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Abstract— Tolling, or congestion pricing, has emerged as
an effective tool for preventing gridlock in traffic systems.
However, tolls are currently mostly designed on route-based
traffic assignment models (TAM), which may be unrealistic and
computationally expensive. Existing approaches also impracti-
cally assume that the central tolling authority can access latency
function parameters that characterize the time required to
traverse each network arc (edge), as well as the entropy param-
eter β that characterizes commuters’ stochastic arc-selection
decisions on the network. To address these issues, this work for-
mulates an online learning algorithm that simultaneously refines
estimates of linear arc latency functions and entropy parameters
in an arc-based TAM, while implementing tolls on each arc to
induce equilibrium flows that minimize overall congestion on
the network. We prove that our algorithm incurs regret upper
bounded by O(

√
T ln(T )|A|max{|I| ln(|A|/|I|), B}) , where T

denotes the total iteration count, |A| and |I| denote the total
number of arcs and nodes in the network, respectively, and B
describes the number of arcs required to construct an estimate
of β (usually ≪ |I|). Finally, we present numerical results
on simulated traffic networks that validate our theoretical
contributions.

I. INTRODUCTION

Modern transportation systems are often plagued with
congestion, induced by commuters who select latency-
minimizing routes from their source to their destination in
a self-interested manner. Tolling mechanisms, which impose
additional prices on each arc (edge) in the network, offer a
natural solution to this issue. By appropriately augmenting
the overall cost of traveling on particularly congested arcs,
effectively implemented tolls can reshape commuters’ incen-
tives, and motivate them to make arc selections that reduce
the overall network congestion.

Although various traffic assignment and tolling mecha-
nisms have been proposed to regulate congestion on trans-
portation networks, the theoretical guarantees of these ap-
proaches, if any, are usually predicated upon unrealistic
or impractical modeling assumptions. For instance, [1–3]
design traffic assignment schemes or tolls using route-based
traffic assignment models (TAMs) to capture commuters’
navigation decisions, i.e., each commuter is assumed to make
a single route selection at their origin, and to refrain from
deviating from their selected route at intermediate nodes.
Likewise, [4] presents an online learning algorithm to infer
the unknown latency functions of a traffic network, while
performing optimal route assignment over the network in the
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context of a route-based TAM. Unfortunately, route-based
TAMs do not capture the behavior of commuters who re-
route halfway to their destination, and can be computation-
ally expensive, since the number of routes in a traffic network
can grow exponentially with the number of arcs (edges). In
contrast, [5–8] investigate commuters’ decision making and
tolling mechanisms in a traffic network over a stochastic arc-
based TAM, in which commuters sequentially select among
outgoing arcs at each intermediate node from source to des-
tination. In particular, an entropy parameter β > 0 is used to
characterize the degree of irrationality with which the traveler
population selects arc sequences, due to the incomplete and
imperfect information they possess about the latency cost of
each arc. However, these approaches unrealistically assume
that the central tolling authority possesses perfect knowledge
of β and the network latency functions.

To address the above shortcomings, this work presents an
online learning algorithm in the framework of a stochastic,
arc-based traffic assignment model (TAM), to simultaneously
learn the latency function and the entropy parameter, while
implementing tolls that become increasingly effective at
reducing overall congestion in subsequent iterations. At each
iteration, we first implement tolls, constructed during the
most recent iteration, on each arc in the network. We then
collect the resulting equilibrium traffic flow and latency data
from each arc, and apply a regularized least-squares method
to update our estimates of the latency function parameters,
based on the collected data. In turn, the flow data and latency
function estimates can then be used to update our estimate
of the entropy parameter β, using the Principle of Optimism
in the Face of Uncertainty. Finally, these improved estimates
of the latency function and entropy parameters are used to
design an improved tolling strategy for the next iteration.

We define the stage-wise regret of our algorithm at each
iteration t to be the difference between the following two
quantities: (a) The overall latency in the network induced by
equilibrium flows corresponding to the toll implemented at
iteration t, and (b) The minimum overall latency attainable
by the tolling mechanism if it possessed perfect knowledge
of the entropy parameter and each arc latency function. The
cumulative regret is then computed by summing the stage-
wise regret across all iterations. Our algorithm incurs regret
of order O(

√
T ln(T )|A| · max{|I| ln(|A|/|I|), B}), where

T denotes the total iteration count, |A| and |I| denote the
number of arcs and nodes in the network, respectively, and B
denotes the number of arcs in the network used to construct
the estimate of the entropy parameter β at each iteration.

On a technical level, our algorithm utilizes concepts famil-



iar to the bandits community, such as the regularized least-
squares method for latency function estimation [4, 9, 10],
and the Principle of Optimism in the Face of Uncertainty for
entropy parameter estimation and toll design [9]. However,
the problem formulation and proof methodologies considered
in this work differ significantly from the above literature.
First, in our problem setup, the decision maker’s actions
are tolls, which induce equilibrium flows through a non-
convex map; in turn, the regret is defined from the overall
network congestion generated by these equilibrium flows.
Similarly, the unknown entropy parameter estimated in our
work affects the cumulative regret in a complicated, network
structure-dependent manner (see Section IV, Remark 1).
These complex dependencies between the actions, unknown
parameters, and regret preclude the direct use of analysis
techniques in the bandit literature. Moreover, whereas the
decision-maker in [4] estimates latency functions in the
context of a route-based TAM and implements optimal flow
assignments directly, our work estimates both the latency
functions and entropy parameter β of an underlying arc-
based TAM, and implements tolls, which in turn induce
an equilibrium flow from which the regret is computed. In
particular, to estimate the entropy parameter β, we use a
novel approximation scheme beyond the methods in [4].

Likewise, various methods have investigated the problem
of estimating the entropy parameter of softmax models
in the context of traffic assignment models or maximum
entropy inverse reinforcement learning [11–13]. However,
these approaches usually use heuristic models to approximate
the unknown parameter [11, 12], or assume that the overall
objective can be written as a convex function of the entropy
parameter [13]. These assumptions separate the above meth-
ods from our work, since our formulation involves cost and
equilibrium models that are highly non-convex in the action
variables (tolls) and in the unknown entropy parameter β.

The following sections are structured as follows. Section
II introduces the traffic network studied throughout the
remaining sections, as well as the incentive structures faced
by the commuters traversing the network. Section III presents
our online algorithm. An upper bound for the overall regret
incurred by this algorithm is given in Section IV. Finally,
Section V presents empirical evidence for the theoretical
regret bounds on our algorithm, while Section VI summarizes
our work and presents avenues for future research.

Notation: Below, for any n ∈ N, we denote [n] :=
{1, · · · , n}. For any n ∈ N and i ∈ [n], let ei denote the i-th
standard unit vector in the Euclidean space Rn. We set 1{·}
to equal 1 if the input event occurs, and 0 otherwise.

II. PRELIMINARIES

A. Setup

Let G = (I, A) be a directed acyclic graph that describes
a single-origin single-destination traffic network, with I and
A denoting the set of nodes and the set of arcs, respectively.
For each arc a ∈ A, we denote the start and end nodes
of a by ia and ja, respectively . For each node i ∈ I , let
A−

i , A
+
i ⊂ A denote the set of incoming and outgoing arcs.

Let go ≥ 0 denote the traffic flow entering the network G at
each iteration.

To traverse the network, commuters sequentially select
from outgoing arcs at each intermediate node, from the origin
o to the destination d. Each arc a ∈ A is associated with a
positive, strictly increasing latency function sa : [0,∞) →
[0,∞), which captures the time required to travel through
arc a due to congestion produced by the traffic load wa ≥ 0,
and a toll pa ≥ 0, the monetary value each traveler must pay
to access the arc. Throughout the rest of the paper, we adopt
a linear latency model, formally stated as follows1.

Assumption 1 (Linear Latency Functions): For each arc
a ∈ A, there exists a coefficient θa ∈ R such that sa(wa) =
θawa.

The cost ca : [0,∞)3 → [0,∞) on each arc is then
obtained by summing the travel time and toll:

ca(θa, wa, pa) = sa(wa) + pa

= θawa + pa,

while the perceived cost c̃a additionally includes a zero-mean
stochastic error term δa ∈ R that encapsulates variations in
commuters’ perception of travel time:

c̃a(θa, wa, pa) = sa(wa) + pa + δa

= θawa + pa + δa,

At every non-destination node i ∈ I\{d}, commuters
select among outgoing nodes a ∈ A+

i by computing their
perceived minimum cost-to-go {z̃a ∈ R : a ∈ A+

i } on arc a:

z̃a(θ, w, p) (1)

:= c̃a(θ, wa, pa) + Eδ

[
min

a′∈A+
ja

z̃a′(θ, w, p)
]
, ja ̸= d,

z̃a(θ, w, p)

:= c̃a(θ, wa, pa), ja = d. (2)

In this work, we adopt the logit Markovian Model [14, 15],
under which the noise terms δa are described by the Gumbel
distribution with scale (or, entropy) parameter β > 0. As a
result, the expected cost-to-go za for each arc a ∈ A admits
the following closed-form expression:

za(θ, w, p) = ca(θa, wa, pa)−
1

β
ln

( ∑
a′∈A+

ja

e−βza′ (θ,w,p)

)
.

