For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$. One idea in proof:

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

f(*x*) = $x^T A x - \lambda (||x||^2 - 1)$

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

$$
f(x) = x^T A x - \lambda (||x||^2 - 1)
$$

Fix λ.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

$$
f(x) = x^T A x - \lambda (||x||^2 - 1)
$$

Fix λ. Minimize for *x*.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

$$
f(x) = x^T A x - \lambda (||x||^2 - 1)
$$

Fix λ. Minimize for *x*.

 $\nabla f(x) = 2Ax - 2\lambda x = 0$

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

$$
f(x) = x^T A x - \lambda (\|x\|^2 - 1)
$$

Fix λ. Minimize for *x*.

 $\nabla f(x) = 2Ax - 2\lambda x = 0 \implies$ Find when: $Ax = \lambda x$.

For real symmetric matrix, *A*, there exists a set of unit vectors u_1, \ldots, u_n , and real numbers λ_i such $u_i \perp u_j$ and $Au_i = \lambda_i u_i$.

One idea in proof:

 $\min x^T A x \text{ s.t } ||x|| = 1.$

How?

Constrained optimization.

$$
f(x) = x^T A x - \lambda (\|x\|^2 - 1)
$$

Fix λ. Minimize for *x*.

 $\nabla f(x) = 2Ax - 2\lambda x = 0 \implies$ Find when: $Ax = \lambda x$.

Minimizer is "eigenvector".

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$.

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$ u_i ⊥ u_i

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$ $u_i \perp u_j$ $\lambda_1 > \lambda_2 ... > \lambda_n$

A has eigenpairs: $(u_1, \lambda_1)...(u_n, \lambda_n)$. $Au_i = \lambda_i u_i$ u_i ⊥ u_i $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x_0 .

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x_0 .

$$
x_0=a_1u_1+\ldots a_2u_2+\cdots+a_nu_n.
$$

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x_0 .

$$
x_0 = a_1u_1 + \dots a_2u_2 + \dots + a_nu_n.
$$

$$
x_{t+1} = Ax_t = A^tx_0
$$

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1u_1 + \ldots a_2u_2 + \cdots + a_nu_n$. $x_{t+1} = Ax_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \cdots \lambda_n^t a_n u_n$

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1 u_1 + \ldots a_2 u_2 + \cdots + a_n u_n$. $x_{t+1} = Ax_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \cdots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \ldots$

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x₀.

 $x_0 = a_1u_1 + \ldots a_2u_2 + \cdots + a_nu_n$. $x_{t+1} = Ax_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \cdots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \ldots$ $x_t/|x_t|$ converges to u_1 .

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x₀.

 $X_0 = a_1 u_1 + \ldots a_2 u_2 + \cdots + a_n u_n$ $x_{t+1} = Ax_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \cdots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \ldots$ $x_t/|x_t|$ converges to u_1 . Get rest?

A has eigenpairs:
$$
(u_1, \lambda_1)...(u_n, \lambda_n)
$$
.
\n $Au_i = \lambda_i u_i$
\n $u_i \perp u_j$
\n $\lambda_1 > \lambda_2 ... > \lambda_n$

Take "random" x₀.

 $X_0 = a_1 u_1 + \ldots a_2 u_2 + \cdots + a_n u_n$ $x_{t+1} = Ax_t = A^t x_0$ $x_{t+1} = \lambda_1^t a_1 u_1 + \cdots \lambda_n^t a_n u_n$ Since $\lambda_1 > \lambda_2 > \ldots$

 $x_t/|x_t|$ converges to u_1 .

Get rest? Orthoganalize and induction.

Linear Solvers.

Linear Solvers.

A little background, intuition, alternative.

$$
Ax = b?
$$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

$$
Ax = b?
$$

\n
$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

\nIntuition: $\frac{1}{2}x^T Ax - bx$. Gradient: $Ax - b$.

$$
Ax = b?
$$

\n
$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

\nIntuition: $\frac{1}{2}x^T Ax - bx$. Gradient: $Ax - b$.

$$
Ax = b?
$$

\n
$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

\nIntuition: $\frac{1}{2}x^T Ax - bx$. Gradient: $Ax - b$.
\n(1) Critical point: $Ax = b$.

$$
Ax = b?
$$

\n
$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

\nIntuition: $\frac{1}{2}x^T Ax - bx$. Gradient: $Ax - b$.
\n(1) Critical point: $Ax = b$.
\n(2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha(b - Ax)$.

