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Quick LP Duality

1 Linear Programming Duality

Linear programming duality underlies much of what we have been doing in class so far. In
today’s lecture we will formally introduce duality and relate it to the toll congestion and
maximum weight matching problems from the previous lectures.

A pair of primal and dual linear programs written in the standard form is given below,
we will show that any feasible solution for the dual program gives a lower bound on the
value of the primal.

Primal LP Dual LP

min c.x max yT b

Ax ≥ b yTA ≤ c

x ≥ 0 y ≥ 0

Let the objective value for the primal LP be α, it is easy to prove upper bounds α ≤ δ
on the objective value by producing a feasible solution x with c.x = δ. Linear programming
duality is motivated by the question of proving lower bounds α ≥ δ on the objective value.
It is helpful to expand the compact representation Ax ≥ b into m primal constraints on n
variables,

a11x1 + a12x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22x2 + · · ·+ a2nxn ≥ b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn ≥ bm

Suppose we multiply the i-th primal constraint by a positive numbers yi > 0 for i ∈ [m],
positivity ensures that the signs of the inequalities are preserved. Adding the equations for
all feasible primal solutions x we have the inequality,

(a11x1 + a21x2 + · · ·+ an1xn)y1 +

(a12x1 + a22x2 + · · ·+ an2xn)y2 +

· · · · · · · · ·
(a1nx1 + a2nx2 + · · ·+ amnxn)ym ≥ yT b

Interchanging the order of summation, the above inequality can be written in terms of the
coefficients of the xi,

(a11y1 + a12y2 + · · ·+ a1mym)x1 +

(a21y1 + a22y2 + · · ·+ a2mym)x2 +

· · · · · · · · ·
(an1y1 + an2y2 + · · ·+ anmym)xn ≥ yT b
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If the coefficients of xi in the above inequality are less than ci then we have the bound
c.x ≥ yT b for all feasible feasible primal solutions x. We therefore have a lower bound
min c.x ≥ yT b on the value of the primal linear program, note that the bound is of the form
α ≥ δ.

The problem of obtaining the sharpest lower bound on α using this method can be
formulated as the dual linear program. The strong duality theorem asserts that the value of
the primal and dual programs are actually equal, provided both the programs are bounded
and have a feasible solution. From the above discussion it is clear that the value of any
feasible solution to the primal is more than the optimal value while the value of any feasible
solution to the dual is less than the optimal value.

As an example of the special case in the strong duality theorem, consider the unbounded
primal program min−x1, x1 − x2 ≤ 100, x1, x2 ≥ 0. Verify that the dual program has one
variable and is infeasible.

1.1 Complementary slackness

The complementary slackness conditions provide an easy way to verify that (x, y) are opti-
mal solutions for a pair of primal dual linear progams,

Claim 1
If (x, y) are optimal solutions for a pair of primal dual linear programs,

yi.(b−Axi) = 0 ∀i ∈ [n]

xj .(cj − yTA) = 0 ∀j ∈ [m]

Proof: As x, y are feasible solutions for the primal and the dual LP then we have,

c.x ≥ yTAx ≥ yT b

Equality holds in the above equation if (x, y) are a pair of optimal solutions. Using the
equality yTAx = yT b we have,∑

i,j

yiaijxj =
∑
i

yibi ⇒
∑
i

yi.(Axi − b) = 0

Each term in the above sum is non negative, so the sum can be zero only if the complemen-
tary slackness conditions hold. Similarly using the other equality c.x ≥ yTAx we obtain
the second set of complementary slackness conditions. 2

1.2 Congestion minimization

The minimum congestion problem can be written as a linear program, the variables are
flows fP on paths P in the graph, the constraints are,∑

P :e∈P
fP ≤ µ∑

P∈P (si,ti)

fP = 1



Notes for Quick LP Duality: 3

We will see that the toll assignment problem is the dual of this linear program. Dual
variables correspond to primal constraints, so there is a dual variable we for each edge and
unconstrained dual variables ci for each (si, ti) pair. (Note that constraints corresponding
to we are multiplied by −1 to bring the LP into the standard form and primal equality
constraints correspond to unconstrained dual variables).

The objective function for the dual linear program is the inner product of the dual
variables with the bi from the primal constraints, the dual LP maximizes

∑
i∈[k] ci−µ

∑
ewe.

There is one dual constraint corresponding to each primal variable, the primal variables are
flows fP where the paths P are between (si, ti) pairs. The dual constraints for paths P
between (si, ti) are given by,

∀P ∈ P (si, ti), ci −
∑
e∈P

we ≤ 0

The constraints show that the maximum possible value of ci is w(pi), the length of the
shortest path between (si, ti) when edges have weight we. The edge weights we ≥ 0, we add
a normalization constraint

∑
ew(e) = 1, the objective function changes to maximizing the

lengths of the shortest paths under the metric we. The dual LP can be written as,

max
∑
i

w(pi)

we ≥ 0,
∑
e

we = 1

The dual linear program finds a metric maximizing the average congestion over the network,
recall that the average congestion for a metric is the average of the lengths of shortest paths
between (si, ti) pairs under the metric.

What do the complementary slackness say about an optimal pair of solutions for the toll
congestion problem? The primal complementary slackness conditions we(

∑
e∈P fP −µ) = 0

tell us that only the maximally congested edges in the optimal routing can have non zero
tolls assigned to them. The dual complementary slackness conditions fP .(ci −

∑
e∈P we)

tell us that only shortest paths according to the toll metric can have non zero flows in the
optimal routing.

Complementary slackness conditions tell us that all flows are along shortest paths and
all tolls are on the most congested paths in the optimal solution. The row player in the
experts algorithm for toll congestion emulates this strategy, the experts framework is a
mechanical way to obtain algorithms from LP duality.

1.3 Maximum weighted matching

Exercise: Write down the primal and dual linear programs for the cover matching problem
from lecture 3, what do the complementary slackness conditions say about the maximum
weight matching?


