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Spectral Theorem.

For real symmetric matrix, A, there exists a set of unit vectors
u1,...,Un, and real numbers A; such u; L u; and Au; = Aju;.

One idea in proof:
minxT Ax s.t ||x|| = 1.

How?
Constrained optimization.

f(x) = xTAx—A(||x||? 1)

Fix A. Minimize for x.
Vf(x) =2Ax—2Ax =0 = Find when: Ax = Ax.

Minimizer is “eigenvector”.
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Finding an eigenvector: power method

A has eigenpairs: (uq,41)...(Un, An).

AU,'Z)L,'U,‘
uj L Uj
)1.1 > )ug > An

Take “random” Xxgp.
Xo=aiuq+...alo+---+ anup.
X1 = Axp = Alxg

Xto1 = AMajuy +---Abanun

Since A1 >A2> ...

Xt/|Xt| converges to uy.

Get rest? Orthoganalize and induction.
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Recall: A; is large eigenvalue, A, is small.
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Random +1, same argument as for expander.

+1/—1 edges change mass a lot.

xT Ax
- dix? << 1.

Good cut: +1 on left half, —1 on right half.
Lose mass only in middle.
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Random +1, same argument as for expander.
+1/—1 edges change mass a lot.

xT Ax
— dix2 << 1.

Good cut: +1 on left half, —1 on right half.
Lose mass only in middle.
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= A1 and A, differ by a factor of n.

Worse example:

— x‘X‘Ax ~1— ;. For Laplacian 1/r?.
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Consider g‘;l‘g
Random +1, same argument as for expander.
+1/—1 edges change mass a lot.

xT Ax
— dix2 << 1.

Good cut: +1 on left half, —1 on right half.
Lose mass only in middle.
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= A1 and A, differ by a factor of n.

Worse example:

; :
— X‘X‘QX ~1— 2. For Laplacian 1/n?.

Convergence is O(n?).
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Random +1, same argument as for expander.
+1/—1 edges change mass a lot.

xT Ax
- dix? << 1.

Good cut: +1 on left half, —1 on right half.
Lose mass only in middle.
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= A1 and A, differ by a factor of n.

Consider

Worse example:

; :
— X‘X‘QX ~1— 2. For Laplacian 1/n?.

Convergence is O(n?). Or O(n).



