For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_i$ and $Au_i = \lambda_i u_i$.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$. One idea in proof:

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

 $f(x) = x^T A x - \lambda(\|x\|^2 - 1)$

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

$$f(x) = x^T A x - \lambda(\|x\|^2 - 1)$$

Fix λ.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

 $f(x) = x^T A x - \lambda(\|x\|^2 - 1)$

Fix λ . Minimize for *x*.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

$$f(x) = x^T A x - \lambda(||x||^2 - 1)$$

Fix λ . Minimize for x. $\nabla f(x) = 2Ax - 2\lambda x = 0$

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

$$f(x) = x^T A x - \lambda(||x||^2 - 1)$$

Fix λ . Minimize for *x*.

 $\nabla f(x) = 2Ax - 2\lambda x = 0 \implies$ Find when: $Ax = \lambda x$.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } \|x\| = 1.$

How?

Constrained optimization.

$$f(x) = x^T A x - \lambda(||x||^2 - 1)$$

Fix λ . Minimize for *x*. $\nabla f(x) = 2Ax - 2\lambda x = 0 \implies$ Find when: $Ax = \lambda x$. Minimizer is "eigenvector".

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$.

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$

 $u_i \perp u_j$

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$.

$$Au_i = \lambda_i u_i$$

 $u_i \perp u_j$
 $\lambda_1 > \lambda_2 ... > \lambda_n$

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$ $u_i \perp u_j$ $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

A has eigenpairs:
$$(u_1, \lambda_1)...(u_n, \lambda_n)$$
.
 $Au_i = \lambda_i u_i$
 $u_i \perp u_j$
 $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

$$x_0 = a_1 u_1 + \ldots a_2 u_2 + \cdots + a_n u_n.$$

A has eigenpairs:
$$(u_1, \lambda_1)...(u_n, \lambda_n)$$
.
 $Au_i = \lambda_i u_i$
 $u_i \perp u_j$
 $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

$$x_0 = a_1 u_1 + \dots a_2 u_2 + \dots + a_n u_n.$$

$$x_{t+1} = A x_t = A^t x_0$$

A has eigenpairs:
$$(u_1, \lambda_1)...(u_n, \lambda_n)$$
.
 $Au_i = \lambda_i u_i$
 $u_i \perp u_j$
 $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1 u_1 + \dots a_2 u_2 + \dots + a_n u_n.$ $x_{t+1} = A x_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \dots \lambda_n^t a_n u_n$

A has eigenpairs:
$$(u_1, \lambda_1)...(u_n, \lambda_n)$$
.
 $Au_i = \lambda_i u_i$
 $u_i \perp u_j$
 $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1 u_1 + \dots a_2 u_2 + \dots + a_n u_n.$ $x_{t+1} = A x_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \dots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \dots$

A has eigenpairs:
$$(u_1, \lambda_1)...(u_n, \lambda_n)$$
.
 $Au_i = \lambda_i u_i$
 $u_i \perp u_j$
 $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1 u_1 + \dots a_2 u_2 + \dots + a_n u_n.$ $x_{t+1} = A x_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \dots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \dots$

 $x_t/|x_t|$ converges to u_1 .

A has eigenpairs:
$$(u_1, \lambda_1)...(u_n, \lambda_n)$$
.
 $Au_i = \lambda_i u_i$
 $u_i \perp u_j$
 $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1 u_1 + \dots a_2 u_2 + \dots + a_n u_n.$ $x_{t+1} = A x_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \dots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \dots$ $x_t / |x_t| \text{ converges to } u_1.$

Get rest?

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$ $u_i \perp u_j$ $\lambda_1 > \lambda_2... > \lambda_n$

Take "random" x₀.

