Linear Program.

How?

Linear Program.

How? From lecture warmup.

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:
yTb>yTAx > cx

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:
yTb>yTAx > cx

First inequality from b > Ax

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:
yTb>yTAx > cx

First inequality from b > Ax and second from y# > c.

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2)yi>0 = ax=>b;

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2)yi>0 = ax=>b;

What does multiplying by 0 do?

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2)yi>0 = ax=>b;

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2 yi>0 = ax=0>b;
What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2 = yTb=Y,yibi

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2 yi>0 = ax=0>b;
What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) = yTb=Y,ybi =Y¥;yi(aix)

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2 yi>0 = ax=0>b;
What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2) = yTb=Y,yibi=Y¥;yi(aix)=yT Ax.

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2 yi>0 = ax=0>b;
What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

@) = yTb=Yybi=Y;yi(aix) =y Ax.
Similarly: (1) = y"Ax=cx.

Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny"b,yTA>c,y >0

Note: Dual variables correspond to primal equations and vice versa.
Weak Duality:

yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
x>0 = aVy=g¢
(2)yi>0 = ax=>b;

What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

@) = yTb=Yybi=Y;yi(aix) =y Ax.
Similarly: (1) = y"Ax=cx.
Complementary slackness conditions imply optimality.

Perfect Matching

Linear program: maxy e WeXe, YV : Ye—(uv)Xe < 1, x>0

Perfect Matching

Linear program: maxy e WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)

Perfect Matching

Linear program: maxy e WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Perfect Matching

Linear program: maxy e WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We

Perfect Matching

Linear program: maxy e WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Perfect Matching

Linear program: maxy e WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.
Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.
Maintain Primal feasibility.

Perfect Matching

Linear program: maxy o WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).

Perfect Matching

Linear program: maxy o WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:

Perfect Matching

Linear program: maxy o WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Perfect Matching

Linear program: maxy o WeXe, YV : Ye—(uv)Xe < 1, x>0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
Vv Ze:(u7v) Xe = 1.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

The “play” indicates game playing.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

The “play” indicates game playing.

Two person games: von Neuman.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

The “play” indicates game playing.

Two person games: von Neuman. Equilibrium: Nash.

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

The “play” indicates game playing.

Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,......7

Perfect Matching

Linear program: max}.e WeXe, YV : Ye—(y,v)Xe < 1, Xe > 0
Xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY,, py, Ve = (u,Vv) : py+pv > We, py > 0.

Dual feasible at start: p, > maxe—_(y,v) We
Maintain feasibility: adjust prices by §.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py+ py = We.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.
WV Ye—(uv)Xe = 1. S0 any p, can be non-zero.

The “play” indicates game playing.

Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,......7

Duality.

Duality.

Geometric View, Linear Equation, and Combinatorial.

Duality.

Geometric View, Linear Equation, and Combinatorial.
Today: Strong Duality from Geometry.

Simplex Algorithm

maxcC- X.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.
E.g., x=0.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

E.g., x=0.
This is a point.

Simplex Algorithm

maxc- X.
Ax<b
x>0
Start at feasible point where n equations are satisfied.
E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Simplex Algorithm

maxc- X.
Ax<b
x>0
Start at feasible point where n equations are satisfied.
E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:

Simplex Algorithm

maxc- X.
Ax<b
x>0
Start at feasible point where n equations are satisfied.
E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n— 1 ind. equations.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.
E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:

Points on line satisfy n— 1 ind. equations.
Intersection of n— 1 hyperplanes.

Simplex Algorithm

maxc- X.
Ax<b
x>0
Start at feasible point where n equations are satisfied.
E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n— 1 ind. equations.
Intersection of n— 1 hyperplanes.

Move in direction that increases objective.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

E.g., x=0.

This is a point.

Another view: intersection of n hyperplanes.
Drop one equation:

Points on line satisfy n— 1 ind. equations.

Intersection of n— 1 hyperplanes.

Move in direction that increases objective.
Until new tight constraint.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n— 1 ind. equations.
Intersection of n— 1 hyperplanes.

Move in direction that increases objective.
Until new tight constraint.
No direction increases objective.

Hyperplane View

X+y+z<1

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane?

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Hyperplane View

X+y+z<1

On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why?