(3)

The corresponding equilibrium flow, called the Markovian
Traffic Equilibrium (MTE) w̄θ,β(p) ∈ R|A| corresponding to
the latency function parameters θ ∈ R|A|, entropy parameter
β > 0, and toll vector p ∈ R|A|, is the unique flow vector
satisfying the following fixed point equation—For each non-
destination node i ∈ I\{d} and outgoing arc a ∈ A+

i :

w̄θ,β
a (p) =

gi +
∑

a′∈A+
i

w̄θ,β
a′ (p)


1For an extension of our least-squares-based latency function estimation

method to higher-degree polynomial latency functions, please see [4].



· exp(−βza(θ, w̄θ,β(p), p))∑
a′∈A+

i
exp(−βza′(θ, w̄θ,β(p), p))

,

w̄θ,β
a (p) ∈ W,

where gi := go if i = o and gi = 0 otherwise, and W is
defined as the constraint set that enforces the conservation
of traffic flow:

W :=

{
w ∈ R|A| :

∑
a∈A+

i

wa =
∑

a∈A−
i

wa, ∀ i ̸= o, d, (4)

∑
a∈A+

o

wa = go, wa ≥ 0, ∀a ∈ A

}

B. Socially Optimal Tolls

The objective of toll implementation is to realign com-
muter’s incentives and route selection decisions, to induce
perturbed social optimality with respect to the logit Marko-
vian model detailed in Section II-A, as defined below.

Definition 1 (Perturbed Socially Optimal Flow): Let the
perturbed total weighted latency L :W ×R|A| ×R→ R be
given by:

L(w, θ, β) (5)

:=
∑
a∈A

wasa(wa)+

1

β⋆

∑
i∈I\{d}

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]
.

We call w⋆ ∈ W the perturbed socially optimal flow with
latency parameters θ and entropy parameter β > 0 if it solves
minw∈W L(w, θ, β), with W given by (4).

In the perturbed total latency L defined above, the first
component is the total latency on the network weighted by
the traffic load on each arc, while the second component is
a non-positive entropy term that achieves its minimum when
the traffic load at each non-destination node allocates itself
equally among all outgoing arcs. Thus, the entropy parameter
β weights the total network latency against the tendency
of commuters with imperfect information to explore among
outgoing arcs at each intermediate node.

Since the minimization problem posed by Definition 1 is
strictly convex, the perturbed socially optimal flow exists
and is unique. Moreover, [7, 8] establish that, given a
traffic network G = (I, A) with latency function parameters
θ ∈ R|A| and entropy parameter β > 0, there exists an
optimal toll p̄ ∈ R|A| whose corresponding MTE w̄θ,β(p̄) is
perturbed socially optimal, and a dynamic tolling scheme that
converges to the optimal toll. Those results, in the context
of the online tolling problem considered in this work, are as
summarized below. For more details, please see [8].

Proposition 1: There exists w̃ ∈ W and p̄ ∈ R|A| such
that w̃ = w̄θ,β(p̄) and p̄ta = w̄t

a · θa for each a ∈
A. Moreover, w̄ is perturbed socially optimal, i.e., w̃ =
argminw∈W L(w, θ, β).

C. Online Learning Problem

Here, we pose the online learning problem that forms the
central focus of this work. Let T denote the total number of
iterations for which the algorithm is run. Consider a traffic
network G with known node and arc structure (I, A), but
unknown latency function parameters {θ⋆a : a ∈ A} and
entropy parameter β⋆ > 0. We assume that θ⋆ and β⋆ are
bounded, as posed below.

Assumption 2 (Parameter Bounds): There exist
constants cθ, Cθ, cβ > 0 such that θ⋆a ∈ [cθ, Cθ] for
each a ∈ A, and β⋆ > cβ . The central authority has access
to cβ but not necessarily cθ or Cθ.

The above assumptions are not overly restrictive, since
roads cannot be arbitrarily congestive, and travelers usually
have some non-zero proclivity for selecting cost-minimizing
arcs and routes. Moreover, as established in Section III, the
arc latency parameter estimation errors ∥θt − θ⋆∥2 shrinks
rapidly as t increases. This allows the true, unknown tem-
perature parameter β⋆, and thus a lower bound for β⋆, to be
estimated with increasing accuracy as more data is collected.

Now, consider ourselves in the position of a central
traffic authority that wishes to minimize the perturbed total
latency over the iterations t ∈ [T ], despite initially lacking
knowledge of the function parameters θ ∈ R|A|, and the
underlying entropy parameter β. To accomplish this, at each
iteration t ∈ [T ], we implement a toll vector p̂t ∈ R|A|,
and observe the resulting MTE traffic load allocation wt :=
w̄θ⋆,β⋆

(pt) ∈ W , as well as the random realizations of the
travelers’ latencies on each arc:

ℓta,j = sa(w
t
a) + ϵta,j .

for each j ∈ [⌊wt⌋], where ϵta,j are independent 1-
subGaussian random variables. We then use the flow data
{wt

a : a ∈ A} and the latency data {ℓta,j : a ∈ A, j ∈
[⌊wt⌋]} to update our estimates of the underlying, unknown
latency function parameter θ⋆ and entropy parameter β⋆, and
correspondingly design our toll to implement at the next
iteration t + 1. The cumulative regret R over the iterations
t ∈ [T ] is thus given by:

R :=

T∑
t=1

[
L
(
w̄θ⋆,β⋆

(pt), θ⋆, β⋆)− L
(
w̄θ⋆,β⋆

(p⋆), θ⋆, β⋆)] (6)

The core tenet of the above framework is that, as we ac-
cumulate more data on the traffic flow and realized latencies,
we can construct increasingly accurate estimates of θ⋆ and
β⋆, and consequently adapt our tolls pt to reduce congestion
in an increasingly effective manner.

III. MAIN ALGORITHM

In this section, we present the main components of our
algorithm (Algorithm 1). Section III-A describes the least-
squares estimator used to approximate the arc latency func-
tions from collected flow data. Section III-B then discusses
our novel approximation scheme for the unknown entropy
parameter β. Finally, we present our main algorithm in
Section III-C.



A. Least-Squares Estimator for Latency Function Parame-
ters

First, we present the regularized least-squares estimator for
the arc latency coefficients {θa : a ∈ A}. At each iteration
t ∈ [T ], for each arc a ∈ A, we observe the traffic flow at
the current iteration, wt

a, and latency data {ℓka,j : a ∈ A, k ∈
[t], j ∈ ⌊wt

a⌋}, We then update the regularized least-squares
estimate θ̂ta > 0 for the true coefficient θ⋆a, with regularizer
λa > 0, as follows 2:

θ̂ta := argmin
θa

t−1∑
j=1

⌊wj
a⌋∑

k=1

(ℓja,k − θaw
j
a)

2 + λa∥θa∥22

 .

The following lemma states that these estimates, across
iterations t ∈ [T ], lie within a neighborhood of the true
parameter θ⋆a.

Lemma 1: [9] For each t ∈ [T ] arc a ∈ A, define:

V t
a :=

t∑
τ=1

⌊wt
a⌋(wt

a)
2,

γt
a :=

√
λaCθ +

√
2 lnT + 2 ln

(
V t−1
a

λa

)
, (7)

and let the “good event” E be defined by:

E :=

{
∀ t ∈ [T ],∀a ∈ A : |θ̂t−1

a − θ⋆a| ≤
γt
a√

V t−1
a

}
.

Then P(E) ≥ 1− |A|
T .

Proof: (Sketch) We construct upper confidence bounds
for the least square estimator using covering arguments and
martingale theory, as is standard in the bandit literature (see
[9], Chapter 20, and [4].) For details, please see Appendix
A.

In words, with probability at least 1 − |A|
T , for each arc

a ∈ A at each iteration t ∈ [T ], the estimate θ̂ta falls within
the confidence interval

[
θ̂ta −

γt
a√

V t−1
a

, θ̂ta +
γt
a√

V t−1
a

]
. Below,

for convenience, we set:

θ̂t,−a := θ̂ta −
γt
a√
V t
a

,

θ̂t,+a := θ̂ta +
γt
a√
V t
a

B. Entropy Parameter Estimation

Intuitively, the entropy parameter governs the degree to
which travelers at an intermediate node prefer to select
an outgoing arc that minimizes the cost-to-go. Specifically,
when β → ∞, travelers at node i select with probability 1
an outgoing arc a ∈ A+

i that minimizes the cost-to-go; when
β → 0, travelers at node i select from all outgoing arcs with
equal probability, essentially ignoring their cost-to-go values.
As such, a natural approach for estimate β would begin by
fixing a node i⋆, whose outgoing routes to the destination are

2We assume ⌊w⌋ ≥ 1, i.e., each arc is traversed upon by at least one
commuter per iteration.

Fig. 1: (Left) A parallel 6-arc network; here, i⋆ = i1. (Right) A
more general network with 6 arcs; here, i⋆ = i2, since there are
two routes from i2 to the destination i4 which do not share an arc.

relatively straightforward to describe. Then, we can analyze
data that characterize the traffic flows and costs among its
outgoing arcs at each iteration t ∈ [T ], to gain insight into
the strength of the commuters’ preference to minimize their
cost-to-go, i.e., to estimate β.

