
Representation Learning via Manifold Manipulation

Representation Learning via Manifold Flattening and
Reconstruction

Michael Psenka psenka@eecs.berkeley.edu
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776, USA

Druv Pai druvpai@berkeley.edu
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776, USA

Vishal Raman vraman@berkeley.edu
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776, USA

Shankar Sastry sastry@coe.berkeley.edu
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776, USA

Yi Ma yima@eecs.berkeley.edu

Department of Electrical Engineering and Computer Science

University of California, Berkeley

Berkeley, CA 94720-1776, USA

Abstract

This work proposes an algorithm for explicitly constructing a pair of neural networks that lin-
earize and reconstruct an embedded submanifold, from finite samples of this manifold. Our such-
generated neural networks, called Flattening Networks (FlatNet), are theoretically interpretable,
computationally feasible at scale, and generalize well to test data, a balance not typically found in
manifold-based learning methods. We present empirical results and comparisons to other models
on synthetic high-dimensional manifold data and 2D image data. Our code is publicly available.

1. Introduction

Autoencoding (Kramer, 1991) remains an important framework in deep learning and representation
learning (Bengio et al., 2013), where one aims to both encode data into a more compact, lower-
dimensional representation and then decode it back into the original data format. This framework
is often used on top of deep learning applications to ease downstream learning and processing
(Rombach et al., 2022; Turian et al., 2010; He et al., 2022) as well as a design principle for the
network itself (Ronneberger et al., 2015; Devlin et al., 2018).

However, these models are typically so-called “black-box models”: many important parameters
of the model cannot be directly optimized or chosen from mathematical principle, and instead need
to be chosen from either extensive trial-and-error or from previous knowledge likewise obtained
from trial-and-error. When one is building autoencoder models in a novel domain, this issue can
hinder the speed and ease of development.

1

ar
X

iv
:2

30
5.

01
77

7v
3 

 [
cs

.L
G

] 
 1

2 
M

ay
 2

02
3



Psenka, Pai, Raman, Sastry, Ma

To resolve this issue, we design a framework for automatically building up an autoencoder
model given a geometric model of the dataset; namely, we assume that the “manifold hypothesis”
(Fefferman et al., 2016) holds for the dataset we wish to encode/decode. Given this assumption,
along with some needed regularity and sampling conditions, we can greedily construct the layers of
an encoder/decoder pair in a forward fashion, similarly in spirit to recent works (Chan et al., 2022;
Hinton, 2022), such that the learned encoding is as low-dimensional as possible, in as few layers
as possible. In this manner, the architecture is automatically constructed to be optimal. While
there are a few scalar parameters that need pre-specification by the network designer, these are all
mathematically interpretable and in practice not sensitive for training results.

Our approach to this problem is through manifold flattening, or manifold linearization: if we can
globally deform the “data manifold” into a linear structure, then we can apply more interpretable
linear models on top of these constructed features. Our motivation for focusing on manifold lin-
earization comes from common practice: any successfully trained deep learning model whose last
layer is linear (e.g. multi-layer perceptrons) has “linearized” their problem, since the deep model
has implicitly learned a map (all but the last layer) such that the target problem is solvable by a
linear map (the last layer).

1.1 Problem formulation

We now give a mathematical formulation for the autoencoding problem that we want to solve, and
define notation used for the rest of the paper. We assume foundational knowledge of differential
geometry; for an introduction and review, see Appendix B.

Fundamental problem. Consider a dataset X = {x1, . . . , xN} ⊆ RD. We make the geometric
assumption that our data xi are drawn near a low-dimensional embedded sub-manifold M ⊂ RD
which has intrinsic dimension d ≤ D; we say thatM is the data manifold. We aim to construct an
encoder f : RD → Rp, and a decoder g : Rp → RD, which are a minimal autoencoding pair in the
following sense.

Definition 1. Given an embedded submanifold M ⊂ RD and a scalar parameter ε > 0, we say
that a pair of continuous functions f : RD → Rp and g : Rp → RD are an ε-minimal autoencoding
pair for M if both of the following conditions hold:

(a) (Autoencoding.) For all x ∈M, we have ‖g(f(x))− x‖2 ≤ ε, and

(b) (Minimality.) p is the smallest integer such that there exist continuous f, g such that (a)
holds.

Computational considerations. We mainly concern ourselves with computational time, and
the scalability requirements often needed for modern data requirements. Ideally, our autoencoder
algorithm follows the following scaling laws:

1. Linear time in the number of samples N , O(N). Datasets have become incredibly large, easily
reaching the millions for many modern tasks, so even quadratic time in N quickly becomes
uncomputable in practice.

2. Linear time in the ambient dimension D, O(D). Similarly with the number of samples, the
ambient dimension in many cases can easily reach the thousands or millions, so anything
above linear time becomes practically uncomputable.

2



Representation Learning via Manifold Manipulation

3. Polynomial time in the intrinsic dimension d, O(dk) for some k ∈ N. In contrast to the
sample size and ambient dimension, we expect the intrinsic dimension of data manifolds to
be relatively small (Wright and Ma, 2022); for example, MNIST (Deng, 2012) has ambient
dimension D = 784, but the intrinsic dimension of a single class of digits is estimated to be
around 12 ≤ d ≤ 14 (Hein and Audibert, 2005; Costa and Hero, 2006; Facco et al., 2017).
Still, manifold learning in generality requires exponential time and samples in the intrinsic
dimension, O(cd), which is infeasible for even relatively low d.

Assumptions on the data manifold M. An important area of interest is to determine the
correct assumptions for the kinds of manifolds often found in real world data. For this paper,
our assumptions are relatively minimal, but it is important to be clear about them. For more
information about the motivation of the following assumptions, see Theorem 6 and its proof in
Appendix D.

1. We assume M is smooth. This is a standard regularity assumption.

2. We assume M is compact. This assumption is reasonable in that it is fulfilled for closed
and bounded sub-manifolds of Euclidean space, which we encounter in many application
contexts. For example, the manifold of 28× 28 greyscale images as embedded in R784 (where
784 = 28 · 28) is bounded in [0, 1]784. Adding closedness simply makes analysis easier.

3. We assumeM is connected. In spirit, we focus on a single class of data in this work. While it
is an important future direction to extend to multi-class settings, we focus on the single-class
setting in this work to emphasize the role of compression.

4. We assume M is flattenable. Due to requiring differential geometry concepts to define,
flattenability is more rigorously defined later in the work, in Theorem 5. For now, this is the
most restrictive assumption of the three, but there is still reason to believe this assumption
is commonly satisfied for commonly encountered data manifolds in neural network-based
applications; see the end of Section 3 for more discussion about this point.

Assumptions on the dataset X . The main assumption we make is a geometric property which
quantifies how much the data and the manifold are representative of each other.

Definition 2. Given an embedded submanifold M⊂ RD, a finite dataset X = {x1, . . . , xN} ⊆ RD,
and scalar parameters ε, δ > 0, we say that is (ε, δ)-faithful to M if both of the following hold:

1. (M represents X .) infx∈M ‖x− xi‖2 ≤ ε for all i ∈ [N ].