Hyperplane View

X+y+z<1

On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b',c’)where & +b' +c' =1.

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b'+c = 1.
(@ —-ab—-bc—-c)(1,1,1)=(@+b+—(a+b+c))=0.

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b'+c = 1.
(@ —-ab—-bc—-c)(1,1,1)=(@+b+—(a+b+c))=0.

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b'+c = 1.
(@ —-ab—-bc—-c)(1,1,1)=(@+b+—(a+b+c))=0.

Normal to mx + ny + pz = C?

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b'+c = 1.
(@ —-ab—-bc—-c)(1,1,1)=(@+b+—(a+b+c))=0.

Normal to mx +ny +pz = C? (m,n,p)

Hyperplane View

X+y+z<1
On one side of hyperplane defined by x+y+z =1.
Normal to hyperplane? (1,1,1).

Why? Normal: u-(v—w) =0 for any v, w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b'+c = 1.
(@ —-ab—-bc—-c)(1,1,1)=(@+b+—(a+b+c))=0.

Normal to mx + ny +pz = C? (m,n,p)
Points in hyperplane are related by nullspace of row.

Maximum matching and simplex.

Z

Maximum matching and simplex.

maxx+y+2
x <A1
X+z<A1
z+y <1
X

y <t
Z x>0
y=>0

y
z>0

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x <A1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints intersect.

Maximum matching and simplex.

maxx+y+2

x<1

X+z<A1

z+y <1

y <1

4 x>0
y y=>0
z>0

Blue constraints redundant.

Maximum matching and simplex.

maxx+y+2
z
X+z<A1
z+y <A1
X
ZE x>0
y y=>0

Maximum matching and simplex.

maxx+y+2
z
X+z<A1
z+y <A1
X
ZE x>0
y y=>0

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
(% x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
(% x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
32 x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
JE x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
12 x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
12 x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
12 x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
12 x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
X+z<A1

0 z+y <A1
12 x>0
0 y=>0
z>0

Blue constraints tight.

Maximum matching and simplex.

maxx+y+2
z
X+z<A1
z+y <A1
3 y=
JE x>0
y=>0
3
z>0 y

Blue constraints tight.

11+

oO—0O—~0O——=0
Augmenting Path.

Maximum matching and simplex.

maxx+y+2

X+z<A1
z+y <1

Blue constraints tight.

11+
oO—0O—~_0—-=0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

X+z<A1
z+y <1

Blue constraints tight.

11+
oO—0O—~_0—-=0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

X+z<A1
z+y <1

Blue constraints tight.

11+
oO—0O—~_0—-=0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

X+z<A1
z+y <1

Blue constraints tight.

11

o—0O0—C0O—~0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

X+z<1 a
z+y<1 b

Blue constraints tight.

11

o—0O0—C0O—~0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

X+z<1 a=1
z+y<1 b=1

0 1
0 x>0
107500 y>0
z>0 c=1
Blue constraints tight.
Sum: x+z+y.
+1 —1 +1
o—0O0—~0O—->0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

X+z<1 a=1
z+y<1 b=1

0 1
0 x>0
107500 y>0
z>0 c=1
Blue constraints tight.
Sum: x+z+y.
+1 —1 +1
o—0O0—~0O—->0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

x+z<1 a=1
z+y<1 b=1

Blue constraints tight.

Sum: x+z+y.

111
oO—0O—~_0O—-=0

Augmenting Path. Via Gaussian Elimination!

Maximum matching and simplex.

maxx+y+2

x+z<1 a=1
z+y<1 b=1

Blue constraints tight.

Sum: x+z+y.

111
oO—0O—~_0O—-=0

Augmenting Path. Via Gaussian Elimination!

Strong Duality

Strong Duality

Convex Separator.

Strong Duality

Convex Separator.
Farkas

Strong Duality

Convex Separator.
Farkas

Strong Duality

Convex Separator.
Farkas

Linear Equations.
Ax=b

Linear Equations.
Ax=0>b
Ais nx n matrix...

Linear Equations.
Ax=b
Ais nx n matrix...
..has a solution.

Linear Equations.
Ax=b
Ais nx n matrix...
..has a solution.
If rows of A are linearly independent.

Linear Equations.
Ax=b
Ais nx n matrix...
..has a solution.

