Linear Program.

How? From lecture warmup.

Linear program: maxcx,Ax < b,x >0
Dual: miny”b,yTA>c,y>0

Note: Dual variables correspond to primal equations and vice versa.

Weak Duality:
yTb>yTAx > cx
First inequality from b > Ax and second from y# > c.

Complementary slackness:
(1) x>0 = aly=g¢
2 yi>0 = aix=b;
What does multiplying by 0 do?
Zero and one. My love is won. Nothing and nothing done.

(2 = yTb=x,yibi = Liyi(ax) =y Ax.
Similarly: (1) = yTAx =cx.
Complementary slackness conditions imply optimality.

Perfect Matching

Linear program: maxY e WeXe, VV : Ye—wyXe<1,Xe>0
xe = 1if e € M, xo = 0 otherwise. (Note: integer solution.)
Dual: minY, py, Ve = (u,v) : pu+py > We, pu > 0.

Dual feasible at start: p, > maxe—(y,v) We
Maintain feasibility: adjust prices by 6.

Maintain Primal feasibility.

Maintain complementary slackness (2).
Xe > 0 only if py + py = we.
Eventually match all vertices.

The Engine that pulls the train:
Alternating path of tight edges.

Complementary slackness (1): Terminate when perfect matching.

YV Ye—(uv)Xe = 1. S0 any p, can be non-zero.
The “play” indicates game playing.
Two person games: von Neuman. Equilibrium: Nash.

Is the path fundamental?
Are things as easy or as hard as 0,1,2,......7

Duality.

Geometric View, Linear Equation, and Combinatorial.
Today: Strong Duality from Geometry.

Simplex Algorithm

maxcC- X.

Ax<b
x>0

Start at feasible point where n equations are satisfied.

E.g., x=0.
This is a point.
Another view: intersection of n hyperplanes.

Drop one equation:
Points on line satisfy n— 1 ind. equations.
Intersection of n— 1 hyperplanes.

Move in direction that increases objective.
Until new tight constraint.
No direction increases objective.

Hyperplane View

x+y+z<1
On one side of hyperplane defined by x+y+z=1.
Normal to hyperplane? (1,1,1).

Why?  Normal: u-(v—w) =0 for any v,w in hyperplane.
(a,b,c) where a+b+c=1.
(a,b,c’)where & +b' +c =1.
(& —ab —b,c—c)-(1,1,1)=(@+b +c —(a+b+c))=0.
Normal to mx + ny +pz = C? (m,n,p)
Points in hyperplane are related by nullspace of row.

Maximum matching and simplex.

maxx+y+z
x <1
x+z<1 a
z+y<1 b=
y<
B x>0
y=0
z>0 =1

Sum: x+z+y.
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Augmenting Path. Via Gaussian Elimination!




Strong Duality

Convex Separator.
Farkas

Linear Equations.
Ax=b
Ais nx nmatrix...
..has a solution.

If rows of A are linearly independent.
yTA#0forany y

..or if bin subspace of columns of A.
If no solution, yTA=0and y-b#0.

X3

X1

Convex body.

A a set of points P is convex if x,y € P implies that
ox+(1—-a)yeP

for a € [0,1].

That is, the points in between x and y are in P.

Exercise:
Ax<b,x>0

defines a convex set of points.

Convex Body and point.

For a convex body P and a point b,
either be P
or there is a hyperplane that separates P from b.

Separating hyperplace: v, where v-x < v-b, for all x € P
point p where (x —p)T(b—p) <0
p b

Take v = (b-p).
(x-v)=x-(b=p)<p-(b—p)=p-v<b-v.
p-(b—p)<b-(b-p)?
pb—p? < b? — bp iff b2 —2pb+p? > 0.
That is, if (b—p)? > 0. Is this always true?

Proof.

For a convex body P and a point b,
eitherbe A
or there is point p where (x — p)7(b—p) <0 Vx € P.

P b

Proof: Choose p to be closest point to b in P.
Done or 3 x € P with (x —p)"(b—p) >0

(x=p)T(b—p)>0
— < 90° angle between x — p and b—p.

\\ Must be closer point b on line from p to x.
P All points on line to x are in polytope.
X Contradicts choice of p as closest point to b in
polytope.

More formally.

Squared distance to b from p+ (x — p)u
point between p and x
(Ip— bl — p|x — p|cos)? + (u|x — p|sine)?
6 is the angle between x —p and b—p.

Simplify:
|p—b[2 —2|p — bl [x — plcos + (u[x — p|)%.
Derivative with respect to u ...
~2|p— bl|x - p|cose +2(u|x — p[?).
which is negative for a small enough value of u (for positive cos6.)




Generalization: exercise.

Theorems of Alternatives.

Linear Equations: There is a separating hyperplane between a point
and an affine subspace not containing it.
From Ax = b use row reduction to get, e.g., 0-x=0 #5.
That s, find y where yTA=0 and yTb 0.
Space is image of A. Affine subspace is columnspan of A.
y is normal. y in nullspace for column span.
yTb#0 = bnotin column span.

There is a separating hyperplane between any two convex bodies.
Idea: Let closest pair of points in two bodies define direction.

Ax=b,x>0

b 5 =

Coordinates s = b— Ax.
x >0 where s=0?

sl

y where y7(b—Ax) < yT(0)=0forall x>0 — y"b<0andy’A>0.
Why? If y- A) < 0, then take Xx; — oo, yTb— yT Ax — 4o,
Contradiction.
Farkas A: Solution for exactly one of:
(1)Ax=b,x>0 or (2 y"A>0,yTb<0.

Farkas 2

Farkas A: Solution for exactly one of:
(1) Ax=b,x>0
@ yTA>0,y"b<0.

Farkas B: Solution for exactly one of:
(1)Ax<b
(2 yTA=0,yTb<0,y >0.

Strong Duality

(From Goemans notes.)

Primal P z* = mincTx
Ax=b
x>0

Weak Duality: x,y- feasible P, D: x"c > b"y.

Dual D :w* =maxb'y
ATy <c

xTc—bTy=xTc—x"ATy
=xT(c-ATy)
>0

Strong duality If P or D is feasible and bounded then z* = w*.
Primal feasible, bounded, minimum value z*.

Claim: Exists a solution to dual of value at least z*.

Jy,yTA<c, bTy > z*.

AT c , (AT
Want y where <—bT> y< <7z*> .Let A= (—bT
Recall Farkas B: Either (1) Ax’ < b or (2) y'TA' =0,y'Tb <0,y' > 0.
If (1) then done, otherwise (2) = 3y’ =[x,A] > 0.
X o (X
(A —b) <l> —o (™ -z (l> <0
3x,A with Ax —bA =0 and ¢'x —z*A <0
Case 1: 1 >0. A($)=b, cT(%) < z*. Better Primalll
Case2: A =0. Ax=0,c"x<0.
Feasible X for Primal.
(a) X+ ux > 0since X, x,u > 0.
(b) A(X + pix) = A% + pAx = b+ -0 = b. Feasible

cT(X+ux)=xT%+ucTx — —casy — oo
Primal unbounded!

Done

Today:
Matching and simplex.
Convex separator.
Farkas.
Strong Duality.

Exercise: Is there an algorithm there?
See you on Thursday.