2. (X represents M.) mini∈[N ] ‖x− xi‖2 ≤ δ for all x ∈M.

One may re-phrase these conditions as saying that M is an ε-cover for X and X is a δ-cover for
M.

Because M is compact, for every ε, δ > 0, there exists a finite (ε, δ)-faithful dataset for M.
We do not make explicit statistical assumptions of our data, such as the assumption that the

data xi are drawn i.i.d. from a distribution on RD. This distinguishes our work from other autoen-
coder analysis and, more generally, much of statistical learning theory.

Putting it all together. Finally, we lay down the defining properties of our desired algorithm for
efficient computation of a minimal autoencoding pair. Note that we drop parameters for brevity.

3



Psenka, Pai, Raman, Sastry, Ma

Definition 3. Given an embedded submanifold M ⊂ RD of intrinsic dimension d and an faithful
dataset X ⊂ RD, an algorithm is said to efficiently compute a minimal autoencoding pair for M if
it computes a minimal autoencoding pair in O(DNdk) flops for some k ∈ N, with access only to X
(and not M or d).

2. Related work

We now provide a brief overview of works in this domain. The first two, VAEs and manifold learning,
are the most direct alternative algorithms to solve the problem given in Theorem 3. However, each
of these have fundamental limitations, which we address with our work. We also include methods
that match our problem and algorithm in spirit, but in reality address fundamentally different
problems.

2.1 Variational autoencoders

Arguably the most well-known class of autoencoders at the time of writing is the class of variational
autoencoders (VAEs) (Kingma and Welling, 2013), which have seen much empirical success, both
traditionally in computer vision problems (Higgins et al., 2017; Van Den Oord et al., 2017; Kim and
Mnih, 2018), and recently as a black-box method for nonlinear dimensionality reduction within the
framework of within so-called diffusion models (Vahdat et al., 2021; Rombach et al., 2022). De-
spite their empirical success, VAEs have a few endemic shortcomings, including posterior collapse
(Lucas et al., 2019). However, the most common issue, obeyed by all flavors of VAE thus far to our
knowledge, is that the encoder and decoder networks are black-box neural networks, about which
comparatively little is understood. Important design choices, including hyperparameter selection,
thus are either made through extensive trial-and-error or using a history of trial-and-error for the
problem (e.g., 2D image autoencoding), rendering application of VAEs in a novel problem a poten-
tially expensive challenge (Rezende and Viola, 2018). In this work, we aim to provide an alternative
white-box model which ameliorates and linearizes the data geometry, essentially performing non-
linear dimensionality reduction via transforming the data structure to a lower-dimensional affine
subspace, all with fewer hyperparameters and greater robustness to hyperparameter changes than
the alternatives.

2.2 Manifold learning

Manifold learning methods are a well-known class of algorithms that seek to find low dimensional
representations of originally high dimensional data while preserving geometric structures. This
includes methods that find subspaces by preserving local structure, such as local linear embedding
(LLE) (Roweis and Saul, 2000) and its variants, local tangent space alignment (LTSA) (Zhang and
Zha, 2003), t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton,
2008), Laplacian eigenmaps (LE) (Belkin and Niyogi, 2003) etc. and methods that try to preserve
global structures such as isometric mapping (ISOMAP) (Tenenbaum et al., 2000) and uniform
manifold approximation and projection (UMAP) (McInnes et al., 2018). Although these have
offered useful results on a broad class of manifolds, there are limitations when applying these to
real-world data (Li et al., 2019), which we discuss now and aim to mitigate through our algorithm.

The first limitation is that for all the methods presented above, there is no explicit projection
map between the original data and the corresponding low dimensional representation. This means
that in order to find a projection for a point in the original space outside of the training data,
the entire method needs to be repeated on the original dataset with the new point appended.
This additional computational cost is especially problematic in the case of large-scale datasets.

4



Representation Learning via Manifold Manipulation

One possible extension maps the original data into a reproducing kernel Hilbert space (RKHS)
using kernel functions (Xu et al., 2008), avoiding this “out-of-sample” problem (Li et al., 2008).
Although this is robust, it requires good kernel function selection and parameter selection, which
can be challenging. Another approach which has been explored is parameterizing the features
through a neural network architecture (Jansen et al., 2017; Schmidt et al., 1992; Chen, 1996). This
presents similar training difficulties to VAEs due to the black-box structure of the corresponding
architectures.

Another potential limitation is that for all of the aforementioned methods, it is required to
specify the intrinsic dimension of the data as an input. In practice, this is hardly ever known a
priori, though there are a large class of intrinsic dimension estimators (Campadelli et al., 2015;
Levina and Bickel, 2004b; Carter et al., 2009) that can be used at an additional computational
cost.

2.3 Distribution learners

Three forms of models for distribution learning in recent years have been GANs (Goodfellow et al.,
2014), normalizing flows (Kobyzev et al., 2019), and diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song and Ermon, 2019). While such models are effective at learning the distribution
of the data (Arora et al., 2018) and are able to sample from it (Chen et al., 2022), they do not learn
representations or features for individual data points. Thus, they solve different problems than the
one we choose to solve in this work, as per our discussion in Section 1.1.

3. Manifold flattening for data manifolds

We now introduce our high-level approach for finding an efficient algorithm which generates a
minimal autoencoding pair: manifold flattening.

As a warmup, let us suppose that M were actually an affine subspace, with no nonlinearity
or curvature. Then principal component analysis (PCA) would give an efficient autoencoding; we
could estimate the dimension using the subspace structure in any of a variety of ways, then the
encoder f : RD → Rd would be the orthogonal projection onto the first d principal components of
the data, and the decoder g : Rd → RD would be the adjoint map of f .

Motivated by the ease of the problem when the data lies on an affine subspace, our high-level
approach is to first remove the nonlinearities in the data manifoldM, and then use the previously-
discussed PCA-type algorithms once we have “flattened” M.

In this section, we formalize the notion of flattening a manifold and the equivalence between
manifold flattening and minimal autoencoding as described in Theorem 1.

3.1 Manifold flattening creates minimal representations

We first provide a classical definition of flatness for a manifold M ⊂ RD using the second funda-
mental form (see Theorem 11 in Appendix B).

Definition 4. Let M⊂ RD be a smooth embedded submanifold of dimension d and second funda-
mental form II. We say thatM is flat if and only if IIx0(u, v) = 0 for all x0 ∈M and u, v ∈ Tx0M.

This definition says that a manifold is flat if it has no extrinsic curvature. We are not restricted
to only studying the extrinsic curvature of the original data manifold M, but also of its image
through a smooth map: φ(M)

.
= {φ(x) | x ∈ M} φ : RD → RD. Ideally, then, the extrinsic

curvature gives a measure of when a manipulation φ has successfully removed the nonlinearity of

5



Psenka, Pai, Raman, Sastry, Ma

x

φ

z

ρ

x̂

Figure 1: A depiction of interpolation through manifold flattening on a manifold in R3 of dimension
d = 2. To interpolate two points on the data manifold, map them through the flattening
map φ to the flattened space, take their convex interpolants, and then map them back
to the data manifold through the reconstruction map ρ.