If rows of A are linearly independent.
yTA+£0forany y

Linear Equations.
Ax=b
Ais nx n matrix...
..has a solution.

If rows of A are linearly independent.
yTA+£0forany y

..or if b in subspace of columns of A.

Linear Equations.
Ax=b
Ais nx n matrix...
..has a solution.

If rows of A are linearly independent.
yTA+£0forany y

..or if b in subspace of columns of A.
If no solution, y"TA=0and y-b#0.

Linear Equations.
Ax=b
Ais nx n matrix...
..has a solution.

If rows of A are linearly independent.
yTA+£0forany y

..or if b in subspace of columns of A.
If no solution, y"TA=0and y-b#0.

X3

bad b

X2

X4

Convex body.

A a set of points P is convex if x,y € P implies that

Convex body.

A a set of points P is convex if x,y € P implies that
ox+(1—a)yeP

Convex body.

A a set of points P is convex if x,y € P implies that
ox+(1—a)yeP
for a € [0,1].

Convex body.

A a set of points P is convex if x,y € P implies that
ox+(1—a)yeP

for a € [0,1].

That is, the points in between x and y are in P.

Convex body.

A a set of points P is convex if x,y € P implies that
ox+(1—a)yeP

for a € [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax<b,x>0

defines a convex set of points.

Convex Body and point.

For a convex body P and a point b,
either be P

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0

P b

Take v = (b—p).

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0

P b

Take v = (b—p).

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0

P b

Take v = (b—p).
(x-v)=x-(b—p)<p-(b—p)=p-v

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Take v=(b—p).
(x-v)=x-(b—p)<p-(b—p)=p-v<b-v.

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Take v = (b—p).

(x-v)=x-(b—p)<p-(b—p)=p-v<b-v.
p-(b—p)<b-(b—p)?

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Take v = (b—p).

(x-v)=x-(b—p)<p-(b—p)=p-v<b-v.
p-(b—p)<b-(b—p)?
pb— p? < b? — bp iff B2 —2pb+ p? > 0.

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Take v = (b—p).

(x-v)=x-(b—p)<p-(b—p)=p-v<b-v.
p-(b—p)<b-(b—p)?
pb— p? < b? — bp iff B2 —2pb+ p? > 0.

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Take v = (b—p).
(x-v)=x-(b—p)<p-(b—p)=p-v<b-v.
p-(b—p)<b-(b—p)?
pb— p? < b? — bp iff B2 —2pb+ p? > 0.
That is, if (b— p)? > 0.

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, forall x € P
point p where (x —p)"(b—p) <0
P b

Take v = (b—p).
(x-v)=x-(b—p)<p-(b—p)=p-v<b-v.
p-(b—p)<b-(b—p)?
pb— p? < b? — bp iff B2 —2pb+ p? > 0.
That is, if (b— p)? > 0. Is this always true?

Proof.

For a convex body P and a point b,
eitherbe A

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[]

Proof: Choose p to be closest point to b in P.

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[]

Proof: Choose p to be closest point to b in P.
Done

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0

(x—p)T(b-p)>0

A\

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

P b

[]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0

(x—p)T(b-p)>0
— < 90° angle between x —p and b—p.

\

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

P b

[]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0
(x—p)T(b-p)>0
— < 90° angle between x —p and b—p.

\\ Must be closer point b on line from p to x.
P

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0
(x=p)T(b-p)>0
— < 90° angle between x —p and b—p.
\\ Must be closer point b on line from p to x.
P All points on line to x are in polytope.

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x —p)7(b—p) <0 Vx € P.

p b

[]

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)T(b—p) >0
(x=p)T(b-p)>0
— < 90° angle between x —p and b—p.
\\ Must be closer point b on line from p to x.
P All points on line to x are in polytope.

X Contradicts choice of p as closest point to b in
polytope.

More formally.

X0

More formally.
p

Lcos0

|p— b|— £cosH

More formally.
p (cos |p— b| — tcosb

Squared distance to b from p+ (x —p)u

More formally.
p (cos |p—b|—tcos6

Squared distance to b from p+ (x —p)u
point between p and x

More formally.
p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip—b| — p|x — p|cosé)? + (u|x — p|sind)>

More formally.
p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip— b| =[x — p|cosB)? + (u| x — p|sin6)?
0 is the angle between x —p and b—p.

