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Abstract— Multiple-target tracking is a canonical applica-  of track initiation and track termination. These important
tion of sensor networks as it exhibits different a_spects pf issues are ignored by many tracking a|gorithm degigned
sensor networks such as event detection, sensor information ¢ sensor networks. For example, when the false alarm
fusion, multi-hop communication, sensor management and o . AP . .
decision making. The task of tracking multiple objects in rate is high, th_e na|ve.track initiation routine will oyerﬂow
a sensor network is challenging due to constraints on a the network with spurious tracks. Hence, an algorithm for
sensor node such as short communication and sensing ranges, sensor networks must be robust against the low detection
a limited amount of memory and limited computational probability and high false alarm rate.
power. In addition, since a sensor n_etwork surveillance system In sensor networks, we seek for an autonomous tracking
needs to operate autonomously without human operators, it - . . . .
requires an autonomous tracking algorithm which can track algorithm which does not require ‘,’:1 cqntlnuous monitoring
an unknown number of targets. In this paper, we develop Py @ human operator. The localization of sensor nodes
a scalable hierarchical multiple-target tracking algorithm in an ad-hoc wireless sensor network, without expensive
that is autonomous and robust against 'gransmission failures, hardware such as the global positioning system (GPS), is
communication delays and sensor localization error. a challenging problem (see [15] and references therein).

Index Terms— Sensor networks, multiple-target tracking, Since th(_a position of a t_arget Is reported WiFh respect to
Markov chain Monte Carlo, data association the location of the reporting sensor, the algorithm must be
robust against the sensor localization error. We also need
to consider the following constraints on sensor networks.
Due to the limited supply of power, the multi-hop wireless

In wireless ad-hoc sensor networks, many inexpensivad-hoc communication is used in sensor networks. In
and small sensor-rich devices are deployed to monitomany cases, the communication bandwidth is low and the
and control our environment. It is envisioned that thecommunication links are not reliable, causing transmission
sensor networks will connect us to the physical world infailures. In addition, due to the low communication band-
a pervasive manner [6], [8]. Each device, called a sensowidth and a limited amount of memory, communication
node, is capable of sensing, computation and communidelays can occur frequently. It is well known that com-
cation. Sensor nodes form a wireless ad-hoc network fomunication is costlier than computation in sensor networks
communication. The limited supply of power and otherin terms of power usage [7]. Hence, it is essential to fuse
constraints, such as manufacturing costs and limited packecal observations before the transmission. Since the data
age sizes, limit the capabilities of each sensor node. For exxssociation problem is NP-hard [5], [17], we cannot expect
ample, a typical sensor node has short communication ang solve it with only local information. But, at the same
sensing ranges, a limited amount of memory and limitedime, we cannot afford to have a centralized algorithm
computational power. However, the abundant number o§ince such solution cannot be scalable. In summary, we
spatially spread sensors will enable us to monitor changeseed a simple and efficient tracking algorithm that is robust
in our environment accurately despite of inaccuracy of eaclgainst the low detection probability and high false alarm
sensor node. rates; capable of initiating and terminating tracks; uses

Multiple-target tracking is a canonical application of less memory; combines local information to reduce the
sensor networks as it exhibits different aspects of seneommunication load; and is scalable. Also it must be robust
sor networks such as event detection, sensor informatioagainst transmission failures, communication delays and
fusion, communication, sensor management, and decisicsensor localization error. But at the same time we want
making. Each sensor node has a limited supply of powean algorithm that can provide a good solution and improve
and operates in the low SNR regime, leading to lowits solution toward the optimal solution given an enough
detection probability. If the detection is done by a thresh-computation time.
old test, one can increase the detection probability by In [16], an efficient real-time algorithm that solves the
decreasing the threshold level. However, as we decreaskata association problem and is capable of initiating and
the threshold level, the false alarm rate gets increasederminating a varying number of tracks, Markov chain
The presence of false alarms and missing observations divonte Carlo data association (MCMCDA), is presented.
to the low detection probability complicate the problemsMCMCDA is an approximation to the optimal Bayesian
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filter [16]. It has been shown that MCMCDA is com- [1] and multiple hypothesis tracker (MHT) [18] are robust
putationally efficient compared to the multiple hypothesisagainst the low detection probability and high false alarm
tracker (MHT) [18] and outperforms MHT under extreme rate. But they are not suitable for sensor networks since
conditions, such as a large number of targets in a dendée track initiation and termination is difficult with JPDAF
environment, low detection probabilities, and high falseand both JPDAF and MHT require large memory and
alarm rates [16]. MCMCDA is suitable for sensor networkscomputation cycles. Since MHT can initiate and terminate
since it can autonomously initiate and terminate trackstracks, the tracking task can be easily distributed in a
Since transmission failure is another form of a missingnetwork of sensors. In [3], a distributed tracking algorithm
observation, MCMCDA is robust against transmission fail-based on MHT is developed for multiple sensors. But
ures. MCMCDA performs data association based bottthe approach is not suitable for sensor networks since it
current and past observations, so delayed observations cdemands large computational power and large amount of
be easily combined with previously arrived observationanemory on each sensor.