M, and one can thus safely use PCA on top of φ to generate a minimal autoencoding. We formalize
this idea in the following definition and theorem.

Definition 5. Let M⊂ RD be a compact, connected, smooth embedded submanifold of dimension
d. We say that M is flattenable if there exist smooth maps φ, ρ : RD → RD such that:

1. ρ(φ(M)) =M; and

2. φ(M) is flat.

In this case, we also say that (φ, ρ) flatten and reconstruct M.

Theorem 6. Let M ⊂ RD be a flattenable submanifold of dimension d which is flattened and
reconstructed by the maps φ, ρ : RD → RD. Then we have:

1. φ(M) is a convex set.

2. φ(M) is contained within a unique affine subspace of dimension d.

3. Let U ∈ RD×d be an orthonormal basis for the aforementioned subspace, stacked into a matrix,
and z0 ∈ φ(M). The encoder f given by f(x) = U>(φ(x) − z0) and decoder g given by
g(z) = ρ(Uz + z0) form a minimal autoencoding pair satisfying Theorem 1 for ε = 0.

As the proof relies on some outside differential geometry, we leave the proof for Appendix D.
The main message for this theorem is a formalization of our previous intuition: finding flattening
and reconstruction maps is equivalent to finding a minimal autoencoding. Thus, in the rest of the
work, we focus on constructing flattening and reconstruction maps φ and ρ.

A first visualization of manifold flattening and reconstruction is depicted in Figure 1, along
with the primary benefit outside of Theorem 3 for manifold flattening: nonlinear interpolation.

A note on the flattenable assumption forM. Under the assumption thatM is flattenable, the
converse of Theorem 6 also holds: any lossless, smooth autoencoding pair generates a flattening. We
argue that this is a reasonable assumption for data manifolds, as for any continuous autoencoding
pair f, g (e.g. neural network encoder/decoder pair), exactly one of the following must occur:

1. f(M) is a convex set, in which case M is flattenable; or

2. f(M) is not convex, in which case samples generated via g(z) for any normally distributed z
will fall outside M with high probability.

This sampling method is a common technique within the VAE framework, so manifolds which are
amenable to autoencoding via VAEs should generally be flattenable.

6



Representation Learning via Manifold Manipulation

x

φ1 φ2 · · · φL

ρL· · ·ρ2ρ1

z

Figure 2: A depiction of the construction process of the flattening and reconstruction pair
(φnet, ρnet), where the encoder φnet = φL ◦ φL−1 ◦ · · · ◦ φ1 is constructed from com-
posing flattening layers, and the decoder ρnet = ρ1 ◦ρ2 ◦ · · · ◦ρL is composed of inversions
of each φ`.

4. Flattening Networks: an algorithmic approach to manifold flattening

In this section we discuss a computational method for constructing globally-defined flattening and
reconstruction maps. In our method, such maps will be a composition of multiple simpler functions,
akin to layers in neural networks, as depicted in Figure 2. Accordingly, we call our method the
Flattening Networks, or FlatNet.

However, a large difference between Flattening Networks and traditional neural networks is
that our “layers” are constructed iteratively in a white-box process with no back-propagation.
This design is qualitatively similar to other white-box networks such as described in Chan et al.
(2022), but is very different in the details.

We summarize the overall construction of our network now, and then give a more detailed
description and motivation in the following sections.

1. Initialize composite flattening and reconstruction maps φnet = ρnet = idRD : RD → RD.

2. For each layer ` ∈ [L]:

(a) Sample a point x0 uniformly at random from X .

(b) Fit a local quadratic model to a neighborhood N0 of x0, and compute a local flattening
map φloc : RD → RD.

(c) Use a so-called partition of unity and the local flattening map φloc to form a global
flattening map φ : RD → RD.

(d) Compute an analytic global approximate inverse, i.e., a global reconstruction map ρ : RD →
RD such that ρ ◦ φ ≈ idRD .

(e) Compose the constructed layer with existing layers: set φnet ← φ◦φnet and ρnet ← ρnet◦ρ.

3. Return the composite maps φnet and ρnet.

In the following sections, we will discuss the motivation and implementation of each of these
steps.

7



Psenka, Pai, Raman, Sastry, Ma

(a) (b)

(c)

Figure 3: A graphical depiction of one step for our manifold flattening and reconstruction algo-
rithm. (a) From a dataset X (dots) drawn near a manifold, randomly choose one data
point x0 (red). (b) We then find the largest radius around the selected point where our
simplified model (green) fits the data well, and (c) We use this model to both flatten
this patch of the data and reconstruct onto our local model. This process is repeated on
the resulting manifold until the manifold is flattened.

4.1 Local quadratic models for data manifolds

Since we aim to manipulate and reconstruct a dense manifold M from finite samples X , we need
some way to model manifolds to fit to the dataset X . Commonly, the structures of manifolds
exploited for manifold learning are local. Even beyond the classical “locally Euclidean” definition
for manifolds, many manifold processing methods use the fact that, near any fixed point x0 ∈ M,
the manifold M will be approximately linear for a small enough ball around x0.

While linear models will not be sufficient to solve our problem, as we need to reconstruct the
nonlinearities that our method flattens out, we still build our method from the above core principle:
while a data manifold M may be complicated and hard to model globally, restricting our attention
to one neighborhood at a time allows us to fit a much simpler model accurately to that patch of
the manifold. Such a local model not only tells us how to reconstruct the original manifold after
flattening, but also the “best” way to flatten the manifold. Concretely, this allows us to construct
a map φloc : RD → RD which flattens points in a chosen neighborhood N0 around x0, but whose
behavior is necessarily ill-defined far from N0. We now discuss the construction of such a map.

8



Representation Learning via Manifold Manipulation

The exponential map at x0, denoted expx0 : Tx0M → M, is a local bijection from the d-
dimensional subspace Tx0M to the full manifold M. Hence, expx0 perfectly models the local
structure of the manifold M. However, not only is expx0 hard to estimate from finite data, the
exponential map is typically only analytically known for very structured manifolds. However, we can
estimate approximations to expx0 , and restrict our attention to neighborhoods small enough such
that this approximation holds. A well-studied approximation scheme are Taylor approximations.
A linear approximation is too restrictive, as this removes all local nonlinear information aboutM,
thus making it impossible to reconstruct after flattening. Thus, we use the next simplest Taylor
series model, the second-order Taylor approximation (Monera et al., 2014):

expx0(v) ≈ x0 + v +
1

2
IIx0(v, v), (1)

where IIx0 : Tx0M×Tx0M→ Nx0M is the second fundamental form ofM at x0 (see Theorem 11).
Based on this expansion we will construct principled local flattening and reconstruction maps φloc

and ρloc.