 $Ax = b$? $x_{n+1} = x_n + \alpha(b - Ax)$. Intuition: $\frac{1}{2}x^{T}Ax - bx$. Gradient: $Ax - b$. (1) Critical point: $Ax = b$. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha (b - Ax)$.

Could analyse using gradient descent (lipshitz constant?)

 $Ax = b$?

 $x_{n+1} = x_n + \alpha(b - Ax)$. Intuition: $\frac{1}{2}x^{T}Ax - bx$. Gradient: $Ax - b$. (1) Critical point: $Ax = b$. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha (b - Ax)$.

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

 $Ax = b$?

 $x_{n+1} = x_n + \alpha(b - Ax)$. Intuition: $\frac{1}{2}x^{T}Ax - bx$. Gradient: $Ax - b$. (1) Critical point: $Ax = b$. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha (b - Ax)$.

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with *A*.

 $Ax = b$?

 $x_{n+1} = x_n + \alpha(b - Ax)$. Intuition: $\frac{1}{2}x^{T}Ax - bx$. Gradient: $Ax - b$. (1) Critical point: $Ax = b$. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha (b - Ax)$.

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with *A*. Ratio of largest to smallest eigenvalues.

 $Ax = b$?

 $x_{n+1} = x_n + \alpha(b - Ax)$. Intuition: $\frac{1}{2}x^{T}Ax - bx$. Gradient: $Ax - b$. (1) Critical point: $Ax = b$. (2) Gradient step: $x_n - \alpha \nabla f(x) = x_n + \alpha (b - Ax)$.

Could analyse using gradient descent (lipshitz constant?) or Accelerated Gradient Descent.

E.g., Lipshitz constant has to do with *A*. Ratio of largest to smallest eigenvalues.

Linear Coupling **Momentum View:**

Linear Coupling **Momentum View:**

Linear Coupling

Momentum View:

Linear Coupling

Momentum View:

 $Ax = b$?

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

$$
Ax = b?
$$

$$
x_{n+1}=x_n+\alpha(b-Ax).
$$

Convergence:

$$
Ax = b:
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

Ax = *b*?

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|
$$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|
$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$ with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$.

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$.

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1} - x^*|^2 = |x_n + \alpha(b - Ax_n) - x^*|
$$

= $||x_n - x^* - \alpha A(x_n - x^*)||$ From $b = Ax^*$.

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues $\lambda_1 > \cdots > \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2.$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues $\lambda_1 > \cdots > \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2.$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues $\lambda_1 > \cdots > \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2.$

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$,

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues $\lambda_1 > \cdots > \lambda_n$. Notice $|v|^2 = \sum_i a_i^2$. and $Av = \lambda_1 a_1 v_1 + \cdots \lambda_n a_n v_n$ $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2.$

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues
$$
\lambda_1 \ge \dots \ge \lambda_n
$$
.
Notice $|v|^2 = \sum_i a_i^2$.
and $Av = \lambda_1 a_1 v_1 + \dots + \lambda_n a_n v_n$
 $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1-\alpha\lambda_i)^2\leq (1-\Omega(\lambda_n/\lambda_1))^2$

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|
$$

= $||x_n-x^*-\alpha A(x_n-x^*)||$ From $b=Ax^*.$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues
$$
\lambda_1 \ge \dots \ge \lambda_n
$$
.
\nNotice $|v|^2 = \sum_i a_i^2$.
\nand $Av = \lambda_1 a_1 v_1 + \dots + \lambda_n a_n v_n$
\n $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1-\alpha\lambda_i)^2\leq (1-\Omega(\lambda_n/\lambda_1))^2$

 \implies $O(\lambda_1/\lambda_n)$ iterations halves the size of the error.

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|=||x_n-x^*-\alpha A(x_n-x^*)|| \quad \text{From } b=Ax^*.
$$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues
$$
\lambda_1 \ge \cdots \ge \lambda_n
$$
.
\nNotice $|v|^2 = \sum_i a_i^2$.
\nand $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
\n $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1-\alpha\lambda_i)^2\leq (1-\Omega(\lambda_n/\lambda_1))^2$

 \implies $O(\lambda_1/\lambda_n)$ iterations halves the size of the error. Note: $\log \frac{1}{\varepsilon}$ dependence on error ε .