We thus begin with the following lemma, which states that
regardless of the precise structure of the traffic network G,
there must exist a node i⋆ ∈ I with properties desirable for
estimating β > 0. For every node i⋆ satisfying the conditions
of Lemma 2, each outgoing arc a′ ∈ A+

i⋆ yields exactly one
route from i⋆ to d. Thus, the route segments from i⋆ to
d have structure akin to a parallel-link network, allowing
the estimation of the entropy parameter β⋆ from i⋆ to be
straightforward. Examples are furnished in Figure 1.

Lemma 2: There exists a node i⋆ ∈ I\{d} such that
|A+

i⋆ | ≥ 2, and for each j ∈ A+
i⋆ , either j = d, or there

exists only one route from j to d.
Proof: (Sketch) This follows by starting from the des-

tination d and recursively searching for the desired node i⋆

by moving back towards the origin o. For details, please see
Appendix B.

Below, we present assumptions that facilitate the estima-
tion of the true, unknown temperature parameter β⋆. First,
for each node i⋆ ∈ I\{d}, and any arc latency parameter
estimate θ ∈ R|A| and temperature parameter β > 0 within
a range of reasonable estimates for the true parameters
θ⋆ ∈ R|A| and β⋆ > 0, we assume that the MTE costs
of the outgoing edges A+

i⋆ are not identical. In particular,
for each such node i⋆, among the outgoing arcs A, there
must be sufficiently differentiation, in the form of a strictly
positive gap ∆z > 0, between the minimum and maximum
costs-to-go. This facilitates the estimation of the temperature
parameter in β, and emphasizes its role in the stochastic
route choices made on the part of the travelers. Indeed, the
temperature parameter β is not meaningful in networks with
route segments that are virtually indistinguishable in cost.



Assumption 3: Let p̄(θ̂, β̂) denote the optimal toll corre-
sponding to an arc-based TAM with entropy parameter β̂,
over a network with latency function parameters θ. There
exists ∆z > 0, such that, for any node i⋆ ∈ I satisfying the
conditions of Lemma 2, and any parameter estimates within
known bounds, θ̂ ∈ [cθ, Cθ] and β̂ ∈ [cβ ,∞), we have:

max
a′∈A+

i⋆

za′(θ̂, w̄θ⋆,β⋆

(p̄(θ̂, β̂)), p̄(θ̂, β̂))

− min
a′∈A+

i⋆

za′(θ, w̄θ⋆,β⋆

(p̄(θ̂, β̂)), p̄(θ̂, β̂)) ≥ ∆z.

In the following lemma, we establish an estimator βt for
the temperature parameter β at each iteration t whose prox-
imity to the true temperature parameter β⋆ is directly pro-
portional to the gap between the under- and over-estimators
θt,− ∈ R|A| and θt,+ ∈ R|A| of the true arc latency parameter
θ⋆. The key intuition behind the estimator is that, if the true
latency function parameters θ⋆ on each arc were known, the
underlying entropy parameter β⋆ can be perfectly recovered
by comparing the flows of outgoing arcs at a non-destination
node, and the ratios between the costs-to-go of these arcs.
However, since the central authority lacks access to θ⋆, we
instead use the upper and lower bounds of the confidence
interval at each iteration t, i.e., {θt,+a , θt,−a : a ∈ A}, to
construct an estimate βt of the underlying, unknown entropy
parameter β⋆. Moreover, we construct the estimate βt to
provably under-approximate β⋆, i.e., to guarantee that βt ≤
β⋆. This can be viewed as an extension of the Principle of
Optimism in the Face of Uncertainty, since the total latency
(5) is non-decreasing in the entropy parameter β (Recall that
the entropy term, to which the 1/β⋆ factor is multiplied, is
always non-positive).

Lemma 3: Let i⋆ ∈ I\{d} be any node satisfying the
conditions in Lemma 2, and let:

a⋆ ∈ arg min
a′∈A+

i⋆

za′(θ⋆, wt, pt). (8)

Then there exists βt ∈ [cβ , β
⋆] such that:

exp(−βt · za⋆(θt,−, wt, pt))∑
a′∈A+

i⋆
exp(−βt · za′(θt,+, wt, pt))

(9)

=
exp(−β⋆ · za⋆(θ⋆, wt, pt))∑

a′∈A+
i⋆
exp(−β⋆ · za′(θ⋆, wt, pt))

Moreover, let A(i⋆) denote the set of all arcs contained in a
route from i⋆ to d. Then:

|βt − β⋆| ≤ β⋆go
∆z
·
∑

a∈A(i⋆)

(θt,+a − θt,−a )wt
a. (10)

Proof: (Sketch) This follows from the monotonicity
of the exponential function, as well as the monotonicity of
the cost-to-go terms za with respect to the latency function
parameters θ. For details, please see Appendix C.

The upper bound (10) demonstrates that, by applying the
least-squares estimator described in Section III-A, which
ensures that ∥θt,+ − θt,−∥2 < O(1/

√
t) as t → ∞, we

can likewise ensure that |βt − β⋆| < O(1/
√
t) as t→∞.

C. Algorithm Overview

Armed with the estimation schemes for θ⋆ and β⋆ pre-
sented in Sections III-A and III-B, we proceed to present
our online learning algorithm (Algorithm 1). At each it-
eration t, the central authority uses latency function and
entropy parameter estimates obtained in the previous round
to compute the corresponding optimal toll pt (Line 2).
Observe that, for the latency function parameter, we use the
lower bound θt,− of the confidence interval (θt,−, θt,+), in
accordance with the Principle of Optimism in the Face of
Uncertainty. Commuters then sequentially select arcs in the
traffic network to minimize their average cost-to-go, resulting
in the MTE traffic allocation wt := w̄θ⋆,β⋆

(pt) (Line 3).
The central authority then collects this data, and uses the
regularized least-squares method in Section III-A to construct
an updated estimate θt of the underlying latency function
parameters θ⋆ (Lines 5-11). Finally, we construct an update
estimate βt of the underlying entropy parameter β⋆ using
the approach in Section III-B (Lines 14-15).

Algorithm 1: Simultaneous Tolling and Parameter
Estimation

Data: i⋆ ∈ I , β0 := cβ > 0, λa, V 0
a = λa, Q0

a = 0,
and p0a θ0,−a > 0, θ0,+a > 0 (∀a ∈ A)

1 for t = 1, · · · , T do
2 pt ← Solution to pt = θt−1,− · w̄θt−1,−,βt

(pt).
3 wt ← w̄θ⋆,β⋆

(pt) (Commuters’ flow allocation)
4 for a ∈ A do
5 ℓta,1, · · · , ℓta,⌊wt

a⌋
← Costs collected from arc

a at iteration t

6 γt
a ←

√
λaCθ +

√
2 lnT + ln

(
V t−1
a

λa

)
7 θt,−a ← max

{
θ̂t−1
a − γt

a√
V t−1
a

, 0
}

8 θt,+a ← θ̂t−1
a +

γt
a√

V t−1
a

9 V t
a ← V t−1

a + ⌊wt
a⌋(wt

a)
2

10 Qt
a ← Qt−1

a + wt
a ·
∑⌊wt

a⌋
k=1 ℓta,k

11 θ̂ta ← Qt
a/V

t
a

12 end
13 β̃t ← Solution to—∀a ∈ A+

i⋆ :

wt
a∑

a′∈A+
i⋆

wt
a′

=
exp(−β̃t · za(θt,−, wt, pt))∑

a′∈A+
i⋆

exp(−β̃t · za(θt,+, wt, pt))
.

14

15 βt ← max{cβ , β̃t}.
16 end

IV. REGRET ANALYSIS

Here, we upper bound the regret incurred by Algorithm 1.
First, we require the following lemma, which facilitates the
decomposition of the regret into tractable terms.



Lemma 4: Suppose θ2a ≥ θ1a for each a ∈ A, and β2 ≥ β1.
Then, for each w ∈ W:

L(w, θ1, β1) ≤ L(w, θ2, β2).
Proof: This follows by noting that w ≥ 0, and that the

entropy term in L is non-positive.
We now present our regret bound.
Theorem 1: There exists K(λ,∆z, cθ, Cθ, cβ , β

⋆) > 0
such that for any T ∈ N:

R ≤ Kg2o ln
2(go)|A|

√
T ln(Tgo)max

{
|I| ln

(
|A|
|I|

)
, B

}
,

where B := |A(i⋆)| denotes the set of all arcs used to
construct the estimates βt.

Proof: (Proof Sketch) As in Algorithm 1, set pt ∈ R|A|

and p⋆ ∈ R|A| to be the unique solutions to the following
fixed-point equations:

pt = θt−1,− · w̄θt−1,βt−1

(pt),

p⋆ = θ⋆ · w̄θ⋆,β⋆

(p⋆).

Under the good event E described in Lemma 1:

L
(
w̄θt,−,βt

(pt), θt,−, βt
)
≤ L

(
w̄θ⋆,β⋆

(p⋆), θt,−, βt
)

≤ L
(
w̄θ⋆,β⋆

(p⋆), θ⋆, β⋆
)
,

where the first inequality follows since Definition 1, Proposi-
tion 1, and the definition of pt (Algorithm 1, Line 2) together
imply that w̄θt,−,βt

(pt) = argminw∈W L(w, θt,−, β⋆, βt),
while the second inequality follows from Lemmas 1 and 4.