More formally.
p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip— b| =[x — p|cosB)? + (u| x — p|sin6)?
0 is the angle between x —p and b—p.

Simplify:

More formally.
p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip— b| =[x — p|cosB)? + (u| x — p|sin6)?
0 is the angle between x —p and b—p.

Simplify:
|p— b|? —2|p — bl|x — p|cos6 + (u|x — p|)2.

More formally.

p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u

point between p and x

(Ip— bl — p|x — plcos8)? + (u|x — p|sing)?
0 is the angle between x —p and b—p.
Simplify:

|p— b|? —2u|p — bl|x — p|cos6 + (u|x — p|)2.
Derivative with respectto u ...

More formally.

p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u

point between p and x

(Ip—b| — p|x — p|cos8)? + (u|x — p|sind)>
0 is the angle between x —p and b—p.
Simplify:

|p— b|? —2u|p — bl|x — p|cos6 + (u|x — p|)2.
Derivative with respectto u ...

—2|p— bl|x — p|cosé +2(u|x —p|?).

More formally.
p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip— b| =[x — p|cosB)? + (u| x — p|sin6)?
0 is the angle between x —p and b—p.

Simplify:

|p— b|? —2u|p — bl|x — p|cos6 + (u|x — p|)2.
Derivative with respectto u ...

—2|p— b||x — p|cosd +2(u|x — p[?).
which is negative for a small enough value of u

More formally.
p (cos |p—b| —lcost

Squared distance to b from p+ (x —p)u
point between p and x
(Ip— b| =[x — p|cosB)? + (u| x — p|sin6)?
0 is the angle between x —p and b—p.

Simplify:
|p— b|? —2u|p — bl|x — p|cos6 + (u|x — p|)2.
Derivative with respectto u ...
—2|p— b||x — p|cosd +2(u|x — p[?).
which is negative for a small enough value of u (for positive cos6.)

Generalization: exercise.

Theorems of Alternatives.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0.-x=0+#5.
That is, find y where yTA=0and y"b #0.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0.-x=0+#5.
That is, find y where yTA=0and y"b #0.
Space is image of A.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0.-x=0+#5.
That is, find y where yTA=0and y"b #0.
Space is image of A. Affine subspace is columnspan of A.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.
That is, find y where yTA=0and y"b 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.
That is, find y where yTA=0and y"b 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.
That is, find y where yTA=0and y"b 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yTb#0 = bnotin column span.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.
That is, find y where yTA=0and y"b 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yTb#0 = bnotin column span.

There is a separating hyperplane between any two convex bodies.

Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.

From Ax = b use row reduction to get, e.g., 0-x =0 #5.
That is, find y where yTA=0and y"b 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yTb#0 = bnotin column span.

There is a separating hyperplane between any two convex bodies.
Idea: Let closest pair of points in two bodies define direction.

Ax=b,x>0

b3 el

X3

X2

Xq

Coordinates s = b— Ax.
x > 0 where s =07

S

St

Coordinates s = b— Ax.
x > 0 where s =07

S

St

Coordinates s = b— Ax.
x > 0 where s =07

S

St

Coordinates s = b— Ax.
x > 0 where s =07

S

St

Coordinates s = b— Ax.
x > 0 where s =07

2]

St

Xq

X2

Coordinates s = b— Ax.
x > 0 where s =07

S

St

X3 Coordinates s = b— Ax.
x > 0 where s =07

So
St
[]

X3 Coordinates s = b— Ax.
x > 0 where s =07

So
St

1

1 0 1 X — —1
o 1 1 -1
X3 Coordinates s = b— Ax.
x > 0 where s =07?
/;“\~\“ 82
! \‘\‘\
VRN ! 1
S \} /l '
7 N N
/’ AN 7 i
/) X3
NYA I
N I /
AN X1 AN 1
\ Ly, /
\\ /T T =~ /
N / I
N /

N/

y where yT(b— Ax) < yT(0)=0for all x > 0

1 0 1 X — —1
o 1 1 -1
X3 Coordinates s = b— Ax.
x > 0 where s =07?
/;“\~\“ 82
! \‘\‘\
VRN ! 1
S \} /l '
7 N N
/’ AN 7 i
/) X3
NYA I
N I /
AN X1 AN 1
\ Ly, /
\\ /T T =~ /
N / I
N /

N/

y where yT(b— Ax) < yT(0)=0forall x>0 — y"b<0and yTA> 0.