Proposed local flattening and reconstruction maps. We propose a local flattening map
φloc : RD → RD which is an affine projection operator:

φloc(x) = PS+xc{x} (2)

where S is a linear subspace and xc ∈ RD is a fixed base point (both to be defined next), and the
sum is taken in the usual sense, i.e., S + xc = {s + xc | s ∈ S}. There are then two variables we
need to decide: the subspace S and the offset xc. The choices we make here are not claimed to
be optimal in any sense, but their design serves two important roles: S is chosen to maintain local
invertibility of φloc, and xc is chosen to make the overall flattening process more likely to converge.

First, we choose S = Tx0M. If the approximation in Equation (1) holds, then for any v ∈ Tx0M
we have

φloc(expx0(v)) = PTx0M+xc{expx0(v)} (3)

≈ PTx0M+xc

{
x0 + v +

1

2
IIx0(v, v)

}
(4)

= PTx0M

{
x0 + v +

1

2
IIx0(v, v)− xc

}
+ xc (5)

= PTx0M{v}︸ ︷︷ ︸
=v

+
1

2
PTx0M{IIx0(v, v)}︸ ︷︷ ︸

=0

+PTx0M{x0 − xc}+ xc︸ ︷︷ ︸
=PTx0M+xc{x0}

(6)

= v + PTx0M+xc{x0} (7)

= v + φloc(x0). (8)

Here PTx0M{v} = v because v ∈ Tx0M and PTx0M{IIx0(v, v)} = 0 because IIx0(v, v) ∈ Nx0M.
Thus the local flattening map

φloc(x) = PTx0M+xc{x} (9)

is (approximately) invertible in the neighborhood N0 of x0 for which the quadratic approximation
in Equation (1) holds, say by the local reconstruction map

ρloc(z) = x0 + z − φloc(x0) +
1

2
IIx0(z − φloc(x0), z − φloc(x0)). (10)

9



Psenka, Pai, Raman, Sastry, Ma

M

conv(M)

Figure 4: A depiction of the convex hull of a manifold M versus the manifold itself. If there is
no difference between conv(M) and M itself, the resulting manifold is convex and thus
flattened. We thus design local flattenings to push M into its convex hull.

This local invertibility property follows from the below calculation:

ρloc(φloc(expx0(v))) ≈ ρloc(v + φloc(x0)) (11)

= x0 + v +
1

2
IIx0(v, v) (12)

≈ expx0(v). (13)

This choosing the subspace S = Tx0M ensures that the local flattening map is (approximately)
invertible in the local neighborhood N0 of x0 for which the quadratic approximation in Equation (1)
holds. While the choice of S as the tangent space is clearly optimal in preserving the metric at x0,
the intrinsic volume within the neighborhood can compress at arbitrary ratios depending on the
curvature at x0. Nonetheless, flattening to the tangent space gives an easy verification that the
flattening is invertible.

The offset xc is an important design choice, as it directs the global direction of the process
induced from repeated local flattenings, and thus controls the convergence of the process. In order
to make sure the process converges, we need to design an xc that is both (a) pushing the output
manifold closer to a converged, globally flattened state, but (b) close enough to our dataset X to
make the eventual global flattening map h reasonably smooth.

Our certificate of convergence is the convex hull of the manifold. We use the connection between
the flatness and convexity of M furnished by Theorem 6. Indeed, such an embedded submanifold
of Euclidean space is fully flat if and only if it is convex. Thus, any difference between the convex
hull of M, denoted conv(M), and itself, gives an indication of where to flatten the manifold into.
This idea is depicted in Figure 4.

Note that for any probability measure P supported on M, we have that the extrinsic average

x̄
.
=

∫
M
x dP (x) (14)

lies within the convex hull. Thus, if we chose our distribution P to have density w.r.t. the Haar
measure on M be proportional to a smooth function π : RD → [0, 1] such that π(x) ≈ 1 for all
x ∈ N0 and π decays rapidly outside N0, to be determined later, then the weighted local average
given by the following:

xc = x̄
.
=

∫
M xπ(x) dx∫
M π(x) dx

, (15)

10



Representation Learning via Manifold Manipulation

lies in the convex hull, xc ∈ conv(M), while xc is still relatively close to x due to the imposed
structure on π. Thus, to meet the desired criteria for the local flattening, we choose S to be the

tangent space Tx0M and the offset xc to be the local average xc =
∫
M xπ(x) dx∫
M π(x) dx

.

4.2 From local to global

Once we find a local flattening map φloc : RD → RD, the next step to make it globally well-defined
is to “glue” it with a well-behaved globally-defined map outside of the chosen neighborhood N0

of x0. Classically in differential geometry, this is done through a partition of unity (Dieudonné,
1937; Lee, 2012), a smooth scalar function ψ : RD → [0, 1] such that ψ(x) ≈ 1 for all x ∈ N0 and
ψ(x) ≈ 0 for all x /∈ N0. Given the local flattening map φloc : RD → RD computed with respect to
the neighborhood N0, we can then define a globally-defined flattening map φ : RD → RD by:

φ(x)
.
= ψ(x)φloc(x) + (1− ψ(x))x, (16)

so that φ(x) ≈ φloc(x) if x ∈ N0 and φ(x) ≈ x otherwise.

Of course, there are many choices for ψ. However, as we design a practical algorithm satisfying
Theorem 3, our choices become more limited. The following are our two main concerns that will
limit the design choice for ψ:

1. ψ should lead to relatively smooth maps constructed as in Equation (16). Once we flatten a
portion of the manifold, we will need to both further flatten and reconstruct the manifold,
and if we create cusps as in Figure 3c, the downstream flattening and reconstruction tasks
will be unnecessarily difficult.

2. ψ should allow for computable inverses of maps constructed as in Equation (16). Even if
we are able to invert the local flattening function φloc locally around x0 using the local
reconstruction function ρloc, it’s not always trivial (or even possible) to invert the globally
well-defined function φ. Nonetheless, this task is crucial for constructing a true autoencoder.

To motivate our choice of ψ, we attempt to compute an approximate inverse of φ, i.e., a function
ρ such that ρ ◦ φ ≈ idRD . To do this we first simplify the expression for φ:

φ(x) = ψ(x)φloc(x) + (1− ψ(x))x (17)

= ψ(x)(PTx0M+xc{x}) + (1− ψ(x))x (18)

= ψ(x)(PTx0M{x− xc}+ xc) + (1− ψ(x))x (19)

= ψ(x)PTx0M{x} − ψ(x)PTx0M{xc}+ ψ(x)xc + x− ψ(x)x (20)

= ψ(x)PTx0M{x} − ψ(x)PTx0M{xc}+ ψ(x)PTx0M{xc}+ ψ(x)PNx0M{xc} (21)

+ PTx0M{x}+ PNx0M{x} − ψ(x)PTx0M{x} − ψ(x)PNx0M{x}
= PTx0M{ψ(x)x− ψ(x)xc + ψ(x)xc + x− ψ(x)x}+ PNx0M{ψ(x)xc + x− ψ(x)x} (22)

= PTx0M{x}+ PNx0M{ψ(x)xc + (1− ψ(x))x}. (23)

This simplification reveals a geometric interpretation of the flattening map φ; the component of x
towards the tangent space Tx0M is preserved, while the component of x towards the normal space
Tx0M is replaced by a convex combination of xc and x whose weights are given by the partition