Define χ :W → R to be the entropy term in C:

χ(w) (11)

:=
∑

i∈I\{d}

 ∑
a∈A+

i

wa lnwa −

 ∑
a∈A+

i

wa

 ln

 ∑
a∈A+

i

wa




Thus, the regret R can be upper bounded as follows:

R =

T∑
t=1

[
L
(
w̄θ⋆,β⋆

(pt), θ⋆, β⋆)− L
(
w̄θ⋆,β⋆

(p⋆), θ⋆, β⋆)]
≤

T∑
t=1

[
L
(
w̄θ⋆,β⋆

(pt), θ⋆, β⋆)− L
(
w̄θt,−,βt

(pt), θt,−, βt)]
=

T∑
t=1

[
L
(
w̄θ⋆,β⋆

(pt), θ⋆, β⋆)− L
(
w̄θ⋆,β⋆

(pt), θt,−, βt)]
+

T∑
t=1

[
L
(
w̄θ⋆,β⋆

(pt), θt,−, βt)
− L

(
w̄θt,−,βt

(pt), θt,−, βt)]
=

T∑
t=1

∑
a∈A

(θ⋆a − θt,−a )w̄θ⋆,β⋆

a (pt)2 (12)

+

T∑
t=1

(
1

β⋆
− 1

βt

)
· χ
(
w̄θ⋆,β⋆

a (pt)
)

(13)

+

T∑
t=1

[
L
(
w̄θ⋆,β⋆

(pt), θt,−, βt) (14)

− L
(
w̄θt,−,βt

(pt), θt,−, βt)],

where, in accordance with the notation in Algorithm 1, we
set wt := w̄θ⋆,β⋆

(pt). Define the three summands (12), (13),
(14) by R1, R2, and R3 respectively. The convergence rate
of θt,− → θ⋆ and βt → β⋆ can then be analyzed to yield
non-asymptotic bounds for R1 and R2, respectively. In turn,
these bounds are then used to bound R3.

For more details, please see Appendices E, F, and G.
Remark 1: Compared to [4], our regret upper bound

contains an extra term max{|I| ln(|A|/|I|), B}, due to the
following unique features of our problem formulation: (1)
Entropy parameter estimation, which contributes the network
structure-dependent constant B, (2) The tolling authority
affects the equilibrium flow allocation indirectly, through
tolls, instead of directly dictating commuters’ route selec-
tions, (3) Mismatch between the latency function and entropy
parameter estimates (θt,−, βt) used by the tolling authority
to compute tolls, and the true parameters (θ⋆, β⋆) used by
the commuters to best-respond to the implemented toll.

V. EXPERIMENTS

We present numerical results on simulated traffic networks
that validate the regret bounds presented in Theorem 1.
We ran Algorithm 1 for T = 2500 iterations, with go =
100, on the parallel-arc network in Figure 1 (left), with
underlying parameters θ⋆ := (1.5, 2.5, 3.5, 4.5, 5.5, 6.5) ∈
R6, and β⋆ = 0.25, and on the more general network
in Figure 1 (right), with underlying parameters θ⋆ :=
(0.6, 0.4, 0.4, 0.4, 0.6, 0.6) ∈ R6, and β⋆ = 0.25. To sup-
press constants in the cumulative regret, we selected λa =
0.01 for each a ∈ [6]. For convenience, for each iteration
t ∈ [T ], let Lt := L(wθ⋆,β⋆

(pt), θ⋆, β⋆) denote the cost
incurred at iteration t, let L⋆ := L

(
wθ⋆,β⋆

(p⋆), θ⋆, β⋆
)

denote the minimum possible cost, and let Rt :=∑t
τ=1

[
L
(
wθ⋆,β⋆

(pτ ), θ⋆, β⋆
)
− L

(
wθ⋆,β⋆

(p⋆), θ⋆, β⋆
)]

de-
note the cumulative regret up to iteration t.

Figure 2 illustrates the growth of the cumulative regret
Rt − L⋆t as a function of the iteration count t. We also
provide logarithmic plots that describe the decay of the
stage-wise regret Lt − L⋆, the magnitude of the latency
function parameter estimation error ∥θ∥2, and the magnitude
of the entropy parameter estimation error |βt − β|. For both
networks, the cumulative regret increases as a sub-linear
function of t, while the cumulative regret, θ estimation error,
and β estimation error decrease gracefully to 0 as t increases.

VI. CONCLUSION AND FUTURE WORK

This work presents a novel online learning algorithm
to learn the latency function and entropy parameters that
characterize commuters’ arc-selection decisions on a single
source-single destination traffic network, while simultane-
ously implementing tolls to minimize the overall network
congestion. We characterize a notion of regret using the ac-
cumulation across iterations of the gap between the incurred
and minimum costs, and prove that our cumulative regret
metric increases sub-linearly in the number of iterations t.
Finally, we present numerical results illustrating the perfor-
mance of our regret algorithm on simulated traffic networks.



Fig. 2: (Left to right) The cumulative regret Rt − L⋆t, logarithm of stage-wise regret ln(Lt − L⋆), logarithm of θ-estimation error
ln(∥θt − θ⋆∥2), and logarithm of stage-wise regret ln(|βt − β⋆|) for the parallel-arc network in Figure 1 (top) and the more general
network in Figure 1 (bottom), as a function of the iteration count t. Note the sub-linear growth of the cumulative regret with respect to
the iteration count, and the rapid decay of the stage-wise regret, θ-estimation error, and β-estimation error to 0.

A natural avenue of future work is to extend the results
presented in this paper to traffic networks with multiple
origin-destination pairs, and possibly bi-directional edges.
Such settings pose particular challenges to the estimation of
the entropy parameters, since each arc in the network could
be shared among commuters with different travel histories
and destinations. It would also be interesting to explore
the relaxation of the assumption that the central authority
possesses knowledge of a lower bound cβ > 0 for β⋆.
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Cambridge University Press, 2020. DOI: 10 . 1017 /
9781108571401.
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Below, we present proofs omitted in the main paper due
to space limitations.

First, we recall the definitions of the depth and height of
a graph, as defined in [7] Appendix A, and restated below
for completeness.

Definition 2 (Depth of a DAG): Given a DAG G =
(I, A) describing a single-origin single-destination traffic
network, the depth of G, denoted ℓ(G), is defined by:

ℓ(G) := max
a∈A

ℓa

Since the acyclic traffic graphs studied in this work have
finitely many edges, we have ℓ(G) < ∞. Below, we
summarize properties of the depth of a DAG.

Proposition 2: Given a Condensed DAG G = (I, A) with
the route set R:

1) For any a ∈ A, we have ℓa = 1 if and only if ia = o.
Similarly, if ℓa = ℓ(G), then ja = d.

2) For any fixed r ∈ R, and any a, a′ ∈ r with ℓa,r < ℓa′,r,
we have ℓa < ℓa′ i.e., arcs along a route have strictly
increasing depth from the origin to the destination.

3) Fix any a ∈ A, and any r ∈ R containing a such that
ℓa,r = ℓa. Then, for any a′ ∈ R preceding a in r, we
have ℓa′,r = ℓa′ .

4) For each depth k ∈ [ℓ(G)] := {1, · · · , ℓ(G)}, there
exists some a ∈ A such that ℓa = k.
Proof: See [7], Appendix A.

Similarly, we can define and characterize the height of a
DAG.

Definition 3 (Height of a DAG): Given a DAG G =
(I, A) describing a single-origin single-destination traffic
network, the height of G, denoted m(G), is defined by:

m(G) := max
a∈A

ma

As with depth, we note that DAGs with finitely many
edges have finite height, i.e., m(G) <∞.

Proposition 3: Given an Condensed DAG G = (I, A)
with the route set R:

1) For any a ∈ A, we have ma = 1 if and only if ja = d.
Similarly, if ma = m(G), then ia = o.

2) For any fixed r ∈ R, and any a, a′ ∈ r with ma,r <
ma′,r, we have ma < ma′ i.e., arcs along a route from
the origin to the destination have strictly decreasing
depth.

3) Fix any a ∈ A, and any r ∈ R containing a such that
ma,r = ma. Then, for any a′ ∈ R following a in r, we
have ma′,r = ma′ .

4) For each height k ∈ [m(G)] := {1, · · · ,m(G)}, there
exists an arc a ∈ A such that ma = k.
Proof: See [7], Appendix A.

A. Proof of Lemma 1

At each iteration t ∈ [T ], for each arc a ∈ A, the regu-
larized least-squares estimate θ̂ta > 0 for the true coefficient
θ⋆a, with regularizer λa > 0, is given by:

θ̂ta := argmin
θa

t−1∑
j=1

⌊wj
a⌋∑

k=1

(ℓja,k − θaw
j
a)

2 + λa∥θa∥22

 .