1 0 1 X — —1
o 1 1 -1
X3 Coordinates s = b— Ax.
x > 0 where s =07?
/;“\~\“ 82
! \‘\‘\
VRN ! 1
S \} /l '
7 N N
/’ AN 7 i
/) X3
NYA I
N I /
AN X1 [1
\ Ly, /
\\ /T T =~ /
N / I
N /

N/

y where yT(b— Ax) < yT(0)=0forall x>0 — y"b<0and yTA> 0.
Why?

1 0 1 X — —1
0 1 1_ -1
X3 Coordinates s = b— Ax.
x > 0 where s =07?
/;“\~\“ 82
! \‘\‘\
VRN ! 1
SN \} /l '
7 \\ N
/’ N 7 i
/) X3
NYA I
N I /
AN X1 [1
\ L, /
N . 1

N/

y where va(b—'Ax) <yT(0)=0forallx>0 — y"b<0andy"A>0.
Why? If y- AD) < 0, then take X; — o, yTb— y T Ax — oo,

1.0 1], _[-1
0 1 1]77 |-
X3 Coordinates s = b— Ax.
x > 0 where s =07
/;“‘~\“ 82
! \‘\‘\
VRN ! 1
// \\ \) /l S1
/ \\ !
,/ N 7 i
/| X3
NYA I
N I /
AN X1 AN 1
. Ly, /
N . /

N/

y where va(b—'Ax) <yT(0)=0forallx>0 — y"b<0andy"A>0.
Why? If y- A) < 0, then take X; — oo, yTb— y T Ax — oo,
Contradiction.

1 0 1 Y —1
0 1 1] -1
X3 Coordinates s = b— Ax.
x > 0 where s =07
- _ So
! Tt --
! \‘\‘\
VRN ! 1
AN \ / S1
Vi \\ N
/’ N h I
/) X3
NYA I
N I /
AN X1 [1
N Lo, I

N/

y where va(b—'Ax) <yT(0)=0forallx>0 — y"b<0andy"A>0.
Why? If y- AD) < 0, then take X; — o, yTb— y T Ax — oo,
Contradiction.

Farkas A: Solution for exactly one of:

Coordinates s = b— Ax.
x > 0 where s =07

S

y where yT(b—Ax) <yT(0)=0forallx>0 — y"b<0and y"A>0.
Why? If y- A) < 0, then take X; — oo, yTb— y T Ax — oo,
Contradiction.
Farkas A: Solution for exactly one of:
(1) Ax=b,x>0

Coordinates s = b— Ax.
x > 0 where s =07

S

y where va(b—'Ax) <yT(0)=0forallx>0 — y"b<0andy"A>0.
Why? If y- AD) < 0, then take X; — o, yTb— y T Ax — oo,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0 or (2 y"A>0,y"b<0.

Farkas 2

Farkas A: Solution for exactly one of:

Farkas 2

Farkas A: Solution for exactly one of:
(1)Ax=b,x>0

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0
2 yTA>0,y"b<0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0
2 yTA>0,y"b<0.

Farkas B: Solution for exactly one of:

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0
2 yTA>0,y"b<0.

Farkas B: Solution for exactly one of:
(1) Ax<b

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0
2 yTA>0,y"b<0.

Farkas B: Solution for exactly one of:
(1) Ax<b
(2 y"A=0,y"b<0,y >0.

Strong Duality

(From Goemans notes.)

Primal P z* = minc’x
Ax=>b
x>0

Dual D :w* = mabey
ATy§ c

Strong Duality

(From Goemans notes.)

Primal P z* =minc’x
Ax=0>b
x>0

Weak Duality: x, y- feasible P, D: x'c > b'y.

Dual D :w* =maxb'y
ATy§ c

Strong Duality

(From Goemans notes.)

Primal P z* =minc’x
Ax=0>b
x>0

Weak Duality: x, y- feasible P, D: x'c > b'y.