11



Psenka, Pai, Raman, Sastry, Ma

of unity ψ. The following computation now motivates an approximate inverse of φ:

φ(x) + ψ(x)

(
x0 − PTx0M+xc{x0}+

1

2
IIx0(PTx0M{φ(x)− x0},PTx0M{φ(x)− x0})

)
(24)

= φ(x) + ψ(x)

(
x0 − PTx0M+xc{x0}+

1

2
IIx0(PTx0M{x− x0},PTx0M{x− x0})

)
(25)

= φ(x) + ψ(x)

(
x0 − PTx0M{x0} − PNx0M{xc}+

1

2
IIx0(PTx0M{x− x0},PTx0M{x− x0})

)
(26)

= PTx0M{x}+ PNx0M{ψ(x)xc + (1− ψ(x))x} (27)

+ ψ(x)

(
x0 − PTx0M{x0} − PNx0M{xc}+

1

2
IIx0(PTx0M{x− x0},PTx0M{x− x0})

)
= PTx0M{x}+ ψ(x)PNx0M{xc}+ PNx0M{x} − ψ(x)PNx0M{x} (28)

+ ψ(x)
(
PTx0M

{x0}+PNx0M
{x0}−PTx0M

{x0}−PNx0M
{xc}+ 1

2
IIx0 (PTx0M

{x−x0},PTx0M
{x−x0})

)
= PTx0M{x}+ PNx0M{x}+ ψ(x)

(
−PNx0M{x− x0}+

1

2
IIx0(PTx0M{x− x0},PTx0M{x− x0})

)
(29)

= x+ ψ(x)

(
−PNx0M{x− x0}+

1

2
IIx0(PTx0M{x− x0},PTx0M{x− x0})

)
︸ ︷︷ ︸

≈0

(30)

≈ x. (31)

Here we make the approximation PNx0M{x− x0} ≈ 1
2 IIx0(PTx0M{x− x0},PTx0M{x− x0}) which

follows from the definition of the second fundamental form.
Thus, we are motivated to set z = φ(x) and obtain the reconstruction map

ρ(z)
.
= z + ψ(x)

(
x0 − PTx0M+xc{x0}+

1

2
IIx0(PTx0M{z − x0},PTx0M{z − x0})

)
. (32)

However, this is not a well-defined global map because the coefficient ψ(x) depends on x ≈ ρ(z).
To solve this problem we use the following lemma:

Lemma 7. Let λ > 0, let ψ(x) = e−λ‖x−x0‖
2
2, and φ be defined as in Equation (16). There exists

a unique smooth function ξ : RD → R such that ξ(φ(x)) = ψ(x) for all x ∈ RD.

The proof of this lemma is deferred to Appendix D. It is not apparent from the theorem state-
ment, but clear from the proof, is that ξ(z) is efficiently computable, requiring only the inversion
of a globally invertible smooth scalar function, which we use the secant method to compute.

This lemma motivates our choice of ψ(x) = e−λ‖x−x0‖
2
2 for some λ > 0, and thus our global

reconstruction map is well-defined as

ρ(z)
.
= z + ξ(z)

(
x0 − PTx0M+xc{x0}+

1

2
IIx0(PTx0M{z − x0},PTx0M{z − x0})

)
. (33)

One important interpretation of the λ parameter in the partition of unity is that it controls
the “radius” of the partition. In particular, the function r 7→ e−λr

2
is monotonically decreasing in

r ≥ 0. If we want to find the radius r for which e−λr
2 ≤ ε, where ε > 0 is some small constant, we

obtain

r ≥
√

log(1/ε)

λ
= O(λ−1/2). (34)

12



Representation Learning via Manifold Manipulation

Thus we can think of the “radius” of ψ as proportional to λ−1/2.

Finally, recall that we defined the local average xc =
∫
M xπ(x) dx∫
M π(x) dx

for some smooth function

π : RD → [0, 1] such that π(x) ≈ 1 for all x ∈ N0 and π decays rapidly outside N0. In order to
achieve these two criteria while making sure that π is smooth and xc is close to x, we simply choose

π = ψ, so that xc =
∫
M xψ(x) dx∫
M ψ(x) dx

.

4.3 Estimation from finite samples

In this section we discuss estimation and computation of the various quantities discussed in the
prior sub-sections. Generic estimates are labeled with a tilde, i.e., x̃c or T̃x0M, while optimal
estimates are labeled with a hat, i.e., x̂c or T̂x0M.

Estimating the local average, tangent space and second fundamental form. Suppose
that we already know the intrinsic dimension d of the manifold, and that we already know the
parameters for the partition of unity ψ (these will be estimated automatically, as we describe
momentarily). Then the only things left to estimate are the local average xc, the tangent space
Tx0M (and technically also the normal space Nx0M = (Tx0M)⊥), and the second fundamental
form IIx0 .

The local average xc with respect to a particular partition of unity ψ can be efficiently approx-
imated by the sample average:

xc ≈ x̂c
.
=

∑N
i=1 xiψ(xi)∑N
i=1 ψ(xi)

. (35)

However, the local tangent space Tx0M is harder to approximate from a finite set of samples. A
popular method to estimate Tx0M from finite data is local PCA (Hoppe et al., 1993; Oue, 1996);
however, these methods rely on an assumption that the manifold M is close to linear around the
base point x0, which holds less strongly if M has non-negligible curvature. While improvements
have been made past local PCA (Zhang et al., 2011), there are still issues when the data has both
extrinsic curvature and extrinsic noise.

We may estimate the tangent space Tx0M from finite samples by minimizing the autoencoding
loss, which is a sum of terms of the form

‖xi − ρ(φ(xi))‖22 =

∥∥∥∥ψ(xi)

(
−PNx0M{xi − x0}+

1

2
IIx0(PTx0M{xi − x0},PTx0M{xi − x0})

)∥∥∥∥2

2

(36)

= ψ(xi)
2

∥∥∥∥1

2
IIx0(PTx0M{xi − x0},PTx0M{xi − x0})− PNx0M{xi − x0}

∥∥∥∥2

2

, (37)

where the first equality is from Equation (30). For the sake of optimization, we parameterize Tx0M
by an orthogonal matrix U ∈ O(D, d) such that UU> = PTx0M. This gives

‖xi − ρ(φ(xi))‖22 = ψ(xi)
2

∥∥∥∥1

2
IIx0(UU>(xi − x0), UU>(xi − x0))− (I − UU>)(xi − x0)

∥∥∥∥2

2

. (38)

Finally, we parameterize the second fundamental form (or more specifically the quantity 1
2 IIx0) by

its coordinates with respect to the basis defined by the columns of U , represented as a multi-array
V ∈ RD×d×d in the following way:

1

2
IIx0(w1, w2) = V (w1, w2)

.
=

d∑
j=1

d∑
k=1

vjk 〈uj , w1〉 〈uk, w2〉 (39)

13



Psenka, Pai, Raman, Sastry, Ma

where vjk ∈ RD are the slices through the first coordinate of V . Thus, we can estimate U and V
through a computationally feasible autoencoding loss:

Lψ(Ũ , Ṽ )
.
=

1

N

N∑
i=1

ψ(xi)
2
∥∥∥Ṽ (Ũ Ũ>(xi − x0), Ũ Ũ>(xi − x0))− (I − Ũ Ũ>)(xi − x0)

∥∥∥2

2
, (40)

This yields a global reconstruction problem, whose value we label Recon(d, ψ):

Recon(d, ψ)
.
= inf

U∈O(D,d)

V ∈RD×d×d

Lψ(U, V ). (41)

The solutions to this problem are our estimates for the tangent space basis Û and second fun-
damental form matrix V̂ , which translate into estimates for the actual tangent space T̂x0M and
second fundamental form ÎIx0 in a straightforward way.

