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Weak Duality:

yTb>yTAx > cx
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Zero and one. My love is won. Nothing and nothing done.

@) = yTb=Yybi=Y;yi(aix) =y Ax.
Similarly: (1) = y"Ax=cx.
Complementary slackness conditions imply optimality.
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Duality.

Geometric View, Linear Equation, and Combinatorial.
Today: Strong Duality from Geometry.
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Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n— 1 ind. equations.
Intersection of n— 1 hyperplanes.

Move in direction that increases objective.
Until new tight constraint.
No direction increases objective.
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Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why?  Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b'+c = 1.
(@ —-ab—-bc—-c)(1,1,1)=(@+b+—(a+b+c))=0.

Normal to mx + ny +pz = C? (m,n,p)
Points in hyperplane are related by nullspace of row.
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A a set of points P is convex if x,y € P implies that
ox+(1—a)yeP

for a € [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax<b,x>0

defines a convex set of points.
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either be P
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Separating hyperplace: v, where v-x < v-b, forall x € P
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That is, if (b— p)? > 0. Is this always true?
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Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[ ]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0
(x=p)T(b-p)>0
— < 90° angle between x —p and b—p.
\\ Must be closer point b on line from p to x.
P All points on line to x are in polytope.

X Contradicts choice of p as closest point to b in
polytope.
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p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip— b| =[x — p|cosB)? + (u| x — p|sin6)?
0 is the angle between x —p and b—p.

Simplify:
|p— b|? —2u|p — bl|x — p|cos6 + (u|x — p|)2.
Derivative with respectto u ...
—2|p— b||x — p|cosd +2(u|x — p[?).
which is negative for a small enough value of u (for positive cos6.)
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Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.
That is, find y where yTA=0and y"b 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yTb#0 = bnotin column span.

There is a separating hyperplane between any two convex bodies.
Idea: Let closest pair of points in two bodies define direction.
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Weak Duality: x, y- feasible P, D: x'c > b'y.

Dual D :w* =maxb'y
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xTc—bTy=xTc—xTATy

=xT(c—ATy)
>0
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Feasible X for Primal.

(a) X+ ux >0 since X, x,u > 0.

(b) A(X + pux) = AX + uAx = b+ -0 = b. Feasible

cT(x+ux)=xTx+uc’x — —oasu— o
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