 $\begin{aligned} x_0 &= a_1 u_1 + \dots a_2 u_2 + \dots + a_n u_n. \\ x_{t+1} &= A x_t = A^t x_0 \\ x_{t+1} &= \lambda_1^t a_1 u_1 + \dots \lambda_n^t a_n u_n \\ \text{Since } \lambda_1 &> \lambda_2 > \dots. \end{aligned}$

 $x_t/|x_t|$ converges to u_1 .

Get rest? Orthoganalize and induction.

Linear Solvers.

Linear Solvers.

A little background, intuition, alternative.

$$Ax = b?$$

$$Ax = b?$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

$$Ax = b?$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

Intuition: $\frac{1}{2}x^TAx - bx$. Gradient: $Ax - b$.

$$Ax = b?$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

Intuition: $\frac{1}{2}x^TAx - bx$. Gradient: $Ax - b$.

$$Ax = b?$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

Intuition: $\frac{1}{2}x^TAx - bx$. Gradient: $Ax - b$.
(1) Critical point: $Ax = b$.

$$Ax = b?$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$
Intuition: $\frac{1}{2}x^TAx - bx$. Gradient: $Ax - b$.
(1) Critical point: $Ax = b$.
(2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha(b - Ax)$.

Ax = b? $x_{n+1} = x_n + \alpha(b - Ax).$ Intuition: $\frac{1}{2}x^TAx - bx$. Gradient: Ax - b. (1) Critical point: Ax = b. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha(b - Ax)$.

Could analyse using gradient descent (lipshitz constant?)

Ax = b? $x_{n+1} = x_n + \alpha(b - Ax).$ Intuition: $\frac{1}{2}x^TAx - bx$. Gradient: Ax - b. (1) Critical point: Ax = b. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha(b - Ax).$

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

Ax = b?

 $\begin{aligned} x_{n+1} &= x_n + \alpha(b - Ax). \\ \text{Intuition: } \frac{1}{2}x^T Ax - bx. & \text{Gradient: } Ax - b. \\ (1) \text{ Critical point: } Ax &= b. \\ (2) \text{ Gradient step: } x_n - \alpha \nabla f(x) &= x_n + \alpha(b - Ax). \end{aligned}$

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with A.

Ax = b?

 $\begin{aligned} x_{n+1} &= x_n + \alpha(b - Ax). \\ \text{Intuition: } \frac{1}{2}x^T Ax - bx. & \text{Gradient: } Ax - b. \\ (1) \text{ Critical point: } Ax &= b. \\ (2) \text{ Gradient step: } x_n - \alpha \nabla f(x) &= x_n + \alpha(b - Ax). \end{aligned}$

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with *A*. Ratio of largest to smallest eigenvalues.

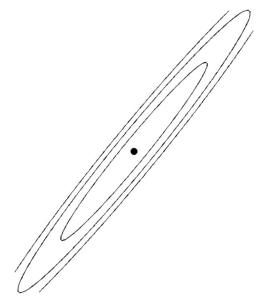
Ax = b?

 $\begin{aligned} x_{n+1} &= x_n + \alpha(b - Ax). \\ \text{Intuition: } \frac{1}{2}x^T Ax - bx. & \text{Gradient: } Ax - b. \\ (1) \text{ Critical point: } Ax &= b. \\ (2) \text{ Gradient step: } x_n - \alpha \nabla f(x) &= x_n + \alpha(b - Ax). \end{aligned}$

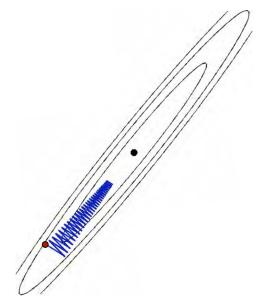
Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with *A*. Ratio of largest to smallest eigenvalues.