to improve the accuracy of estimates. Furthermore, MCM- In [11], the authors propose to use a classification algo-
CDA requires less memory as it maintains only the currentithm to disambiguate closely located targets. But signals
hypothesis and the hypothesis with the highest posterior. feceived from targets are correlated and we cannot recover
does not require the enumeration of all or some of hypothethe uncorrelated signals in all cases. Since we do not know
sis as in [10], [18]. In this paper, we extend the MCMCDA in advance the number of targets around each sensor, the
algorithm to sensor networks in a hierarchical manner s@roblem is ill-posed and very challenging even for a high-
that the algorithm becomes scalable and we show thend computer. In [13], the distributed track initiation and
robustness of the algorithm against transmission failuresnpaintenance methods are described. By electing a leader
communication delays and sensor localization error iramong the sensors by which a target is detected, unnec-
simulations. To our knowledge, the algorithm presentedessary communications are reduced. But considering the
in this paper is the first general multiple-target trackingcomplexity of the data association problem, the approach
algorithm for sensor networks which can systematicallywill suffer from incorrect associations when there are many
track an unknown number of targets in the presence ofargets crossing or moving close to each other. In addition,
false alarms and missing observations and is robust againaten the false alarm rate is high, the proposed approach
transmission failures, communication delays and sensawill overflow the network with spurious tracks and it is
localization error. unclear how the missing observations are handled.

We consider a simple shortest-path routing scheme on Many of newly proposed multiple-target tracking algo-
a sensor network. The transmission failures and commudithms for sensor networks try to solve the identity manage-
nication delays of the network are characterized probament problem [12], [19]. They assume the availability of a
bilistically. We assume the availability of a small num- classification algorithm as in [11] but the disambiguation is
ber of special nodessupernodesthat are more capable delayed until targets are sufficiently separated. As assumed
than regular nodes in terms of computational power anéh simulations of [12], when the targets are of different
communication range. Each node is assigned to its nearesfasses, a target can be classified by the signature of its
supernode and nodes are grouped by supernodes. We calthss. But, if all targets are of the same class, a target
the group of sensor nodes formed around a supernodsannot be easily classified by its signature and, in the
as a “tracking group”. When a node detects a possiblabsence of reliable classification information, the proposed
target, it communicates with its neighbors and observationmethods will behave like the naive nearest neighbor tracker.
from the neighboring sensors are fused and sent to it®ur algorithm can complement the identity management
supernode. Each supernode receives the fused obsendgorithms when tracking targets with the same class or
tions from its tracking group and executes the trackingeliable classification information is not available.
algorithm. Each supernode communicates with neighboring A distributed particle filtering algorithm for sensor net-
supernodes when a target moves away from its rang&vorks is presented in [4] and used to track a single
Lastly, the tracks estimated by supernodes are combina@ianeuvering target. The paper assumes the availability of
hierarchically. supernodes and a hierarchical topology similar to ours. The

The remainder of this paper is structured as followspaper also assumes the availability of sensors which can
In Section IlI, the multiple-target tracking problem and measure an angle and distance to a target. But we are not
its probabilistic model are described. The MCMCDA al- aware of sensors with such capability available for sensor
gorithm for multiple-target tracking is presented in Sec-networks. The most widely used and realistic sensor model
tion IV. The sensor network model is described in Secis based on the signal strength and this is the model we
tion V and the hierarchical MCMCDA method is given use in this paper.
in Section VI. The simulation results are shown in Sec-
tion VII. 1. GENERAL MULTIPLE-TARGET TRACKING