Note that the cost objective in the above argmin expression
is convex and quadratic. Thus, by setting the gradient to 0,
we can compute the optimal parameter estimate as follows
(for more details, please see Gollapudi et al. [4], Lemma 2):

θ̂ta =

λa +

t−1∑
j=1

(wj
a)

3

−1t−1∑
j=1

wj
a ·

⌊wj
a⌋∑

k=1

ℓja,k

 (15)

For convenience, we define:

V t
a := λa +

t−1∑
j=1

(wj
a)

3, (16)

W t
a :=

t−1∑
j=1

(wj
a)

3, (17)

U t
a :=

t−1∑
j=1

wj
a ·

⌊wj
a⌋∑

k=1

ℓja,k, (18)

St
a :=

t−1∑
j=1

wj
a ·

⌊wj
a⌋∑

k=1

ϵja,k. (19)

Thus, we can write (15) as:

θ̂ta = (V t
a )

−1U t
a = (V t

a )
−1(W t

aθa + St
a). (20)

For each arc a ∈ A, the above process generates regular-
ized least-squares estimates {θ̂ta}, across iterations t ∈ [T ],
for the true underlying parameter θ⋆a. The following lemma
demonstrates that these estimates, across iterations t ∈ [T ],
lie within a neighborhood of the true parameter θ⋆a.

Proof: (Proof of Lemma 1) The following proof par-
allels that of Gollapudi et al. [4], Lemma 3, and is included
for completeness.

From (20), we have:√
V t
a |θ̂ta − θ⋆a|

=
√
V t
a |(V t

a )
−1(W t

aθa + St
a)− θa|

=
√
V t
a |(V t

a )
−1St

a +
(
(V t

a )
−1W t

a − 1
)
θa|

=
√
V t
a |(V t

a )
−1St

a +
(
(V t

a )
−1(V t

a − λa)− 1
)
θa|

=
√
V t
a |(V t

a )
−1St

a − λa(V
t
a )

−1θa| (21)

= (V t
a )

−1/2|St
a|+

√
λaθa.

To bound (V t
a )

−1/2|St
a|, define M t

a(z) :=
exp

(
zSt

a − 1
2V

t
a z

2
)

for each z ∈ R. Then, for any
fixed z ∈ R:

E[M t
a(z)|F t

a]

= M t−1
a (z) · E

exp
wt

a ·
⌊wt

a⌋∑
k=1

ϵta,kz −
1

2
⌊wt

a⌋(wt
a)

2z2

∣∣∣∣∣F t
a


= M t−1

a (z) ·
⌊wt

a⌋∏
k=1

E

[
exp

(
wt

a · ϵta,kz −
1

2
⌊wt

a⌋(wt
a)

2z2
) ∣∣∣∣∣F t

a

]
≤ M t−1

a (z).

so M t
a(z) is a supermartingale adapted to the filtration F t

a :=
σ(w1

a, s̃
1
a). Thus, so is M̃ t

a := Ez∼N (0,1)[M
t
a(z)]. It thus



follows from Lattimore and Szepesvari [9], Theorem 20.4,
that:

(V t
a )

−1/2|St
a| ≤

√
2 ln t+ ln

(
V t
a

λa

)
. (22)

The proof now follows from (21) and (22).

B. Proof of Lemma 2

Proof: (Proof of Lemma 2) By assumption, the graph
G contains more than one route from the origin o to the
destination d. Thus, there exists some a ∈ A such that
|A+

ia
| ≥ 2, so the quantity:

m⋆ := min{ma : a ∈ A, |A+
ia
| ≥ 2}

is well-defined. Now, fix any a ∈ A such that ma = m⋆,
and |A+

ia
| ≥ 2. It suffices to show that, for each j ∈ A+

ia
,

there exists only one route connecting j to the destination
d. Suppose by contradiction that there exists some j′ ∈ A+

ia
such that at least two distinct routes connect j′ to d. Let
j̄ ∈ I\{d} denote any node at which these routes diverge.
Then for any ā ∈ A⋆

j̄
, we have |A+

iā
| = |A+

j̄
| ≥ 2, and:

mā < ma = m⋆,

a contradiction to the definition of m⋆. This concludes the
proof.

C. Proof of Lemma 3

Proof: (Proof of Lemma 3) Fix t ∈ [T ]. Define κt
a⋆ ∈

R by:

κt
a⋆ :=

exp(−β⋆ · za⋆(θ⋆, wt, pt))∑
a′∈A+

i⋆
exp(−β⋆ · za′(θ⋆, wt, pt))

=
wt

a⋆∑
a′∈A+

i⋆
wt

a′
,

and let f t, gt : R× R|A|×R|A| → R be given as follows:

f t(β, θ+, θ−)

:=
exp(−βt · za⋆(θt,−, wt, pt))∑

a′∈A+
i⋆
exp(−βt · za′(θt,+, wt, pt))

,

gt(β, θ+, θ−)

:= ln f t(β, θ+, θ−)− lnκt
a

= −β · za⋆(θ−, wt, pt)

− ln

 ∑
a′∈A+

i⋆

exp
(
−β · za′(θ+, wt, pt)

)− lnκt
a⋆

Note that gt(βt, θ+, θ−) = 0 holds if and only if
f t(βt, θ+, θ−) = κt

a. If one takes θ+ = θt,+ and θ− = θt,+

this becomes a restatement of (9). We note that za(θ, w, p)
is continuously differentiable for each a ∈ A, θ ∈ R|A|,
w ∈ W , and p ∈ R|A|, and the log-sum-exp function is
continuously differentiable in the entropy parameter β. Thus,
f t and gt are likewise continuously differentiable at each
β > 0 and each θ+, θ− ∈ R|A|.

The remainder of the proof proceeds in two parts. We first
prove that, given any fixed values θ+a ≥ θ⋆a, θ−a ≤ θ⋆a for each
a ∈ A, there exists a unique fixed point solution β to the
function gt(βt, θ+, θ−) = 0. In particular, given θt,+a ≥ θ⋆a,
θt,−a ≤ θ⋆a for each a ∈ A, there exists a unique entropy
parameter estimate βt > 0 that solves gt(βt, θt,+, θt,−) = 0,
i.e., that satisfies (9), and β⋆ is the unique entropy parameter
value that satisfies gt(β⋆, θ⋆, θ⋆) = 0. We then bound the gap
between β⋆ and β by bounding the difference between θt,+

and θ⋆, and between θt,− and θ⋆.

1) Claim—Given any fixed θ+a ≥ θ⋆a, θ−a ≤ θ⋆a for each
a ∈ A, there exists a unique fixed point solution β to
the function gt(βt, θ+, θ−) = 0:

Proof : To show that, for any θt,+, θt,− ∈ R|A|,
the fixed-point equation gt(β⋆, θt,+, θt,−) = 0, has a
unique solution (or equivalently that f t(β, θ+, θ−) =
κt
a has a unique solution), we first note that:

1

|A+
i⋆ |
≤ κt

a⋆

=
exp(−β⋆ · za⋆(θ⋆, wt, pt))∑

a′∈A+
i⋆
exp(−β⋆ · za′(θ⋆, wt, pt))

< 1.

and that f t(0, θ+, θ−) = 1/|A+
i⋆ |. Below, we establish

that limβ→∞ f t(β, θ+, θ−) = 1/|A+
i⋆ |, by lower bound-

ing ∂gt

∂β . The existence and uniqueness of a solution β

to the fixed-point equation f t(β, θ+, θ−) = κt
a⋆ then

follows from the Intermediate Value Theorem.
To compute derivatives of gt, we observe that, since

ia⋆ = i⋆ satisfies the conditions of Lemma 2, for each
a′ ∈ A+

i⋆ , there exists exactly one route that connects
ja′ and d. As a result, za′(θ+, wt, pt) equals the sum of
latencies on a′ and on arcs comprising that route, and
therefore does not depend on the entropy parameter β.
Thus:

∂gt

∂β
(β, θ+, θ−)

= −za⋆(θ−, wt, pt)

+

∑
a′∈A+

i⋆

e−β·za′ (θt,−,wt,pt) · za′(θt,−, wt, pt)∑
a′∈A+

i⋆

e−β·za′ (θt,−,wt,pt)

= −za⋆(θ−, wt, pt)

+
∑

ā∈A+
i⋆

e−β·zā(θt,−,wt,pt)∑
a′∈A+

i⋆

e−β·za′ (θt,−,wt,pt)

· zā(θt,−, wt, pt)

=
∑

ā∈A+
i⋆

e−β·zā(θt,−,wt,pt)∑
a′∈A+

i⋆

e−β·za′ (θt,−,wt,pt)

·
[
zā(θ

t,−, wt, pt)− za⋆(θt,−, wt, pt)
]



=
∑

ā∈A+
i⋆

wt
ā∑

a′∈A+
i⋆

wt
a′

·
[
zā(θ

t,−, wt, pt)− za⋆(θt,−, wt, pt)
]
.

The flow continuity equations imply that∑
a′∈A+

i⋆
wt

a′ ≤ go; together with the assumption
that wt

a ≥ 1 for each a ∈ A, we have:

wt
ā∑

a′∈A+
i⋆
wt

a′
≥ 1

go
.

Combining this with the definition of ∆z , we obtain:

∂gt

∂β
(β, θ+, θ−) ≥ ∆z

go
. (23)

Thus, gt(β, θ+, θ−) increases to +∞ as β → ∞, and
therefore so does f t.

To reiterate for emphasis, this claim establishes
the unique existence of a entropy parameter estimate
βt > 0 that satisfies gt(·, θt,+, θt,−) = 0, or equiva-
lently, (9). This claim also establishes that β = β⋆ is
the unique solution to gt(·, θ⋆, θ⋆) = 0.