Dual D :w* =maxb'y
ATy§ c

xTc—bTy=xTc—xTATy

=xT(c—ATy)
>0

Strong duality If P or D is feasible and bounded then z* = w*.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.
Claim: Exists a solution to dual of value at least z*.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

Want y where

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

-
Want y where (AbT> y< (—Cz*> .

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y < (_Cz*> .Let A = <AbT>

Recall Farkas B: Either (1) Ax’ < b/ or (2) y'TA' =0,y <0,y > 0.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y < (_Cz*> .Let A = <AbT>

Recall Farkas B: Either (1) Ax’ < b/ or (2) y'TA' =0,y <0,y > 0.
If (1) then done,

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> ys (_Cz*> LetA' = <Abr>

Recall Farkas B: Either (1) Ax’ < b/ or (2) y'TA' =0,y <0,y > 0.

If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.

(A -b) (j{) —0 CU— (jf) <0

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> ys (_Cz*> LetA' = <Abr>

Recall Farkas B: Either (1) Ax’ < b/ or (2) y'TA' =0,y <0,y > 0.

If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
(A —b) (j{) =0 (™ -z (jf) <0

Ix, A with Ax —bA =0and ¢lx—z*A <0

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> ys (_Cz*> LetA' = <Abr>

Recall Farkas B: Either (1) Ax’ < b/ or (2) y'TA' =0,y <0,y > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.

(A -b) (j{) —0 CU— (jf) <0

Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 4 > 0.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y= (_Cz*> Let A = < Abr>

Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.

(A -b) <X>:o CU— (X> <0

A
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 >0. A(¥)=b, c"(§) < z".

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

Want y where (AbTT> y< (_Cz*> LetA' = < AbTT>
Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
(A —b) (j{) =0 (T -2z (jf) <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.
Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z
Want y where (AbTT> y< (_Cz*> LetA' = < AbTT>
Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.

(A —b) (j{) =0 (T -2z (jf) <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!
Case2: 1 =0. Ax=0,c"x<0.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

Want y where (AbTT> y< (_Cz*> LetA' = < AbTT>
Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
(A —b) (j{) =0 (T -2z (jf) <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!

Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y= (_Cz*> Let A = < Abr>

Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
X o (X
(A —b) (/1) =0 (T -z¥) (l> <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!

Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.
(a) X+ ux >0 since X, x,u > 0.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y= (_Cz*> Let A = < Abr>

Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
X o (X
(A —b) (/1) =0 (T -z¥) (l> <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!

Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.
(a) X+ ux >0 since X, x,u > 0.
(b) A(x+ux)=Ax+uAx=b+pu-0=>h.

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y= (_Cz*> Let A = < Abr>

Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
X o (X
(A —b) (/1) =0 (T -z¥) (l> <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!

Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.
(a) X+ ux >0 since X, x,u > 0.
(b) A(x+ux)=AXx+ uAx = b+ pu-0=b. Feasible

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y= (_Cz*> Let A = < Abr>

Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.
If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
X o (X
(A —b) (/1) =0 (T -z¥) (l> <0
Ix, A with Ax —bA =0and ¢lx—z*A <0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!

Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.

(a) X+ ux >0 since X, x,u > 0.

(b) A(x+ux)=AXx+ uAx = b+ pu-0=b. Feasible
cT(x+ux)=xTx+uc’x — —oasu— o

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.
Jy,yTA<c,bTy >z

T T
Want y where (Abr> y= (_Cz*> Let A = < Abr>

Recall Farkas B: Either (1) Ax’ < b or (2) y'TA =0,y'Tb' <0,y' > 0.

If (1) then done, otherwise (2) — 3y’ =[x,A] > 0.
X o (X
(A —b) (/1) =0 (T -z¥) (l> <0

Ix, A with Ax—bA =0and ¢ix—z*A < 0
Case 1: 1 > 0. A(¥) = b, ¢"(¥) < z*. Better Primal!!
Case2: A =0. Ax=0,c"x <0.
Feasible X for Primal.

(a) X+ ux >0 since X, x,u > 0.

(b) A(X + pux) = AX + uAx = b+ -0 = b. Feasible

cT(x+ux)=xTx+uc’x — —oasu— o
Primal unbounded!

Done

Today:

Done

Today:
Matching and simplex.

Done

Today:
Matching and simplex.
Convex separator.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise:

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?
See you on Thursday.