I[I. RELATED WORK A. Problem

The traditional multiple-target tracking algorithms such Let T € Z* be the duration of surveillance. L&t
as the joint probabilistic data association filter (JPDAF)be the unknown number of objects moving around the



surveillance regioriR for some durationt®, ] c [1,T]
fork=1,...,K. LetV be the volume ofR. Each object
arises at a random positionT att¥, moves independently
aroundR until ¢} and disappears. At each time, an existing
target persists with probability — p, and disppears with
probability p,. The number of objects arising at each time
over R has a Poisson distribution with a parameigi
where )\, is the birth rate of new objects per unit time,
per unit volume. The initial position of a new object is
uniformly distributed overR.

Let F'* : R¢ — R? be the discrete-time dynamics of the
object k, whered is the dimension of the state variable,
and letzf € R? be the state of the objeét at timet for
k=1,2,..., K. The objectt moves according to

k

wy = FF(af) + wyf, fort =tF, .. th—1,

where wf € R? are white noise processes. The noisy

observation of the state of the object is measured Wit|’|],|

a detection probabilitypq which is less than unity. There
are also false alarms and the number of false alarms h
a Poisson distribution with a paramet®&l” where X is
the false alarm rate per unit time, per unit volume. het
be the number of observations at timeincluding both
noisy observations and false alarms. kgte R™ be the
j-th observation at time for j = 1,...,n;, wherem is

T
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Fig. 1. (a) An example of observatiori$ (each circle represents an

observation and numbers represnt observation times); (b) an example of
a partitionw of Y’

sensors, we can easily relax this requirement to allow multi-
ple observations per track. A track is assumed to contain at
least two observations since we cannot distinguish a track
with a single observation from a false alarm. An example
of a partition is shown in Fig. 1.

Let e; be the number of targets from tinhe-1 anda,; be
the number of new targets at timel_et z; be the number of
targets terminated at timeandc; = e; — z;. Let d; be the
umber of detections at timeandu; = e; — 2 +a; —d; be
the number of undetected targets. Finally, fet= n; — d;

#H the number of false alarms. It can be shown that the

posterior ofw is:

P(|Y) oc TT,_y p3 (1 — pz)ept (1 —pd>“tAgtAftP<1(/;)>
1

where P(Y|w) is the likelihood of observation¥™ given

the dimensionality of each observation vector. Each objeab, which can be computed based on the chosen dynamic
generates a unique observation at each sampling time if &nd measurement models. Our goal is to find a partition of
is detected. Lef’ : R? — R™ be the observation model. observations such that(w|Y") is maximized.

Then the observations are generated as follows:

{

where v € R™ are white noise processes amg ~

Unif(R) is a random process for false alarms. Notice that i ! )
with probability 1 — pqg, the object is not detected and we MCMC is the only known general algorithm that finds
call this a missing observation. We assume that targets afe 900d approximate solution to a complex problem in
indistinguishable in this paper. But, if observations includePClynomial time [9]. MCMC techniques have been applied

target type or attribute information, the state variable cari® cOmplex probability distribution integration problems,
be extended to include target type information. counting problems such as #P-complete problems, and
combinatorial optimization problems [2], [9]. The MCMC

approach applied to combinatorial optimization problems
is generally known as simulated annealing.

MCMC is a general method to generate samples from a
distribution = by constructing a Markov chaimt whose
states ares and whose stationary distribution iw). If
we are at statev € 2, we propose.’ € Q following the

proposal distributiony(w,«w’). The move is accepted with
an acceptance probabilit4(w, w’) where
/ /
Here, K is the number of tracks for the given partition W) ,
w € Q. We call 7, a track when there is no confusion m(w)g(w, ')

although the actual track is the set of estimated statestherwise the sampler stays .t so that the detailed bal-
from the observations;,. However, we assume there is a ance is satisfied. If we make sure thiét is irreducible and
deterministic function that returns a set of estimated stateaperiodic, thenM converges to its stationary distribution
given a set of observations, so no distinction is requiredby the ergodic theorem.