2) Claim—We have:

|βt − β⋆| = β⋆go
∆z
·
∑

a∈A(i⋆)

(θt,+a − θt,−a )wt
a.

Proof : For convenience, we denote θ± :=
(θ+, θ−) ∈ R2|A|. For any θ± ∈ R2|A| such that
θ+a > θ⋆a and θ−a < θ⋆a for each a ∈ A, let β =
β̂(θ+, θ−) denote the unique solution to gt(β, θ+, θ−).
Note that for any fixed w ∈ W and p ∈ R|A|, since
za⋆(θ, w, p) is component-wise increasing in θ, we have
f t(0, θ+, θ−) ≤ κt

a ≤ f t(β⋆, θ+, θ−). It thus follows
from the Intermediate Value Theorem that β̂(θ+, θ−) ∈
[0, β⋆].

By (23), we have ∂gt

∂β (β, θ+, θ−) ̸= 0 at each
β > 0. This allows us to apply the Implicit Function
Theorem, which yields that β̂ is continuously differen-
tiable in θ±, with:

∂β̂

∂θ±
(θ±) =

[
∂g

∂β
(β, θ+, θ−)

]−1[
∂g

∂θ±
(β, θ+, θ−)

]
Now, define u+ := θt,+ − θ⋆ and u− := θt,− − θ⋆. We
then have:

|βt − β⋆|

=

∣∣∣∣∣
∫ 1

0

∂β̂

∂θ±
(θ+ + σu+, θ

− + σu−)
⊤ dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

[
∂g

∂β
(β, θ⋆ − σu+, θ

⋆ + σu−)

]−1

· ∂g

∂θ±
(β, θ+ + σu−, θ

− + σu+)

· (θ+ − θ⋆, θ− − θ⋆)dt

∣∣∣∣∣

≤ go
∆z
·
∫ 1

0

∣∣∣∣∣ ∂g∂θ±
(β, θ+ + σu−, θ

− + σu+)

· (θ+ − θ⋆, θ− − θ⋆)

∣∣∣∣∣dt
=

go
∆z
·
∫ 1

0

∣∣∣∣∣∑
a∈A

∂g

∂θ+a
(β, θ+ + σu−, θ

− + σu+)

· (θt,+a − θ⋆)

+
∑
a∈A

∂g

∂θ−a
(β, θ+ + σu−, θ

− + σu+)

· (θt,−a − θ⋆)

∣∣∣∣∣dt,
where the inequality follows from (23). Next, let A(i⋆)
denote the set of all arcs along routes from the node
i⋆ to the destination node d. Now, observe that, for any
a ∈ A, β > 0 and θ+, θ− ∈ R|A|:

∂g

∂θ+a
(β, θ+, θ−) = −βwt

a · 1{a ∈ A(i⋆)},

∂g

∂θ−a
(β, θ+, θ−) =

exp(−β · zā(θt,−, wt, pt))∑
a′∈A+

i⋆
exp(−β · za′(θt,−, wt, pt))

· βwt
a · 1{a ∈ A(i⋆)}.

Substituting into the above upper bound for |βt − β⋆|,
we obtain:

|βt − β⋆|

≤ go
∆z
·
∫ 1

0

∑
a∈A(i⋆)

∣∣∣∣∣ ∂g∂θ+a
(β, θ+ + σu−, θ

− + σu+)

∣∣∣∣∣
· (θt,+a − θ⋆)

+
∑

a∈A(i⋆)

∣∣∣∣∣ ∂g∂θ−a
(β, θ+ + σu−, θ

− + σu+)

∣∣∣∣∣
· (θ⋆ − θt,−a )dt

≤ β⋆go
∆z
·
∑

a∈A(i⋆)

(θt,+a − θt,−a )wt
a,

as desired.

Notation: Throughout the appendix, the notation
x ≲ y denotes that there exists some constant
K(λ,∆z, cθ, Cθ, cβ , β

⋆), such that x ≤ Ky.

D. Preliminary Lemmas

This subsection presents preliminary lemmas that will
facilitate the proof of Theorem 1. We begin with a result
derived from the Fundamental Theorem of Calculus.

Lemma 5: If f : Rn → Rm is continuously differentiable,
then, for each x1, x2 ∈ Rn:

∥f(x2)− f(x1)∥2

≤ max
t∈[0,1]

∥∥∥∥∂f∂x(x1 + t(x2 − x1)
)∥∥∥∥

2

· ∥x2 − x1∥2.



Proof: Fix x1, x2 ∈ Rn. For each i ∈ [m], let fi :
Rn → R denote the i-th component of the map f . Define
gi : R→ R by:

gi(t) := f
(
x1 + t(x2 − x1)

)
.

Then, for each x1, x2 ∈ Rn and each i ∈ [m]:

fi(x2)− fi(x1)

= g(1)− g(0)

=

∫ 1

0

dgi
dt

(t)dt

=

∫ 1

0

∂fi
∂x

(
x1 + t(x2 − x1)

)
dt · (x2 − x1).

Concatenating the above equality across i ∈ [m], we obtain:

f(x2)− f(x1) =

∫ 1

0

∂f

∂x

(
x1 + t(x2 − x1)

)
dt · (x2 − x1).

Finally, we apply the Cauchy-Schwarz inequality to obtain:

∥f(x2)− f(x1)∥2

≤
∫ 1

0

∥∥∥∥∂f∂x(x1 + t(x2 − x1)
)∥∥∥∥

2

dt · ∥x2 − x1∥2

≤ max
t∈[0,1]

∥∥∥∥∂f∂x(x1 + t(x2 − x1)
)∥∥∥∥

2

· ∥x2 − x1∥2,

as desired.
Below, we establish a collection of upper bounds that will

be used repeatedly throughout the remainder of the proofs
(Lemmas 6 and 7).

Lemma 6: For any a ∈ A and t ∈ [T ]:

γt
a ≲

√
ln(Tgo).

Proof: Recall the definition of γt
a in (7). After taking

λa = 1, we have, for any t ≥ 2:

γt
a =

√
λaCθ +

√
2 lnT + 2 ln

(
V t−1
a

λa

)

= Cθ +

√√√√2 lnT + 2 ln

(
1 +

t−1∑
t=1

⌊wt
a⌋(wt

a)
2

)

≤ Cθ +
√

2 lnT + 2 ln
(
1 + (t− 1)g3o

)
≲
√
ln(Tgo).

This result can be straightforwardly extended to the t = 1
case by ensuring that the constant encapsulated in the “≲”
is selected to be large enough.

Lemma 7: For any a ∈ A:

T∑
t=1

min

{
1,
⌊wt

a⌋(wt
a)

2

V t−1
a

}
≲ ln(Tgo).

Proof: First, observe that min{1, x} ≤ 1
ln 2 · ln(1 + x)

for each x ≥ 0. Thus:
T∑

t=1

min

{
1,
⌊wt

a⌋(wt
a)

2

V t−1
a

}

≤ 1

ln 2
·

T∑
t=1

ln

(
1 +
⌊wt

a⌋(wt
a)

2

V t−1
a

)

=
1

ln 2
·

T∑
t=1

ln

(
V t−1
a + ⌊wt

a⌋(wt
a)

2

V t−1
a

)

=
1

ln 2
·

T∑
t=1

ln

(
V t−1
a + ⌊wt

a⌋(wt
a)

2

V t−1
a

)

≤ 1

ln 2
·

T∑
t=1

ln

(
V t
a

V t−1
a

)
=

1

ln 2
· lnV T

a

≤ 1

ln 2
· ln
(
1 + Tg3o

)
≲ ln(Tgo),

as desired.
Next, we bound the weighted sums of the magnitudes of

the latency function parameter errors θt,− − θ⋆ and entropy
parameter βt−β⋆ across iterations t ∈ [T ]. First, we require
the following lemma.

Lemma 8: Under the good event E, for any p > 0:

T∑
t=1

∑
a∈A

|θt,−a − θ⋆a|(wt
a)

p ≲ gpo |A|
√
T ln(Tgo). (24)

Proof: The desired result follows by taking p = 2 in
Lemma 8.

Lemma 9: Recall that B denotes the number of arcs along
routes from i⋆ to d, which are used to construct an estimate
of β⋆ at each iteration t. Under the good event E:

T∑
t=1

|βt − β⋆| ≲ goB
√
T ln(Tgo).

Proof: Let A(i⋆) denote the set of all arcs on routes
from i⋆ to d. By Lemma 3, under the good event E, we have
βt ∈ [cβ , β

⋆], so |βt − β⋆| ≤ β⋆ − cβ . Moreover, from (10),
we have:

|βt − β⋆| ≲ go ·
∑

a∈A(i⋆)

(θt,+a − θt,−a )wt
a

We then have:
T∑

t=1

|βt − β⋆|

≲go ·
T∑

t=1

∣∣∣∣∣∣min

β⋆ − cβ ,
∑

a∈A(i⋆)

(θt,+a − θt,−a )wt
a


∣∣∣∣∣∣

≲go ·
T∑

t=1

min

1,
∑

a∈A(i⋆)

(θt,+a − θt,−a )wt
a

 .