Linear Coupling Momentum View:

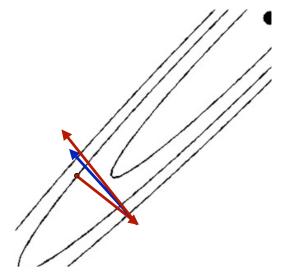


Linear Coupling Momentum View:



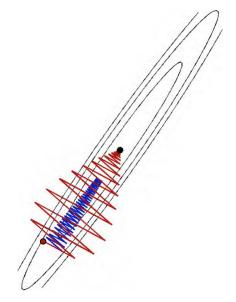
Linear Coupling

Momentum View:



Linear Coupling

Momentum View:



Ax = b?

$$Ax = b?$$

 $x_{n+1} = x_n + \alpha(b - Ax).$

Ax = b?

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*| = ||x_n - x^* - \alpha A(x_n - x^*)|| \quad \text{From } b = Ax^*.$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$ with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$.

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$.

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$

$$Ax = b$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

Convergence:

12 62

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*| \\ = ||x_n - x^* - \alpha A(x_n - x^*)|| \quad \text{From } b = Ax^*.$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

$$Ax = b$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

Convergence:

12 62

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*| \\ = ||x_n - x^* - \alpha A(x_n - x^*)|| \quad \text{From } b = Ax^*.$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

$$Ax = b$$

$$x_{n+1} = x_n + \alpha(b - Ax).$$

Convergence:

60

A ...

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*| \\ = ||x_n - x^* - \alpha A(x_n - x^*)|| \quad \text{From } b = Ax^*.$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$,

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues
$$\lambda_1 \ge \cdots \ge \lambda_n$$
.
Notice $|v|^2 = \sum_i a_i^2$.
and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1 - \alpha \lambda_i)^2 \leq (1 - \Omega(\lambda_n/\lambda_1))^2$

$$Ax = b?$$

$$x_{n+1} = x_n + \alpha(b - Ax)$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues
$$\lambda_1 \ge \cdots \ge \lambda_n$$
.
Notice $|v|^2 = \sum_i a_i^2$.
and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1 - \alpha \lambda_i)^2 \leq (1 - \Omega(\lambda_n/\lambda_1))^2$

 $\implies O(\lambda_1/\lambda_n)$ iterations halves the size of the error.

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues
$$\lambda_1 \ge \cdots \ge \lambda_n$$
.
Notice $|v|^2 = \sum_i a_i^2$.
and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1 - \alpha \lambda_i)^2 \le (1 - \Omega(\lambda_n/\lambda_1))^2$

 $\implies O(\lambda_1/\lambda_n)$ iterations halves the size of the error. Note: $\log \frac{1}{\varepsilon}$ dependence on error ε .

$$Ax = b?$$

$$x_{n+1}=x_n+\alpha(b-Ax).$$

Convergence:

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues
$$\lambda_1 \ge \cdots \ge \lambda_n$$
.
Notice $|v|^2 = \sum_i a_i^2$.
and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1 - \alpha \lambda_i)^2 \le (1 - \Omega(\lambda_n/\lambda_1))^2$

 $\implies O(\lambda_1/\lambda_n)$ iterations halves the size of the error. Note: $\log \frac{1}{\varepsilon}$ dependence on error ε .

Can do $\sqrt{\lambda_1/\lambda_n}$ using Chebyshev or Conjugate Gradient or Accelerated Gradient Descent)

$$Ax = b?$$
$$x_{n+1} = x_n + \alpha(b - Ax).$$

Convergence:

1.0

.

$$|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1 v_1 + \cdots + a_n v_n$

with eigenvalues
$$\lambda_1 \ge \cdots \ge \lambda_n$$
.
Notice $|v|^2 = \sum_i a_i^2$.
and $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1 - \alpha \lambda_i)^2 \leq (1 - \Omega(\lambda_n/\lambda_1))^2$

 $\implies O(\lambda_1/\lambda_n)$ iterations halves the size of the error. Note: $\log \frac{1}{\varepsilon}$ dependence on error ε .