The fourth requirement says that a track can have at most The MCMC data association (MCMCDA) algorithm
one observation at each time, but, in the case of multiplés described in Algorithm 1. MCMCDA is an MCMC

IV. MCMC DATA ASSOCIATION ALGORITHM

In this section, we develop an MCMC sampler to solve
the multiple-target tracking problem. MCMC-based algo-
rithms play a significant role in many fields such as physics,
statistics, economics, and engineering [2]. In some cases,

H(z¥) + 0] if j-th observation is from:¥
U otherwise,

yi

B. Probabilistic Model

lety, = {y/ :j=1,...,n} andY = {y}7. Let Q
be a collection of partitions of” such that, forw € €,

1) w=A{r0,71,---,TK };

2) U, 7 =Y andr, N7 =0 for i # j;

3) 7y is a set of false alarms;

4 Ny <lfork=1,..., K&t=1,...,T; and
5) || >1fork=1,..., K.

A(w,w') = min (1, )



Algorithm 1 (MCMC Data Association): ."'.--._‘_.,-ﬁ"" birth ."'.--._._.,-."'.

Input: Y, nme, Winit
Output: & " 0O O (@) o m “ -------- ‘L“{.
N (a) O (b) O
‘f*’  Winit ) ;t W < Winit
or n= 0 mmc '__’ ) _‘
propose w’ based on w (see [16]) O O ,..--". split o o ‘-‘"‘.
sample U from Unif[0,1] .." - -
wew if U<Aw,w) [ o QO | merge O (o) o O
G it pelY)/p@lY) > 1 © o (@
en
n g o | Bem
—
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algorithm whose state spacefisdescribed in Section IlI- | (A

B and whose stationary distribution is the posterior (1)! = = - =

The proposal distribution for MCMCDA consists of five L Update Ty R

types of moves. They are (1) birth/death move pair; (2) L °. B e

splittmerge move pair; (3) extension/reduction move pair| (g)‘ o e ) o @

(4) track update move; and (5) track switch move. The

MCMCDA moves are graphically illustrated in Fig. 2. l---.._,_. 09 | switen | B

For detail description of each move, see [16]. The inputs o _-— ®...

for MCMCDA are the set of all observation¥’, the [ o LN @ O“Q‘”-O

number of samplesiy,, and the initial statev,;. The

acceptance probability4(w,w’) is defined in (2) where Fig. 2.  Graphical illustration of MCMCDA moves (associations are

m(w) = P(w|Y) from (1). In Algorithm 1, we use MCMC indicated by dotted lines and hollow circles are false alarms)

to find a solution to a combinatorial optimization problem.

So it can be considered as simulated annealing at a constaft||s; — s3|| = ming=1,.._ ngssllsi — sgl|. For a nodei, if

temperature. No burn-in samples are used since we are simti) = j, then the shortest path from to s5 in G is

ply looking for a partition which maximizes the posterior. denoted bysp(4).

In addition, the memory requirement of the algorithm is at Let Rs € R be the sensing range. If there is an object

its bare minimum. Instead of keeping dlb(n)}; ™S, we atz € R, a sensor can detect the presence of the object.

simply keep the partition with the maximum posteriét, Each sensor records the sensor’s signal strength,

Notice that, in MCMC, the construction of is done on {
2 =

TH s —afe T Wis if an object is present at

fly according to the proposal distributi ") and there
y g prop aftw, o) w;, if no object is present

is no need to store previously visited states. 3)
The Markov chain designed by Algorithm 1 is irre- wherea, 3 and~ are constants specific to the sensor type
ducible (Theorem 1 in [16]) and aperiodic [16]. In addition, ' Bl P yp

the transitions described in Algorithm 1 satisfy the detailedglnd th'ey are r'10rr'nal|zed'suc'h that has the standard
L . . . . _“Gaussian distribution. This signal-strength based sensor
balance condition since it uses the Metropolis-Hastings ; . .
. “odel (3) is general for sensors available in sensor net-
kernel (2). Hence, by the ergodic theorem, the chain K h . d ) d has b
converges to its stationary distribution works, such as acoustic and magnetic sensors, and has been
’ used frequently [12]-[15]. For eachif z; > 7, wheren is
V. SENSOR NETWORK MODEL a threshold set for appropriate values of detection and false-
(ﬁ)ositive probabilities, the node transmifsto its neighbor-
ing nodes, which are at mo2Rs away froms;, and listens
incoming messages from i&Rs neighborhood. Note
at this approach is similar to the leader election scheme in
3] and we assume th@; > 2Rs. However, this approach
may cause some missing observations if there is more than
one object in this disk of radiudRs. A better approach to
Fuse local data is required and we will address this issue
in our future work. For the nodg if z; is the larger than