Take ã ∈ maxa∈A(i⋆)

{∑T
t=1(θ

t,+
a − θt,−a )wt

a

}
. Then:

T∑
t=1

|βt − β⋆|



≲go ·
T∑

t=1

min

1, B · 2γt
ã√

V t−1
ã

wt
a


≤4goBγT

ã ·
√
T ·

√√√√ T∑
t=1

min

{
1,

1

V t−1
ã

(wt
a)

2

}

≤4goBγT
ã ·
√
T ·

√√√√ T∑
t=1

min

{
1,
⌊wt

a⌋(wt
a)

2

V t−1
ã

}
≲goB

√
T ln(Tgo)

where we have used the fact that ⌊wt
a⌋ ≥ 1.

E. Upper Bound for R1

Lemma 10: Under the good event E:

R1 :=

T∑
t=1

∑
a∈A

(θ⋆a − θt,−a )(wt
a)

2 (25)

≲ g2o |A|
√
T ln(Tgo).

Proof: Take ã ∈ argmaxa∈A

{∑T
t=1(θ

⋆
a −

θt,−a )(wt
a)

2
}

. Then, under the good event E:

R1 ≤ |A| ·
T∑

t=1

(θ⋆ã − θt,−ã )(wt
a)

2

≤ |A|√go ·
T∑

t=1

(θ⋆ã − θt,−ã )(wt
ã)

3/2

≤ |A|√go ·
T∑

t=1

min

Cθg
3/2
o ,

2γt
ã√

V t−1
ã

(wt
ã)

3/2


≤ 2
√
2|A|√go

·
T∑

t=1

min

Cθg
3/2
o ,

γt
ã√

V t−1
ã

·
√
⌊wt

ã⌋ · w
t
ã

 .

where in the final inequality, we have used the fact that,
since wt

a ≥ 1 by assumption, we have wt
a ≤ 2⌊wt

a⌋. Thus,
the Cauchy-Schwarz inequality gives:

R1 ≤ 2
√
2Cθ|A|g2oγT

ã

·
T∑

t=1

min

1,
1√
V t−1
ã

·
√
⌊wt

ã⌋ · w
t
ã


≲ |A|g2o

√
ln(Tgo) ·

√
T ·

√√√√ T∑
t=1

min

{
1,
⌊wt

ã⌋(wt
ã)

2

V t−1
ã

}
≲ g2o |A|

√
T ln(Tgo),

where the final inequality follows from (7).

F. Upper Bound for R2

Recall that in (11), we defined the entropy term χ :W →
R as follows:

χ(w)

:=
∑

i∈I\{d}

 ∑
a∈A+

i

wa lnwa −

∑
a∈A+

i

wa

 ln

∑
a∈A+

i

wa


Lemma 11: For any w ∈ W , we have:

|χ(w)| ≤ go · (|I| − 1) ln

(
|A|
|I| − 1

)
Proof: First, fix D > 0 arbitrarily, and consider the

following constrained optimization problem on Rd:

min
x∈Rd

d∑
i=1

xi lnxi −

(
d∑

i=1

xi

)
ln

(
d∑

i=1

xi

)

s.t.
d∑

i=1

xi = D.

The Lagrangian of the above problem is given by:

L(x, λ, µ) =
d∑

i=1

xi lnxi −

(
d∑

i=1

xi

)
ln

(
d∑

i=1

xi

)

+ λ

(
d∑

i=1

xi −D

)
+

d∑
i=1

µixi.

The corresponding KKT conditions are therefore:

0 =
∂L
∂xi

= lnxi + 1− ln

 d∑
j=1

xj

− 1 + λ+ µi

= ln

(
xi∑d
j=1 xj

)
+ λ+ µi, ∀ i ∈ [d],

0 = µixi, ∀ i ∈ [d],

and
∑d

i=1 xi = D. The optimal solution is thus x⋆ =
D
d (1, · · · , 1), with corresponding minimum value:

d∑
i=1

x⋆
i lnx

⋆
i −

(
d∑

i=1

x⋆
i

)
ln

(
d∑

i=1

x⋆
i

)

= d · D
d
ln

(
D

d

)
−D lnD

= −D ln d.

This implies that:∣∣∣∣∣∣
∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)∣∣∣∣∣∣
≤
∑
a∈A+

i

wi · ln |A+
i |.

Summing over all non-destination nodes, we obtain:∣∣∣∣∣∣
∑

i∈I\{d}

 ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)∣∣∣∣∣∣
≤

∑
i∈I\{d}

∑
a∈A+

i

wa

 ln |A+
i |



≤go ·
∑

i∈I\{d}

ln |A+
i |

≤go · |I\{d}| ln

 ∏
i∈I\{d}

ln |A+
i |

1/|I\{d}|


≤go · |I\{d}| ln

 1

|I\{d}|
∑

i∈I\{d}

|A+
i |


=go · (|I| − 1) ln

(
|A|
|I| − 1

)
,

where the final inequality follows from the arithmetic-
geometric inequality.

Lemma 12: Under the good event E:

R2 :=

T∑
t=1

(
1

βt
− 1

β⋆

)
· χ(wt) (26)

≲ g2o ·B(|I| − 1) ln

(
|A|
|I| − 1

)
·
√
T ln(Tgo).

Proof: From Lemma 9:
T∑

t=1

|βt − β⋆| ≲ goB
√
T ln(Tgo).

This bound, together with the upper bound on χ provided
by Lemma 11, completes the proof.

G. Upper Bound for R3

Lemma 13: Under the good event E:

R3 :=

T∑
t=1

∣∣L(w̄θ⋆,β⋆

(pt), θt,−, βt
)

(27)

− L
(
w̄θt,−,βt

(pt), θt,−, βt
)∣∣ (28)

≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

Proof: Define the map w̃ : R|A| × R × R|A| →
R|A| by w̃(θ, β, p) := w̄θ,β(p). Observe that L(·, θ, β) is
continuously differentiable on W , for any fixed θ ∈ R|A|,
β > 0; later, we will establish that w̃ is continuously
differentiable as well. Then, from the Fundamental Theorem
of Calculus to the maps L and w̃, we obtain:

L
(
w̄θ⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θt,−,βt

(pt), θt,−, βt
)

=
[
L
(
w̄θ⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̄θt,−,β⋆

(pt), θt,−, βt
)]

+
[
L
(
w̄θt,−,β⋆

(pt), θt,−, βt
)

− L
(
w̄θt,−,βt

(pt), θt,−, βt
)]

(29)

=

∫ 1

0

∂L

∂w

(
w̄θt,−+u(θ⋆−θt,−),βt

(pt), θt,−, βt
)

(30)

· ∂w̃
∂θ

(
θt,− + u(θ⋆ − θt,−), βt, pt

)
du

· (θ⋆ − θt,−) (31)

+

∫ 1

0

∂L

∂w

(
w̄θt,−,βt+u(β⋆−βt)(pt), θt,−, βt

)
· ∂w̃
∂θ

(
θt,−, βt + u(β⋆ − βt), pt

)
du

· (β⋆ − βt,−). (32)

For convenience, define:

Sw,θ :=
{
w̄θt,−+u(θ⋆−θt,−),βt

(pt) : u ∈ [0, 1]
}
,

Sw,β :=
{
w̄θt,−,βt+u(β⋆−βt)(pt) : u ∈ [0, 1]

}
,

S := Sw,θ ∪ Sw,β ,

Sθ :=
{
θt,− + u(θ⋆ − θt,−) : u ∈ [0, 1]

}
Sβ :=

{
βt + u(β⋆ − βt) : u ∈ [0, 1]

}
.

Then, by applying the Cauchy-Schwarz inequality to (5), we
obtain:

L
(
w̃θ⋆,β⋆

(pt), θt,−, βt
)
− L

(
w̃θt,−,βt

(pt), θt,−, βt
)

≤ max
w∈Sw

∥∥∥∥∂L∂w (w, θt,−, βt)

∥∥∥∥
2

(33)

·

[
max
θ∈Sθ

∥∥∥∥∂w̃∂θ (θ, β⋆, pt) · (θ⋆ − θt,−)

∥∥∥∥
2

+ max
β∈Sβ

∥∥∥∥∂w̃∂β (θ⋆, β, pt)

∥∥∥∥
2

· |β⋆ − βt|

]
We bound each of the max terms in (33) below.

1) Bounding maxw∈Sw

∥∥ ∂L
∂w (w, θt,−, βt)

∥∥
2
:

For each a ∈ A, and any w ∈ W , θ ∈ R|A|, and
β > 0:

∂L

∂wa
(w, θ, β) = 2θawa +

1

β
ln

(
wa∑

a′∈A+
ia

wa′

)
.

Note that |θt,−a | ≤ Cθ for each a ∈ A, and that for
any w ∈ W , we have ∥w∥2 ≤

∑
a∈A wa ≤ m(G)go.

Moreover, by Lemma 11, and the assumption that wa ≥
1 for each a ∈ A (note that the set {w ∈ R|A| : wa ≥
1,∀a ∈ A} is convex), we have for each w ∈ W:∑

a∈A

∣∣∣∣∣ln
(

wa∑
a′∈A+

ia

wa′

)∣∣∣∣∣
= −

∑
a∈A

ln

(
wa∑

a′∈A+
ia

wa′

)

≤ −
∑
a∈A

wa ln

(
wa∑

a′∈A+
ia

wa′

)
= |χ(w)|

≤go · (|I| − 1) ln

(
|A|
|I| − 1

)
(34)

Meanwhile:∑
a∈A

∣∣∣∣∣ln
(

wa∑
a′∈A+

ia

wa′

)∣∣∣∣∣
2

≤ ln2(go)|A| (35)

Thus, we obtain that, for any w ∈ Sw:∥∥∥∥ ∂L

∂wa
(w, θt,−, βt)

∥∥∥∥
2

≤ 2Cθm(G)go (36)



+
1

cβ
min

{
ln(go)

√
|A|, go(|I| − 1) ln

(
|A|

|I| − 1

)}
.

