambda)^{\ell}$ *Bi* - event in *^B* at step *ⁱ*. \hat{B} is diagonal matrix with 1's corresponding to $i \in B$. Consider random walk that truncates when it hits *v ∉ B*. Distribution over *B* at beginning: \hat{B} **1**. **1** = (**1**/**N**,...,**1/N**) 1/*N* for each vertex in *^B*. Distribution over *^B* at time 2, *BA*^ˆ *^B*^ˆ**¹** At time ℓ, $(\hat{B}A)^{ℓ}\hat{B}$ **1**. $\text{Total probability in } B: \|(\hat{B}A)^{\ell}\hat{B}\mathbf{1}\|_1$ W ill prove: $\|(\hat{B}A)^{\ell}\hat{B}\textbf{1}\|_2 \leq \frac{((1-\lambda)\sqrt{\beta} + \lambda)^{\ell}\sqrt{\beta}}{\sqrt{\mathsf{N}}}$ ν |lus $|x|_1 \leq \sqrt{N}|x|_2 \implies$ Claim.

Summary.

Eigenvectors for hypercubes. Tight example for LHI of Cheeger. Eigenvectors for cycle.Tight example for RHI of Cheeger.

Random Walks and Sampling.

Eigenvectors, Isoperimetry of Volume, Mixing.

Partial Order Application.

Bounding the 2-norm of *^A*.

Def: ∥*B*∥², is *max* ∥*Bx*∥2 ∥*x*∥2. ∥*A*+*B*∥² ≤ ∥*A*∥² ⁺∥*B*∥². [∥]*AB*∥² ⁼ [∥]*A*∥2∥*B*∥². *J* scaled adjacency matrix of clique: *^Ji*,*^j* ⁼ ¹/*ⁿ*. Claim: If *^A* is scaled adjacency matrix for ^λ expander. $A = (1 - \lambda)J + \lambda C$. where $||Cv||_2 \le ||v||_2$ for all *v*. Proof: $C=\frac{1}{2}(A-(1-\lambda)J)$. C = $\frac{1}{\lambda}(A - (1 - \lambda)J)$.
Consider *v* = *u* + *v C*u = $\frac{1}{\lambda}(A - (1 - \lambda)J)u = \frac{1}{\lambda}(1 - (1 - \lambda))u = u$
 w' − λ ^{*w*} | *w*'^{|2} − *w*^T Λ Λ *w* − 2²| *w*'|2 $w' = A w$, $|w'|_2^2 = w^T A A w = \lambda^2 |w|_2^2$
 \longrightarrow $\parallel C w \parallel_2 = \frac{1}{2} \parallel A w \parallel_2 \le ||w||_2$ *w*' = *Aw*, $|w'|_2^2 = w'$ *AAw* = λ^2 |
 \implies || *Cw* ||₂ = $\frac{1}{\lambda}$ || *Aw* ||₂ ≤ || *w* ||₂. \Box \Rightarrow $||$ C*w* $||_2 = \frac{1}{\lambda}||$ Aw
Remember: $|B|/n = β$. $\hat{B}A = \hat{B}((1 - \lambda)J + \lambda C)$ and $\|\hat{B}J\|_2 \leq \sqrt{\beta}$ and $\|\hat{B}C\| \leq 1$. \implies $||BA||_2 \leq (1 - \lambda)\sqrt{\beta} + \lambda$ $\textsf{Also}, \|\hat{B}\textbf{1}\|_2 \leq \frac{\sqrt{\beta}}{\sqrt{\mathsf{n}}}. \implies \|(\hat{B}A)^{\ell}\hat{B}\textbf{1}\|_2 \leq \frac{((1-\lambda)\sqrt{\beta}+\lambda)^{\ell}\sqrt{\beta}}{\sqrt{\mathsf{n}}}$