all incoming messages;, ;. ..,z _,, andz;, = z;, then

In this section, we describe the sensor network an
sensor model used for simulations in Section VII. 1éf
be the number of sensor nodes, including both supernodé
and regular nodes, deployed over the surveillance regio
R C R%. We assume that each supernode can communica
with its neighboring supernodes. Lete R be the location
of the i-th sensor node and I&& = {s; : 1 < i < Ng}.
Let R; € R be the transmission range of a regular senso
node. A pair of sensor nodesand j can communicate
to each other if the Euclidean distange; — s;|| < R:. h " f biect | . d
Let G = (S,E) be a communication graph such that e Position of an object Is estimated as
(Si78j) € FE if and Only if ||SZ — Sj” < R;. Let Ngg < Ng R Z?:l Zi; Si;
be the number of supernodes and it € S be the Zi = S (4)
position of thej-th supernode, fori = 1,..., Nss Let g=1"%

g {l,...,Ns} — {1,...,Nss} be the assignment of ThenZ; is transmitted to the supernogéi) via the shortest
each sensor to its nearest supernode suchgfiat= j;  pathsp(:). If z; is not the largest compared to the incoming



messages, the node does nothing and goes back to established tracks. We form a new set of trackg from

the sensing mode. Although each sensor cannot give afr; € w; : 1 <i < |w;|,1 < j < Nss} while making sure

accurate estimate of object's position, as more sensothat constraints defined in Section IlI-B are satisfied. Then

collaborate, the accuracy of estimates improves as shown ime run Algorithm 1 on this combined observation &ét

Fig. 3 (left). The collaboration of sensors makes the systerwith the initial statew;n.

more robust against node failures and we can increase the

detection probability and decrease the false alarm rate by VII. SIMULATION RESULTS

collaboration. For simulations below, we consider the surveillance over
A transmission along the edge;, s;) fails indepen- @ rectangular region on a plar®, = [0,100]>. The state

dently with probabilitype and the message never reachesvector isz = [z,y, &, y]” where(z,y) is a position inR

a supernode. So we can consider transmission failure @ong the usuat andy axes andz,7) is a velocity vector.

another form of a missing observation.Hfis the number The following linear dynamic and measurement models are

of hops required to relay data from a sensor node td!sed

its supernode, the probability of successful transmission (6)

decays exponentially ag increases. To overcome this

problem, we usé: independent paths to relay data if the where § is a sampling intervalaw; and v; are white

reporting sensor node s hops away from its supernode. Gaussian noises with zero mean and covariaGce=

The probability of successful communication from thediag(.15%,.15%) and R (set according to Fig. 3 (left)),

reporting node; to its supernodey(i) can be computed respectively, and

as1— (1—(1—pe)*)", wherek = [sp(i)|.

Tirs = Asze+ Gswy
Ye = Czy+ vy,

o o : 1 0 6 0 £ 0 1 077"
The (additional) communication delay is modeled by the 01 0 & 0 0 1
negative binomial distribution. We assume each node has™ = | 0 o 1 o |9 = s 6 =10 o
the same probability4e of delaying a message. H; is 00 01 0 00

the number of delays occurred on the message originatings assume 200 x 100 sensor grid, in which the separation

from the sensof, d; is distributed as between sensors is normalized to 1. So the unit length in
o (lsp(@)|+d—1 1sp()| d simulation is the length of the sensor separation. In all
p(di = d) = < d (1= Pae) (Pae). (5) simulations, R = 10, nme = 1000, ws = 10 and the

If the network is heavily loaded, the independence assumﬁ'yIndOW is forward by a single step. For the sensor model,

tions on transmission failure and communication delay may'c “S€ = 2,7=1,n=2 andj=3(1+7E).

not hold. However, the model is realistic under the moder- Since t?ﬁ numfber of targefts N TOt f_|t>;]ed, Itis d|ff|ctult (th q
ate conditions and we have chosen it for its simplicity. measure the performance of an aigorithm using a standar

criterion such as the mean square error. Hence, we use two
VI. HIERARCHICAL MCMCDA separate metrics to measure performance: the estimation