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|
$$

= $||x_n-x^*-\alpha A(x_n-x^*)||$ From $b=Ax^*.$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues
$$
\lambda_1 \ge \cdots \ge \lambda_n
$$
.
\nNotice $|v|^2 = \sum_i a_i^2$.
\nand $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
\n $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1-\alpha\lambda_i)^2\leq (1-\Omega(\lambda_n/\lambda_1))^2$

 \implies $O(\lambda_1/\lambda_n)$ iterations halves the size of the error. Note: $\log \frac{1}{\varepsilon}$ dependence on error ε .

Can do $\sqrt{\lambda_1/\lambda_n}$ using Chebyshev or Conjugate Gradient or Accelerated Gradient Descent)

$$
Ax = b?
$$

$$
x_{n+1} = x_n + \alpha(b - Ax).
$$

Convergence:

$$
|x_{n+1}-x^*|^2=|x_n+\alpha(b-Ax_n)-x^*|
$$

= $||x_n-x^*-\alpha A(x_n-x^*)||$ From $b=Ax^*.$

Eigenvectors decomposition: $(x^* - x_n) = v = a_1v_1 + \cdots + a_nv_n$

with eigenvalues
$$
\lambda_1 \ge \cdots \ge \lambda_n
$$
.
\nNotice $|v|^2 = \sum_i a_i^2$.
\nand $Av = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
\n $\implies |x_{n+1} - x^*|^2 = \sum_i (1 - \alpha \lambda_i)^2 a_i^2$.

Setting $\alpha = 2/(\lambda_1 + \lambda_2)$, and some math (e.g., Taylors) yields $(1-\alpha\lambda_i)^2\leq (1-\Omega(\lambda_n/\lambda_1))^2$

 \implies $O(\lambda_1/\lambda_n)$ iterations halves the size of the error. Note: $\log \frac{1}{\varepsilon}$ dependence on error ε .

Can do $\sqrt{\lambda_1/\lambda_n}$ using Chebyshev or Conjugate Gradient or Accelerated Gradient Descent)

Recall: λ_1 is large eigenvalue, λ_n is small.

Graph Laplacians.

$$
G=(V,E),
$$

Graph Laplacians.

$$
G = (V, E),
$$

$$
L(G) = L = dl - A.
$$

Graph Laplacians.

For graph laplacians: *L* = *dI* −*A*.

For graph laplacians: *L* = *dI* −*A*. *dI* −*A*.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, $\overline{1}$ has eigenvalue 0.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

```
x
T Ax
\frac{x^T A x}{|d|x|^2} is proxy for "eigenvalue".
```
For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large:

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0. *x ^T Ax* $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0. *x ^T Ax* $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, $\overline{1}$ has eigenvalue 0. *x ^T Ax* $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph: All $x \perp \overline{1}$: $\sum_i x_i = 0$.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, $\overline{1}$ has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

All $x \perp \overline{1}$: $\sum_i x_i = 0$. Degree d , think of random ± 1 labels.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

All $x \perp \overline{1}$: $\sum_i x_i = 0$. Degree d , think of random ± 1 labels. $(Ax)_i$ = average value of labels.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

All $x \perp \overline{1}$: $\sum_i x_i = 0$. Degree d , think of random ± 1 labels. $(Ax)_i$ = average value of labels. Roughly ± *d*.
For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

All $x \perp \overline{1}$: $\sum_i x_i = 0$. Degree d , think of random ± 1 labels. $(Ax)_i$ = average value of labels. Roughly ± *d*. Expander: "no good cuts"

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

All $x \perp \overline{1}$: $\sum_i x_i = 0$.

Degree d , think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly ± *d*.

Expander: "no good cuts" "all cuts same".

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

$$
\mathsf{All}\; x \perp \overline{\mathbf{1}}\colon \sum_i x_i = 0.
$$

Degree d , think of random ± 1 labels.

$$
(Ax)_i
$$
 = average value of labels.

Roughly \pm *d*.

Expander: "no good cuts" "all cuts same".

 \implies every \pm 1 vector is about the same!

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

$$
\mathsf{All}\; x \perp \overline{\mathbf{1}}\colon \sum_i x_i = 0.
$$

Degree d , think of random ± 1 labels.

$$
(Ax)_i
$$
 = average value of labels.