Can do $\sqrt{\lambda_1/\lambda_n}$ using Chebyshev or Conjugate Gradient or Accelerated Gradient Descent)

Recall: λ_1 is large eigenvalue, λ_n is small.

Graph Laplacians.

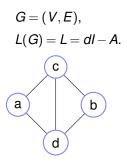
$$G = (V, E),$$

Graph Laplacians.

$$G = (V, E),$$

$$L(G) = L = dI - A.$$

Graph Laplacians.



	a	b	С	d
a b	2	-1	-1	0
b	2 -1	2	0	-1
С		-1	3	-1
d	-1 -1	-1	-1	3

For graph laplacians: L = dI - A.

For graph laplacians: L = dI - A. dI - A.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\frac{x^T A x}{d|x|^2}$ is proxy for "eigenvalue".

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\frac{x^T A x}{d|x|^2}$ is proxy for "eigenvalue". $x^T (dl - A) x = d|x|^2 - x^T A x.$

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{1}$ has eigenvalue 0.

 $\frac{x^{T}Ax}{d|x|^{2}}$ is proxy for "eigenvalue". $x^{T}(dI - A)x = d|x|^{2} - x^{T}Ax.$ If different for different *x*, then λ_{1}/λ_{n} is large:

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0. $\frac{x^T A x}{d|x|^2}$ is proxy for "eigenvalue". $x^T (dI - A) x = d|x|^2 - x^T A x$. If different for different x, then λ_1 / λ_n is large: $Av_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i$.

For graph laplacians: L = dI - A. dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0. $\frac{x^T Ax}{d|x|^2}$ is proxy for "eigenvalue". $x^T(dI - A)x = d|x|^2 - x^T Ax$. If different for different *x*, then λ_1 / λ_n is large: $Av_i = \lambda_i v_i \rightarrow \frac{v_i^T Av_i}{|v_i|^2} = \lambda_i$.

Expander Graph:

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0. $\frac{x^T A x}{d|x|^2}$ is proxy for "eigenvalue". $x^T (dI - A) x = d|x|^2 - x^T A x$. If different for different x, then λ_1 / λ_n is large: $Av_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i$.

Expander Graph: All $x \perp \overline{\mathbf{1}}$: $\sum_i x_i = 0$.

For graph laplacians: L = dI - A.

dl - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0. $\frac{x^T A x}{d|x|^2}$ is proxy for "eigenvalue". $x^T (dl - A) x = d|x|^2 - x^T A x$. If different for different x, then λ_1 / λ_n is large: $Av_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i$.

Expander Graph:

All $x \perp \overline{\mathbf{1}}$: $\sum_i x_i = 0$. Degree *d*, think of random ± 1 labels.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0. $\frac{x^T A x}{d|x|^2}$ is proxy for "eigenvalue".

 $x^{T}(dI - A)x = d|x|^{2} - x^{T}Ax.$ If different for different *x*, then λ_{1}/λ_{n} is large:

$$Av_i = \lambda_i v_i \rightarrow \frac{v_i^{\prime} Av_i}{|v_i|^2} = \lambda_i.$$

Expander Graph:

All $x \perp \overline{1}$: $\sum_i x_i = 0$. Degree *d*, think of random ± 1 labels. $(Ax)_i$ = average value of labels.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^{T}Ax}{d|x|^{2}} \text{ is proxy for "eigenvalue".} \\ x^{T}(dl-A)x = d|x|^{2} - x^{T}Ax. \\ \text{If different for different } x, \text{ then } \lambda_{1}/\lambda_{n} \text{ is large:} \\ Av_{i} = \lambda_{i}v_{i} \rightarrow \frac{v_{i}^{T}Av_{i}}{|v_{i}|^{2}} = \lambda_{i}. \end{array}$

Expander Graph:

All $x \perp \overline{\mathbf{1}}$: $\sum_{i} x_{i} = 0$. Degree *d*, think of random ± 1 labels. $(Ax)_{i} =$ average value of labels. Roughly $\pm \sqrt{d}$.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^{T}Ax}{d|x|^{2}} \text{ is proxy for "eigenvalue".} \\ x^{T}(dI - A)x = d|x|^{2} - x^{T}Ax. \\ \text{If different for different } x, \text{ then } \lambda_{1}/\lambda_{n} \text{ is large:} \\ Av_{i} = \lambda_{i}v_{i} \rightarrow \frac{v_{i}^{T}Av_{i}}{|v_{i}|^{2}} = \lambda_{i}. \end{array}$

Expander Graph:

All $x \perp \overline{\mathbf{1}}$: $\sum_i x_i = 0$. Degree *d*, think of random ± 1 labels. $(Ax)_i =$ average value of labels. Roughly $\pm \sqrt{d}$.

Expander: "no good cuts"

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{1}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^{T}Ax}{d|x|^{2}} \text{ is proxy for "eigenvalue".} \\ x^{T}(dl - A)x = d|x|^{2} - x^{T}Ax. \\ \text{If different for different } x, \text{ then } \lambda_{1}/\lambda_{n} \text{ is large:} \\ Av_{i} = \lambda_{i}v_{i} \rightarrow \frac{v_{i}^{T}Av_{i}}{|v_{i}|^{2}} = \lambda_{i}. \end{array}$

Expander Graph:

All
$$x \perp \overline{\mathbf{1}}$$
: $\sum_i x_i = 0$.

Degree *d*, think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly $\pm \sqrt{d}$.

Expander: "no good cuts" "all cuts same".

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^T A x}{d|x|^2} \text{ is proxy for "eigenvalue".} \\ x^T (dI - A) x = d|x|^2 - x^T A x. \\ \text{If different for different } x, \text{ then } \lambda_1 / \lambda_n \text{ is large:} \\ A v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i. \end{array}$

Expander Graph:

All
$$x \perp \overline{\mathbf{1}}$$
: $\sum_i x_i = 0$.

Degree *d*, think of random ± 1 labels.

$$(Ax)_i$$
 = average value of labels.

Roughly $\pm \sqrt{d}$.

Expander: "no good cuts" "all cuts same".

 \implies every ± 1 vector is about the same!

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^T A x}{d|x|^2} \text{ is proxy for "eigenvalue".} \\ x^T (dI - A) x = d|x|^2 - x^T A x. \\ \text{If different for different } x, \text{ then } \lambda_1 / \lambda_n \text{ is large:} \\ A v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i. \end{array}$

Expander Graph:

All
$$x \perp \overline{\mathbf{1}}$$
: $\sum_i x_i = 0$.

Degree *d*, think of random ± 1 labels.

$$(Ax)_i$$
 = average value of labels.

Roughly $\pm \sqrt{d}$.

Expander: "no good cuts" "all cuts same".

 \implies every ± 1 vector is about the same!

Fast convergence of iterative method.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{\mathbf{1}}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^T A x}{d|x|^2} \text{ is proxy for "eigenvalue".} \\ x^T (dI - A) x = d|x|^2 - x^T A x. \\ \text{If different for different } x, \text{ then } \lambda_1 / \lambda_n \text{ is large:} \\ A v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i. \end{array}$

Expander Graph:

All
$$x \perp \overline{\mathbf{1}}$$
: $\sum_i x_i = 0$.

Degree *d*, think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly $\pm \sqrt{d}$.

Expander: "no good cuts" "all cuts same".

 \implies every ± 1 vector is about the same!

Fast convergence of iterative method. Intuitively: fast communication across graph,

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{1}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^T A x}{d|x|^2} \text{ is proxy for "eigenvalue".} \\ x^T (dI - A) x = d|x|^2 - x^T A x. \\ \text{If different for different } x, \text{ then } \lambda_1 / \lambda_n \text{ is large:} \\ A v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i. \end{array}$

Expander Graph:

All
$$x \perp \overline{\mathbf{1}}$$
: $\sum_i x_i = 0$.