While the above problem (41) may look daunting, note that for a fixed Ũ ∈ O(D, d), solving for
the entries of V̂ is a least-squares problem and may be efficiently solved in closed-form. The remain-
ing component of the optimization is to solve for Û , which is an O(Dd)-dimensional optimization
over the Stiefel manifold O(D, d). While the Stiefel manifold is a non-convex set, optimization over
the Steifel manifold is well understood (Fraikin et al., 2007; Li et al., 2020; Qu et al.; Zhai et al.,
2020; Zhai et al.). We reiterate that all associated complexities fulfill our complexity requirement
of O(NDdk) for some positive integer k.

There is one final complexity that we have swept under the rug: the second fundamental form
IIx0 has codomain Nx0M, which is a D − d dimensional subspace, but our bilinear V map has
codomain RD in general, and at first glance is not restricted to any D − d dimensional subspace.
The resolution to this dilemma is that if we fix a Ũ ∈ O(D, d) and solve for V̂ using least squares,
the resulting bilinear V̂ map will always have codomain equal to Im(Ũ)⊥ due to the structure of
the problem. In particular, if Im(Ũ) = Tx0M then V̂ will have codomain Nx0M. We now formally
state this result; the proof can be found in Appendix D.

Proposition 8. Fix Ũ ∈ O(D, d). Further suppose that ψ(xi) > 0 for all xi ∈ X . Then any
solution V̂ to the problem

inf
Ṽ ∈RD×d×d

Lψ(Ũ , Ṽ ) (42)

has the following properties:

1. Ũ>V̂ (xi − x0, xi − x0) = 0 for all xi ∈ X

For the following parts: define the matrix A ∈ RN×
1
2

(d2+d) in the following way: let B ∈ RN×d×d be
the 3-tensor with entry values Bijk = 〈uj , xi − x0〉 〈uk, xi − x0〉. Let Bi ∈ Rd×d be the ith slice of the
tensor B, fixing the first dimension. Finally, let the ith row of A be the vectorized upper-diagonal
component of Bi.

2. If A has full column-rank, i.e. rank(A) = 1
2(d2 − d), then V̂ is unique.

3. Further, if A has full column-rank, then Ũ>v̂jk = 0 for all 1 ≤ j, k ≤ d, therefore Ũ>V̂ (w1, w2) =
0 for all w1, w2 ∈ RD.

There are still a few parameters which the problem in Equation (41) relies on: namely, the
intrinsic dimension d of the manifold and the partition of unity ψ.

Estimating the local dimension. One such parameter is the intrinsic dimension d. Since d is
equivalently the number of basis vectors used to locally represent the data:

14



Representation Learning via Manifold Manipulation

The local dimension d is chosen such that each encoder layer is as sparse and efficient as possible.

This directly translates to finding the smallest d such that we can still locally reconstruct the data
up to a desired precision εdim > 0:

d̂ = min
d̃≥0

d̃ (43)

s.t. Recon(d̃, ψ0) ≤ εdim. (44)

Here, since we have not configured a good partition of unity ψ yet, we use another, “default”
partition of unity ψ0 : RD → R given by

ψ0(x) = e−γ‖x−x0‖
2
2 (45)

where γ > 0 is a scale parameter which is set as a hyperparameter to the algorithm. Heuristically
it controls the radius about x0 for which we expect the dataset X to have samples in every intrinsic
direction; we should think of this radius as proportional to γ−1/2, as per our previous discussion.

This optimization is in similar spirit to fixed-rank approaches to low-rank matrix completion,
such as ALS (Takács and Tikk, 2012) and Riemannian methods (Vandereycken, 2013), where we
can adaptively choose the dimension d̂ at each point x0 by finding the minimal d̃ such that the
optimization problem in Equation (41) achieves some desired threshold loss εdim.

Indeed, d̂ is designed to model the intrinsic dimension of M, since any local flattening of lower
dimension would collapse a direction in the tangent space and thus not be locally invertible. Since
in practice we expect d � D, we can afford to solve Equation (43) by iteratively solving Equa-
tion (41) from d = 1 upwards. Further, since theoretically d should be the same at every x0 ∈ M,
we can start the search at the next iterate from the previous estimate d̂ to save time.

Learning a good partition of unity. Once we estimate the dimension d̂, the only parameter
left is the choice of λ in the partition of unity, i.e.,

ψ(x) = ψλ(x) = e−λ‖x−x0‖
2
2 . (46)

Again, we know that λ−1/2 is proportional to the radius of our partition, which is really the radius
of the neighborhood in which our quadratic model approximately holds.

In similar spirit to d, we choose λ to make the individual layer as effective as possible, by
maximizing the radius of the partition and thus the affected radius of the layer:

The radius parameter λ−1/2 is chosen such that each encoder layer is as productive as possible.

While d is optimized to use the fewest number of parameters within an individual layer (analogous
to network width), λ is chosen to minimize the number of needed layers (analogous to network depth)
by ensuring each layer makes as much progress towards a flattening as possible. Analogously to d,
then, we can formalize the above statement into a constrained optimization problem:

λ̂ = inf
λ̃>0

λ̃ (47)

s.t. Recon(d̂, ψλ̃) ≤ εPOU. (48)

Since Recon(d̂, ψλ̃) is a monotonic function with respect to λ̃ (and the monotonicity is non-strict

only if Recon(d̂, ψλ̃) = 0), if we define

`(λ̃)
.
= Recon(d̂, ψλ̃) (49)

15



Psenka, Pai, Raman, Sastry, Ma

then the above optimization problem amounts to computing

λ̂ = `−1(εPOU). (50)

Since ` is a function from R to R, its inversion can be efficiently computed by e.g. the secant
method.

One issue with naively implementing this optimization is that we only have finite samples X
from M. Thus there is a smallest radius (largest λ̃) such that, for any smaller radii, there are not
enough points in X which are at most this distance to x0 to make the problem in Equation (41)
well-conditioned. Thus, we introduce another hyperparameter λmax which controls the maximum
permissible value of λ̃. The optimization problem becomes

λ̂ = inf
λ̃∈(0,λmax)

λ̃ (51)

s.t. Recon(d̂, ψλ̃) ≤ εPOU. (52)

Similarly to before, we can exploit the monotonicity property of ψλ̃ to obtain

λ̂ = min{λmax, `
−1(εPOU)}. (53)

The issue is that if `−1(εPOU) > λmax = λ̂ then we do not have Recon(d̂, ψλ̂) ≤ εPOU. To fix this,
we amend the partition of unity with a multiplicative constant:

ψ(x)
.
= ψλ̂(x) = min

{
αmax,

√
εPOU

`(λ̂)

}
· e−λ̂‖x−x0‖

2
2 (54)

where αmax ∈ (0, 1] is a user-set hyperparameter which controls the smoothness of the boundary of
the partition of unity created by the flattening procedure in each step; in particular, if αmax = 1,
then non-smooth cusps appear in the flattening procedure, so we usually take αmax < 1.