Roughly \pm *d*.

Expander: "no good cuts" "all cuts same".

 \implies every \pm 1 vector is about the same!

Fast convergence of iterative method.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

$$
\mathsf{All}\; x \perp \overline{\mathbf{1}}\colon \sum_i x_i = 0.
$$

Degree d , think of random ± 1 labels.

$$
(Ax)_i
$$
 = average value of labels.

Roughly \pm *d*.

Expander: "no good cuts" "all cuts same".

 \implies every ± 1 vector is about the same!

Fast convergence of iterative method. Intuitively: fast communication across graph,

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

$$
\mathsf{All}\; x \perp \overline{\mathbf{1}}\colon \sum_i x_i = 0.
$$

Degree d , think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly ± *d*.

Expander: "no good cuts" "all cuts same".

 \implies every \pm 1 vector is about the same!

Fast convergence of iterative method. Intuitively: fast communication across graph,

 \implies fast iterative algorithm.

For graph laplacians: *L* = *dI* −*A*.

dI − *A*. Constant eigenvector, **1** has eigenvalue 0.

x ^T Ax $\frac{x^T A x}{|d|x|^2}$ is proxy for "eigenvalue". x^T (*dI* − *A*)*x* = *d*|*x*|² − *x*^{*T*}*Ax*. If different for different *x*, then λ_1/λ_n is large: $\mathcal{A}v_i = \lambda_i v_i \rightarrow \frac{v_i^T A v_i}{|v_i|^2}$ $\frac{i}{|v_i|^2} = \lambda_i.$

Expander Graph:

$$
\mathsf{All}\; x \perp \overline{\mathbf{1}}\colon \sum_i x_i = 0.
$$

Degree d , think of random ± 1 labels.

 $(Ax)_i$ = average value of labels.

Roughly ± *d*.

Expander: "no good cuts" "all cuts same".

 \implies every \pm 1 vector is about the same!

Fast convergence of iterative method. Intuitively: fast communication across graph,

 \implies fast iterative algorithm.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander. +1/−1 edges change mass a lot.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random \pm 1, same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random \pm 1, same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad (1) \
$$

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad \implies \frac{x^T A x}{d|x|^2} \approx 1 - \frac{1}{n}.
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random \pm 1, same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad \implies \frac{x^T A x}{d|x|^2} \approx 1 - \frac{1}{n}.
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random \pm 1, same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad \implies \frac{x^T A x}{d|x|^2} \approx 1 - \frac{1}{n}.
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

$$
(1) \quad (2) \quad (3) \quad (4) \quad (5) \quad (6) \quad (7) \quad (8) \quad (9)
$$

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad \implies \frac{x^T A x}{d|x|^2} \approx 1 - \frac{1}{n}.
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

$$
\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}
$$

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random ± 1 , same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad \implies \frac{x^T A x}{d|x|^2} \approx 1 - \frac{1}{n}.
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

$$
\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\end{array}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}
$$

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random \pm 1, same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad (1) \
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Worse example:

$$
\begin{array}{ccc}\n\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} & \text{(6)} & \text{(7)} & \text{(8)} \\
\implies & \frac{x^T A x}{|x|^2} \approx 1 - \frac{1}{n^2}.\n\end{array}
$$
 For Laplacian $1/n^2$.

Convergence is *O*(*n* 2).

Consider $\frac{x^T A x}{d |x|^2}$ $\frac{x - Ax}{d|x|^2}$. Random \pm 1, same argument as for expander. +1/−1 edges change mass a lot. \implies $\frac{x^T A x}{d|x|^2}$ $\frac{x \cdot Ax}{|x|^2}$ << 1.

Good cut: $+1$ on left half, -1 on right half.

Lose mass only in middle.

$$
(1) \qquad \implies \frac{x^T A x}{d|x|^2} \approx 1 - \frac{1}{n}.
$$

 $\implies \lambda_1$ and λ_n differ by a factor of *n*.

Worse example:

$$
\begin{array}{ccc}\n\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} & \text{(6)} & \text{(7)} & \text{(8)} \\
\implies & \frac{x^T A x}{|x|^2} \approx 1 - \frac{1}{n^2}. \text{ For Laplacian } 1/n^2.\n\end{array}
$$

Convergence is $O(n^2)$. Or $O(n)$.