
Spectral Theorem.

For real symmetric matrix, A, there exists a set of unit vectors
u1, . . . ,un, and real numbers λi such ui ⊥ uj and Aui = λiui .

One idea in proof:

minxT Ax s.t ∥x∥= 1.

How?
Constrained optimization.

f (x) = xT Ax −λ (∥x∥2 −1)

Fix λ . Minimize for x .
∇f (x) = 2Ax −2λx = 0 =⇒ Find when: Ax = λx .

Minimizer is “eigenvector”.
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Finding an eigenvector: power method

A has eigenpairs: (u1,λ1)...(un,λn).

Aui = λiui
ui ⊥ uj
λ1 > λ2... > λn

Take “random” x0.

x0 = a1u1 + . . .a2u2 + · · ·+anun.

xt+1 = Axt = Atx0

xt+1 = λ t
1a1u1 + · · ·λ t

nanun

Since λ1 > λ2 > .. ..

xt/|xt | converges to u1.

Get rest? Orthoganalize and induction.
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Linear Solvers.

A little background, intuition, alternative.
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Classical Stuff.

Ax = b?

xn+1 = xn +α(b−Ax).

Intuition: 1
2xT Ax −bx . Gradient: Ax −b.

(1) Critical point: Ax = b.
(2) Gradient step: xn −α∇f (x) = xn +α(b−Ax).

Could analyse using gradient descent (lipshitz constant?)
or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with A.
Ratio of largest to smallest eigenvalues.
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Eigenvalue Analysis.
Ax = b?

xn+1 = xn +α(b−Ax).

Convergence:
|xn+1 −x∗|2 = |xn +α(b−Axn)−x∗|

= ∥xn −x∗−αA(xn −x∗)∥ From b = Ax∗.
Eigenvectors decomposition: (x∗−xn) = v = a1v1 + · · ·anvn

with eigenvalues λ1 ≥ ·· · ≥ λn.
Notice |v |2 = ∑i a2

i .
and Av = λ1a1v1 + · · ·λnanvn

=⇒ |xn+1 −x∗|2 = ∑i(1−αλi)
2a2

i .

Setting α = 2/(λ1 +λ2), and some math (e.g., Taylors) yields
(1−αλi)

2 ≤ (1−Ω(λn/λ1))
2

=⇒ O(λ1/λn) iterations halves the size of the error.
Note: log 1

ε
dependence on error ε.

Can do
√

λ1/λn using Chebyshev or Conjugate Gradient or
Accelerated Gradient Descent)

Recall: λ1 is large eigenvalue, λn is small.
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Graph Laplacians.

G = (V ,E),

L(G) = L = dI −A.
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Examples: Eigenvectors.
For graph laplacians: L = dI −A.

dI −A. Constant eigenvector, 1̄ has eigenvalue 0.
xT Ax
d |x |2 is proxy for “eigenvalue”.

xT (dI −A)x = d |x |2 −xT Ax .
If different for different x , then λ1/λn is large:

Avi = λivi →
vT

i Avi
|vi |2

= λi .

Expander Graph:
All x ⊥ 1̄: ∑i xi = 0.
Degree d , think of random ±1 labels.
(Ax)i = average value of labels.

Roughly ±
√

d .
Expander: “no good cuts” “all cuts same”.

=⇒ every ±1 vector is about the same!

Fast convergence of iterative method.
Intuitively: fast communication across graph,
=⇒ fast iterative algorithm.
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Path (or Cycle)

Consider xT Ax
d |x |2 .

Random ±1, same argument as for expander.
+1/−1 edges change mass a lot.
=⇒ xT Ax

d |x |2 << 1.

Good cut: +1 on left half, −1 on right half.
Lose mass only in middle.

+1 +1 +1 +1 -1 -1 -1 -1
=⇒ xT Ax

d |x |2 ≈ 1− 1
n .

=⇒ λ1 and λn differ by a factor of n.

Worse example:
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