We use the online MCMCDA algorithm with a sliding €rror in the number of targetsc and the estimation error
window of sizews [16]. The supernodes maintains a setin Positionex. Let K be the number of targets at tine
of observationsy” = {y{ Ctour — Wws < t < teun 1 < j < and K; be the estimated number of targets at titnéVe
n:}, wheretq,, is the current time. Eachy is a fused define -
observationéi fror_n some sensoi. At time tgyr + 1, the (= 1 Z K, — K}|. @)
observations at time.,, — ws are removed fromt” and T =

a new set of observations is appendedrtoAny delayed . . .
; . The computation of x is done when it makes sense. At any
observations are appended to appropriate slots. Then ea here can be at mod, — min(K,, K} ) common tracks
supernode initializes the Markov chain with the previously,;, L b -
We find M; matches between true tracks and estimated

estimated tracks and executes Algorithm 1 ﬁn Oncg éracks based on positions @t 1,¢,¢t + 1. For each match
tracks are found, the next state of each track is predicted. wr ) "
1, let 27 (i) andx (i) be the position of the true track and

If the predicted next state belongs to the surveillance are : . .
) S e estimated track dt respectively. We define
of another supernode, track information is passed to the

corresponding supernode. The newly received tracks are ) 1 T M _ s
incorporated into the initial state of the Markov chain for xX= 5 P ARG EEAG] (8)
the next time step. t=1 i=1

Since each supernode maintains its own set of tracks, We first evaluate the effect of the sensing range and
there can be multiple tracks from a single object main-empirically find that there is an optimal value at which
tained by different supernodes. To make the algorithnthe estimation error is minimized. Then we illustrate the
fully hierarchical, we do track-level data association torobustness of our algorithm against sensor localization
combine tracks from different supernodes. Lgt be the error, transmission failures and communication delays. We
set of tracks maintained by supernogles {1,...,Ngs}.  then give an example of surveillance with sensor networks
LetY = {r(t) € wj : 1 <t <T,1<i< |w|,l< and demonstrate how the hierarchical MCMCDA algorithm
j < N} be the combined observations only from theworks.
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A. Sensing Range based on incorrect node positions. However, considering
When localizing a single target, we can minimize thethe fact_ thatex is computed from the norm qf a vector in
localization error by allowing more sensors to collaborateR”, €x is mostly due to the sensor localization error.
which is equivalent to.increasin@S as shown in F.ig.3 C. Transmission Failures
(left). But when there is more than one target, this is no
longer true, since observations from different targets can To assess the effects of transmission failures alone, we
collide, giving missing observations and observations awafssume that there are no delayed observations, no false
from target positions. Fig. 3 (middle) and (right) show the@larms, and no missing detections. A single supernode is
estimation errorsx and ex when 10 targets appear and placed at the center. As mentioned earlier, transmission
disappear at random times afd = 50. The speeds: failures are missing observations and Fig. 5 (left) shows the
and 3 of slow-speed vehicles are between 0 and 1 unifatio between the number of lost packets and the number
length per sampling period while, € [1,2] for medium- of total packets_ as a function of the transmission failure
speed vehicles and,y € [2,5] for high-speed vehicles. at€pe. AS pre increases, we lose more packets and, at
For each vehicle type, we used five different scenarios antte ~ -9, we lose all packets. Fig. 5 (middle) and (right)
an example is shown in Fig. 4 (left). WheRs = .5, the show the estimation errors and the algorithm performs well
sensors do not cover the surveillance regiBnand do for pe < .4. Notice that wherpe = .4 more than 50% of
not detect a target at all times, hence, the estimation errdt@ckets are lost. It shows that our algorithm is very robust
is higher. As we increas®s, estimation errors increase, against transmission failures. The estimation eggris
since there are more collisions among observations dPW at highpee since the algorithm loses the most of tracks
different targets. The estimation errors are low for high-at high pe and ex is computed with a small number of
speed vehicles since it is easier to disambiguate crossirRgmples.
targets. We find thaRks = 1.5 is a good range for all types
of vehicles and it is used in simulations below. We can als
interpret this result in terms of sensor density for a fixed AS in the previous section, we assume that there are
value of Rs. Hence, once the surveillance region is fully N0 transmission failures, no false alarms, and no missing
covered by sensors, a further increase in density does npservations. Fig. 6 (left) shows the ratio between the

oD. Communication Delays

improve the estimation error. number of delayed packets and the number of packets as
o a function of the communication delay ratge. AS pge
B. Sensor Localization Error increases to 1, all packets are delayed. Singe= 10,