A full description of the algorithm. With all these details, we are ready to compose a full
description of the algorithm. At each iteration, we estimate the local dimension, compute a good
partition of unity, estimate the local mean, tangent space, and second fundamental form, and
compose our local flattening map, then we glue it with a partition of unity to get a global flattening
map. Finally, we compute its inverse, the global reconstruction map, and append them to our
multi-layer flattening and reconstruction maps, iteratively forming the Flattening Network.

More formally, we propose the following algorithm for training Flattening Networks (FlatNets):

16



Representation Learning via Manifold Manipulation

Algorithm 1 Construction of FlatNet.

1: function FlatNetConstruction(X , L, εdim, γ, εPOU, λmax, αmax)
2: Initialize φnet, ρnet ← idRD
3: for ` ∈ [L] do
4: Sample a random point x0 ∈ X
5:

% Estimate the local dimension

6: Define ψ0 : x 7→ e−γ‖x−x0‖
2
2 . Equation (45)

7: Compute d̂← min{d̃ ∈ [D] : Recon(d̃, ψ0) ≤ εdim} . Equations (43) and (44)
8:

% Compute the partition of unity

9: For each λ̃, define ψλ̃ : x 7→ e−λ̃‖x−x0‖
2
2 . Equation (46)

10: Define ` : λ̃ 7→ Recon(d̂, ψλ̃) . Equation (49)

11: Compute λ̂← min{λmax, `
−1(εPOU)} . Equation (50)

12: Define ψ : x 7→ min
{
αmax,

√
εPOU/`(λ̂)

}
· e−λ̂‖x−x0‖

2
2 . Equation (54)

13:
% Estimate the local average, tangent space, and second fundamental form

14: Compute x̂c ←
∑N

i=1 xiψ(xi)∑N
i=1 ψ(xi)

. Equation (35)

15: Compute Û , V̂ ← solutions of Recon(d̂, ψ) . Equation (41)
16:

% Compute local and global flattening maps and and global reconstruction

map

17: Define φloc : x 7→ Û Û>(x− x̂c) + x̂c . Equation (9)
18: Define φ : x 7→ ψ(x)φloc(x) + (1− ψ(x))x . Equation (16)
19: Compute ξ such that ξ(φ(x)) = ψ(x) for all x ∈ RD . Theorem 7

20: Define ρ : z 7→ z + ξ(z)
(
x0 − Û Û>(x0 − x̂c) + x̂c + V̂ (Û Û>(z − x0), Û Û>(z − x0))

)
. Equa-

tion (33)
21:

% Compose with previous layers

22: Redefine φnet ← φ ◦ φnet

23: Redefine ρnet ← ρnet ◦ ρ
24: return φnet, ρnet

In Appendix E.1, we show that Flattening Networks meet the scalability requirements detailed
in Section 1.1.

5. Algorithm intuition and convergence analysis

In this section, we provide the reader with some understandings and interpretations of the presented
Algorithm 1.

5.1 Network diagram

Recall that our method builds a flattening pair φnet, ρnet by repeatedly constructing and composing
forward and backwards maps: φnet = φL ◦ · · · ◦ φ1 and ρnet = ρ1 ◦ · · · ◦ ρL, where each layer pair

17



Psenka, Pai, Raman, Sastry, Ma

x U> U
⊕

φ(x) = z

z IIU,V
ξ(z) ⊕

ρ(z) ≈ x

Figure 5: Network diagrams for each individual layer pair, with the encoder φ` : RD → RD de-
picted on the top and the decoder ρ` : RD → RD depicted on the bottom. Note the
encoder’s structure resembles a multi-layer percepton layer with a residual connection;
here though, the depicted sum is not a plain sum, but a weighed sum based on the Boltz-
mann distribution ψ(x). We have omitted the bias terms that arise from constants in
the expressions of φ, ρ. Note that in generalizing this framework, IIU,V can be replaced
with any local, interpretable model of the data.

φ`, ρ` takes the following form:

φ`(x) = ψ(x)(UU>(x− xc) + xc) + (1− ψ(x))x, (55)

= ψ(x)(UU>x+ (I − UU>)xc) + (1− ψ(x))x, (56)

ρ`(z) = z + ξ(z)

(
x0 − PTx0M+xc{x0}+

1

2
V (PTx0M{z − x0},PTx0M{z − x0})

)
, (57)

= z + ξ(z)

(I − UU>)(x0 − xc) +
1

2

d∑
j=1

d∑
k=1

vjk 〈uj , z − x0〉 〈uk, z − x0〉

 , (58)

where U ∈ RD×d with U>U = I, V ∈ RD×d×d, x0 ∈ X , ψ(x) = αe−γ‖x−x0‖
2
2 for algorithmically

chosen α, γ > 0, xc =
∑N
i=1 xiψ(xi)∑N
i=1 ψ(xi)

, and ξ(z) is the computed scalar function such that ξ(ψ(x)) =

ψ(x). These maps are graphically depicted in Figure 5.

5.2 What does each iteration look like?

To build some intuition for what each iteration of the network construction algorithm is doing, in
Figure 6 we provide an example run of the algorithm on data sampled from a three-quarters-circle
curve, and graph the output of the flattening map φCC after 0, 20, 40, 60, and 80 layers have been

18



Representation Learning via Manifold Manipulation

constructed. More formally, let φ1:` be the flattening map composed of the first ` layers of φCC.
Then define

X` = φ1:`(X ) (59)

M` = φ1:`(M). (60)

Note that we build layers of a FlatNet in a “closed-loop fashion” (Ma et al., 2022): the directions
to flatten the data manifold M, i.e., the estimator of the tangent space used by each individual
layer of φCC, are only determined by repeatedly going back to the data through the corresponding
reconstruction map and finding the optimal flattening direction.

(a) M (b) M20 (c) M40 (d) M60 (e) M80

Figure 6: Plots of samples from the manifolds Mk after a given number of layers k have been
constructed. Note that the flattening is not isometric, so some intrinsic distortion is
expected. However, this distortion is controlled by the requirement of each flattening to
be invertible.

5.3 Convergence analysis

A complete convergence proof is outside of the scope of this paper, as proving a full theorem
for convergence would require utilizing structure from the sampling size and density, noise level,
structure of M (something akin to low-curvature), and more. We leave a complete theorem to
future work.