Degree *d*, think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly $\pm \sqrt{d}$.

Expander: "no good cuts" "all cuts same".

 \implies every ± 1 vector is about the same!

Fast convergence of iterative method. Intuitively: fast communication across graph,

 \implies fast iterative algorithm.

For graph laplacians: L = dI - A.

dI - A. Constant eigenvector, $\overline{1}$ has eigenvalue 0.

 $\begin{array}{l} \frac{x^T A x}{d|x|^2} \text{ is proxy for "eigenvalue".} \\ x^T (dI - A) x = d|x|^2 - x^T A x. \\ \text{If different for different } x, \text{ then } \lambda_1 / \lambda_n \text{ is large:} \\ A v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2} = \lambda_i. \end{array}$

Expander Graph:

All
$$x \perp \overline{\mathbf{1}}$$
: $\sum_i x_i = 0$.

Degree *d*, think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly $\pm \sqrt{d}$.

Expander: "no good cuts" "all cuts same".

 \implies every ± 1 vector is about the same!

Fast convergence of iterative method. Intuitively: fast communication across graph,

 \implies fast iterative algorithm.

Consider $\frac{x^T A x}{d|x|^2}$.

Consider
$$\frac{x^T A x}{d|x|^2}$$
.
Random ±1, same argument as for expander.

Consider $\frac{x^T A x}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} << 1.$

Consider $\frac{x^T A x}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T A x}{d|x|^2} << 1.$

Good cut: +1 on left half, -1 on right half.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} << 1.$

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{d|x|^2} + 1 \underbrace{+1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{n}$$

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{d|x|^2} + 1 \underbrace{+1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{+1}\underbrace{+1}_{+1}\underbrace{+1}_{+1}\underbrace{+1}_{-1}\underbrace{-1}_{-1}\underbrace{-1}_{-1}\underbrace{-1}_{-1}\underbrace{+1}_{-1}\xrightarrow{-1} \Longrightarrow \frac{x^{T}Ax}{d|x|^{2}} \approx 1 - \frac{1}{n}.$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{+1}\underbrace{+1}_{+1}\underbrace{+1}_{+1}\underbrace{+1}_{-1}\underbrace{-1}_{-1}\underbrace{-1}_{-1}\underbrace{-1}_{-1}\xrightarrow{-1} \Longrightarrow \frac{x^{T}Ax}{d|x|^{2}} \approx 1 - \frac{1}{n}.$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{d|x|^2} + 1 \underbrace{+1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{d|x|^2} + 1 \underbrace{+1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

$$(1) \quad (2) \quad (3) \quad (4) \quad (5) \quad (6) \quad (7) \quad (8) \quad (9)$$
$$\implies \frac{x^T A x}{|x|^2} \approx 1 - \frac{1}{n^2}. \text{ For Laplacian } 1/n^2.$$

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{d|x|^2} + 1 \underbrace{+1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Worse example:

$$1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9$$

$$\implies \frac{x^T A x}{|x|^2} \approx 1 - \frac{1}{n^2}.$$
 For Laplacian $1/n^2.$

Convergence is $O(n^2)$.

Consider $\frac{x^T Ax}{d|x|^2}$. Random ±1, same argument as for expander. +1/-1 edges change mass a lot. $\implies \frac{x^T Ax}{d|x|^2} \ll 1$.

Good cut: +1 on left half, -1 on right half.

Lose mass only in middle.

$$\underbrace{+1}_{d|x|^2} + 1 \underbrace{+1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|^2} + 1 \underbrace{-1}_{d|x|$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Worse example:

$$1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9$$

$$\implies \frac{x^T A x}{|x|^2} \approx 1 - \frac{1}{n^2}.$$
 For Laplacian $1/n^2.$

Convergence is $O(n^2)$. Or O(n).