The localization of sensor nodes in an ad-hoc wirelessve do not receive all the delayed packets and the ratio
sensor network, without expensive hardware such as theetween the number of delayed packets that are eventually
global positioning system (GPS), is a challenging problenreceived and the number of packets is shown as a dotted
[15]. Hence, an algorithm which utilizes sensor positionsline in Fig. 6 (left). The estimations errors are shown in
needs to be robust against the sensor localization errdrfig. 6 (middle) and (right). It shows a good performance
Suppose that the true position of sensor nede s; =  for pge < .6; this is when the most of delayed packets are
s; +w;, wherew; are Gaussian noises with zero mean andeceived. Clearly, the performance can be improved if we
covarianceX = diag(o?,0?). Fig 4 (middle) and (right) increasews.
show the estimation errors from tracking 10 targets as i .
functions of the sensor localization error It shows that E- An Example of Surveillance with Sensor Networks
the algorithm is robust against the sensor localization error In this section, we give an example of surveillance with
and, foro < .5, the algorithm performs as if there is no sensor networks. The surveillance regiéh is divided
sensor localization error. Notice thaj is always under into four quadrants and sensors in each quadrant form a
1.8, so the algorithm finds most tracks for allButey gets  tracking group, where a supernode is placed at the center
larger at higho, since the target position estimation was of each quadrant. We usegk = .3, pge = .3, andn = 2.
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The surveillance duration is increased o= 100. The algorithm is written in C++ and MATLAB and run on PC
scenario is shown in Fig. 8 (left). Fig. 7 (left) shows thewith a 2.6-GHz Intel Pentium 4 processor. It takes less than
accumulated fused observations at the sensor level. Thefe06 seconds per supernode, per simulation time step.
were a total of 1174 observations and 603 observations

were false alarms. Fig. 7 (middle) shows the observations ) VL. CONCLUS.’IONS. )

received by supernodes and the delayed observations areln this paper, a scalable hierarchical multiple-target
circled in Fig. 7 (right). Notice that we solve the multiple- tracking algorithm for sensor networks is presented. The
target tracking problem with observations shown in Fig. 72/gorithm is based on the efficient MCMC data association
(middle), not those in Fig. 7 (left). A total of 319 packets f'ilgorlthm and it is swtfable for autonomous surve_lllance
out of 1174 packets were lost due to transmission failured! Sensor networks. This new multiple-target tracking al-
and 449 packets out of 855 received packets were delaye8Orithm can initiate and terminate tracks and requires a
The tracks estimated by the algorithm are shown in Fig. gmall amount of memory. The algorithm is also robust
(middle) and Fig. 8 (right). Fig. 8 (middle) shows the tracks@dainst transmission failures, communication delays and
estimated by supernodes while Fig. 8 (right) shows thé€nsor localization error. In order to reduce the commu-
tracks estimated by the track-level data association stefication overhead, observations are first locally fused and
Fig. 8 (right) shows that the track-level data associatiorf1€n transmitted to its supernode. The task of tracking is
step corrects mistakes made by supernodes due to missifgne hierarchically by forming a tracking group around
observations. The ability to correct mistakes made by & Supermnode and later combining tracks from different

lower-level agent is another strength of our algorithm. Thesupernodes. The algorithm also features an ability to correct
mistakes made by a lower-level agent. The simulation



Fig. 7.

(left) accumulated observations at the sensor level frem1 to ¢ = T'; (middle) accumulated observations received by supernodes; (right)

accumulated observations received by supernodes with delayed observations circled

Fig. 8. (left) a scenario used in Section VII-E (numbers are target appearance and disappearance times, initial positions are marked by circles); (middle)
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tracks estimated by supernodes superimposed; (right) tracks estimated by the track-level data association step of hierarchical MCMCDA

results show that the algorithm is well suited for sensof12] J.J. Liu, J. Liu, M. Chu, J.E. Reich, and F. Zhao. Distributed state

networks where transmission failures and communication

delays are frequent.
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