(37)

2) Bounding maxθ∈Sθ

∥∥∂w̃
∂θ (θ, β

⋆, pt) · (θ⋆ − θt,−)
∥∥
2
:

First, we verify that w̃ is indeed continuously
differentiable, and compute the Jacobians ∂L

∂w , ∂w̃
∂θ , and

∂w̃
∂β . This requires the results of [8], Lemma 1, which
we summarize below. Define F : W × R|A| × R|A| ×
R× R|A| → R as follows—For each:

F (w, θ, β, p)

=
∑

[a]∈AO

∫ wa

0

[
θaz + pa

]
dz

+
1

β

∑
i̸=d

[ ∑
a∈A+

i

wa lnwa −

( ∑
a∈A+

i

wa

)
ln

( ∑
a∈A+

i

wa

)]

Note that F (·, θ, β, p) is strongly convex, with param-
eter at least cθ.
Next, observe that W is a compact subset of a strict
affine subspace in R|A|. Let d be the dimension of the
smallest affine subspace containingW . Then, there exist
M ∈ R|A|×|I\{d}| with orthonormal columns, and b ∈
R|I\{d}| such that:

W = {w ∈ R|A| : M⊤w + b = 0, wa ≥ 0, ∀a ∈ A}.

Let B ∈ R|A|×(|A|−|I\{d}|) consist of orthonormal
columns orthogonal to the columns of M . We then use
the theory of constrained optimization to completely
characterize w̃(θ, β, p) = w̄θ,β(p). In particular, w =
w̃(θ, β, p) if and only if the following implicit equation,
characterized by the map J : R|A| × R|A| → R|A|

defined below, is satisfied:

J(w, θ, β, p) :=

[
M⊤w + b

B⊤∇wF (w, θ, β, p)

]
= 0.

Moreover, the proof of [8], Lemma 1 establishes that,
for any fixed θ ∈ R|A|, β > 0, p ∈ R|A|:

∂J

∂w
(θ, β, p) =

[
M⊤

B⊤∇2
wF (w, θ, β, p)

]
∈ R|A|×|A|

is non-singular. By the Implicit Function Theorem, this
establishes the continuous differentiability of w̃. We can
then compute ∂w̃

∂θ ∈ R|A|×|A| at any (θ, β, p) ∈ R|A| ×
R× R|A| as:

∂w̃

∂θ
(θ, β, p)

=

[
∂J

∂w
(θ, β, p)

]−1
∂J

∂θ
(θ, β, p)

=

[
M⊤

B⊤∇2
wF (w, θ, β, p)

]−1 [
0

B⊤ ∂
∂θ∇wF (w, θ, β, p)

]
= B(B⊤∇2

wF (w, θ, β, p)B)−1B⊤

· ∂
∂θ
∇wF (w, θ, β, p),

where we have used the fact that by construction,[
M B

]
is an orthogonal matrix (see [8], Appendix

A).
Now, observe that the (a, a′)-entry of

∂
∂β∇wF (w, θ, β, p) ∈ R|A|×|A| is given by:

∂2

∂θa′∂wa
F (w, θ, β, p) = 2wa · 1{a′ = a}, ∀a ∈ A,

Substituting back into (33) and applying the Cauchy-
Schwarz inequality, we obtain that, for each θ ∈ Sθ:

∂w̃

∂θ
(θ, β⋆, pt) · (θ⋆ − θt,−)

=B(B⊤∇2
wF (w, θ, β, p)B)−1B⊤

·
(
(θ⋆ − θt,−)wt

a

)
a∈A

.

Applying the Cauchy-Schwarz inequality, we obtain:

max
θ∈Sθ

∥∥∥∥∂w̃∂θ (θ, β⋆, pt) · (θ⋆ − θt,−)

∥∥∥∥
2

≤∥B(B⊤∇2
wF (w, θ, β, p)B)−1B⊤∥2

· ∥
(
(θ⋆ − θt,−)wt

a

)
a∈A
∥2.

Since the columns of B are orthonormal, we
have ∥B(B⊤∇2

wF (w, θ, β, p)B)−1B⊤∥2 ≤
∥∇2

wF (w, θ, β, p)∥2 ≤ 1/cθ. Moreover, we
can upper bound ∥

(
(θ⋆ − θt,−)wt

a

)
a∈A
∥2 ≤

∥
(
(θ⋆ − θt,−)wt

a

)
a∈A
∥1 =

∑
a∈A(θ

⋆ − θt,−)wt
a.

We thus obtain:

max
θ∈Sθ

∥∥∥∥∂w̃∂θ (θ, β⋆, pt) · (θ⋆ − θt,−)

∥∥∥∥
2

≤ 1

cθ
·
∑
a∈A

(θ⋆ − θt,−)wt
a. (38)

3) Bounding maxβ∈Sβ

∥∥∥∂w̃
∂β (θ

⋆, β, pt)
∥∥∥
2
· |β⋆ − βt|:

In the same manner that we used to compute ∂w̃
∂θ

above, we can compute ∂w̃
∂β ∈ R|A| at any (θ, β, p) ∈

R|A| × R× R|A| as:

∂w̃

∂β
(θ, β, p)

=

[
∂J

∂w
(θ, β, p)

]−1
∂J

∂θ
(θ, β, p),

=

[
M⊤

B⊤∇2
wF (w, θ, β, p)

]−1 [
0

B⊤ ∂
∂β∇wF (w, θ, β, p)

]
= B(B⊤∇2

wF (w, θ, β, p)B)−1B⊤

· ∂

∂β
∇wF (w, θ, β, p),

Now, observe that the a-th entry of
∂
∂β∇wF (w, θ, β, p) ∈ R|A| is:

∂2

∂β∂wa
F (w, θ, β, p) = − 1

β2
ln

(
wa∑

a′∈A+
ia

wa′

)
.



Using (34) and (35), we obtain:∥∥∥∥ ∂

∂β
∇wF (w, θ, β, p)

∥∥∥∥
2

≤ 1

β2
·min

{
ln(go)

√
|A|, go(|I| − 1) ln

(
|A|
|I| − 1

)}
Finally, we conclude that:

max
β∈Sβ

∥∥∥∥∂w̃∂β (θ⋆, β, pt)

∥∥∥∥
2

· |β⋆ − βt|

≤∥B(B⊤∇2
wF (w, θ, β, p)B)−1B⊤∥2

·
∥∥∥∥ ∂

∂β
∇wF (w, θ, β, p)

∥∥∥∥
2

· |β⋆ − βt|

≤ 1

cθβ2
·min

{
ln(go)

√
|A|, go(|I| − 1) ln

(
|A|
|I| − 1

)}
(39)

· |β⋆ − βt|.

Substituting (36), (38), (39) back into (33), we obtain that:

R3 =

T∑
t=1

∣∣L(w̄θ⋆,β⋆

(pt), θt,−, βt
)

− L
(
w̄θt,−,βt

(pt), θt,−, βt
)∣∣

≲

(
m(G)go +

1

cβ
· go · (|I| − 1) ln

(
|A|
|I| − 1

))
·

[
T∑

t=1

∑
a∈A

(θ⋆ − θt,−)wt
a

+min

{
ln2(go) · |A|, go|I| ln

(
|A|
|I|

)}
(40)

·
T∑

t=1

|β⋆ − βt|

]
Applying Lemmas 8 (with p = 1) and 9, we obtain:

R3 ≲

(
m(G)go +min

{
ln(go)

√
|A|, go|I| ln

(
|A|
|I|

)})

·

[
go|A|

√
T ln(Tgo)

+ min

{
ln(go)

√
|A|, go|I| ln

(
|A|
|I|

)}

· goB
√
T ln(Tgo)

]
≲ g2om(G)|A|

√
T ln(Tgo)

+ g2o ln(go)m(G)
√
|A|B

√
T ln(Tgo)

+ g2o |A||I| ln
(
|A|
|I|

)√
T ln(Tgo)

+ go ln
2(go)|A|B

√
T ln(Tgo)

≲ g2o ln
2(go)|A|

√
T ln(Tgo)

·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

Note that we have used the fact that m(G) ≤ |I|.

H. Upper Bound for R

Below, we combine the results of Lemmas 10, 12, and 13
in the above sections to conclude our proof of Theorem 1.

Proof: [Proof of Theorem 1] From Lemmas 10, 12,
and 13, we have:

R1 ≲ g2o |A|
√
T ln(Tgo),

R2 ≲ g2o ·B|I| ln
(
|A|
|I|

)
·
√
T ln(Tgo),

R3 ≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.

Note that R1 ≲ R3 and R2 ≲ R3. We thus conclude that:

R = R1 +R2 +R3

≲ g2o ln
2(go)|A|

√
T ln(Tgo) ·max

{
|I| ln

(
|A|
|I|

)
, B

}
.
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