However, there are still many theoretical ideas for convergence that both illuminate the design
choices for our architecture and characterize typical optimization behaviors: namely, what does
hitting bad/good local minima look like. To this end, we give theoretical formality to the conver-
gence of our main algorithm. We first detail the proper “norm” to use when detailing how close a
manifold along the algorithm’s process Mk to converging. We then give an outline for a conver-
gence theorem using the proposed norm, characterizing both why we expect our main algorithm to
converge to a good minimum and what happens when a bad local minimum is hit.

A potential function for convergence. Recall from Figure 4 that we use the difference between
the convex hull conv(M) and the manifold M itself to heuristically measure how close M is to
being flattened. Thus, we can first design a scalar-valued potential function H that measures the
difference between conv(M) and M. For the sake of simplicity, we use the well-studied Hausdorff
metric (Birsan and Tiba, 2005) between M and conv(M), which, since M ⊆ conv(M) and M is
compact, reduces to the following:

H(M)
.
= max

x′∈conv(M)
min
x∈M

∥∥x− x′∥∥
2
. (61)

Now the following are equivalent:

• H(M) = 0;

19



Psenka, Pai, Raman, Sastry, Ma

• M = conv(M);

• the second fundamental form of M is identically 0;

and the last definition shows that H is a metric determining how non-flat a manifold is. However,
such a potential function does not reveal anything about the convergence of Algorithm 1, since
there exist manifolds such that M ⊆ TxM at all x ∈ M but still have extrinsic. Such tangent
space-contained manifolds M are “fixed points” of Algorithm 1 in the sense that any constructed
flattening maps will evaluate to the identity, but M is not convex or flat. We then shift our
potential function in a manner that more closely resembles Algorithm 1, i.e., measuring convexity
of local subsets of a fixed radius η > 0:

Ωη(M) =

∫
intηM

H(M∩Bη(x)) dx, (62)

where intηM
.
= {x ∈M : bdM ∩Bη(x) = ∅}. (63)

If H(M) = 0, then H(M∩ Bη(x)) = 0 at each x ensures that the tangent space TxM doesn’t
change locally, and thus TxM cannot change globally, but M does not necessarily have to be
convex. We can finally discretize the integral into a finite sum over the dataset X :

Ω̃η(M) =
n∑
i=1

H(M∩Bη(xi)). (64)

The role of η becomes more apparent in the above formulation: if X is an η-cover forM (see The-
orem 2), then Ω̃η(M) = 0 implies M⊆ TxM for all x ∈ M, and thus implies a good convergence
property for Algorithm 1.

Convergence analysis via modelable radius. While X` and M` are obviously important
quantities to track for convergence, we present one more quantity of interest. Let rQ,`,ε(x) ≥ 0 be
the maximum radius r around x such that M` is modelable by a quadratic around x of radius r
with at most ε error:

max
y∈M

‖y−x‖2≤r

max
z∈Q̂

‖z−x‖2≤r

‖y − z‖2 ≤ ε (65)

where Q̂ is a local quadratic model given by Equation (1) for some proposed tangent space T̂xMk ⊆
RD of dimension d and second fundamental form ÎIx : TxM× TxM → NxM. If no such upper
bound exists, we say rQ,`,ε(x) =∞.

In particular, rQ,`,ε plays a crucial role in studying the convergence of Algorithm 1, as it com-
pletely characterizes whether or not we converge to a good or bad fixed point. This idea can be
expressed concretely by the following dichotomy:

1. Suppose that M` ⊆ TxM` for some ` ∈ N, thus halting Algorithm 1 at a good fixed
point. Then rQ,`,ε(φ`(xi)) = ∞ for all i ∈ [N ] by setting ÎIxi = 0, and thus the sequence
(rQ,`,ε(φ`(xi)))`∈N has no upper bound for any i ∈ [N ].

2. Suppose on the contrary there exists some point xi ∈ X such that the sequence (rQ,`,ε(φ`(xi)))`∈N
has an upper bound. Thus, M` * TxjM` for all ` ∈ [L], and xj ∈ X . Then if Mt reaches
a fixed point at some timestep t, there must exist some xj such that rQ,t,ε(φt(xj)) < η,
since otherwise there exists an atlas ofMt where each chart/neighborhood is completely flat,
contradicting the statement that M` * TxM`.

20



Representation Learning via Manifold Manipulation

From the above dichotomy, we see the role of rQ,`,ε: this quantity will diverge if Algorithm 1
converges to a good local minimum, and converge below the “threshold level” η if a bad local minima
is reached. However, the above analysis still assumes that Algorithm 1 converges. Extending
beyond this assumption is feasible, but requires detailed numerical analysis to account for the
specific problem structure. The following is a dichotomy on the trajectory (M`)`∈N that does not
require assumptions on convergence:

1. Suppose that for some ` ∈ Z and xi ∈ X , we have rQ,t,ε(φt(xi)) < η for all t > `. Then
Algorithm 1 either does not converge or converges to a local minima where M` * TxM`.

2. Suppose that for all ` ∈ Z and xi ∈ X , there exists t > ` such that rQ,t,ε(φt(xi)) ≥ η. Then
Algorithm 1 can always make some progress on every xi at iteration t.

Formalizing the above “progress” into positive progress via lim`→∞ Ω̃(M`) = 0 is the main
missing ingredient for a full convergence theorem. While it is clear that an iteration of Algorithm 1
at point xi decreases the component of Ω̃η(M`) coming from xi in Equation (64), namely H(M` ∩
Bη(φ`(xi))), it’s not clear that the amount this iteration inadvertently increasesH(M`∩Bη(φ`(xj)))
for other xj ∈ X would not lead to an overall increase in Ω̃η(M`). Proving this relation requires
careful analytical work on the global structure of M and X , which we leave for future work.

6. Experiments

To evaluate our method, we test our Flattening Networks (FlatNet) on synthetic low-dimensional
manifold data, randomly generated high-dimensional manifolds generated by Gaussian processes
(Lahiri et al., 2016; Lawrence and Hyvärinen, 2005), and popular real-world imagery datasets. The
following are experimental observations that set our method apart from what is currently available:

1. There is no need to select the intrinsic dimension d, as this is automatically learned from
the data using (43). This is in contrast to neural network-based representation learners,
e.g. variational autoencoders (Kingma and Welling, 2013), which need a feature dimension
selection beforehand, or many manifold learning methods that need an intrinsic dimension
specified. This is important for practical data manifolds, since the intrinsic dimension of the
underlying data manifold is hardly ever known.

2. There is no need to select a stopping time, as our convexifying geometric flow converges once
the learned representation is already flat.

3. Learned manifolds from noisy data are smooth, as depicted in figures in Section 6.1. This is
likewise important for practical data manifolds, as samples have off-manifold noise.

Code for both FlatNet itself and the below experiments is publicly available1.

6.1 Low-dimensional manifold data

We test on three types of low-dimensional manifolds:

• Data sampled from a (noisy) sine wave,

• Data sampled from a Gaussian process manifold (Lahiri et al., 2016; Lawrence and Hyvärinen,
2005) with intrinsic dimension d = 1 in Euclidean space of extrinsic dimension D = 2,

1. https://github.com/michael-psenka/manifold-linearization

21

https://github.com/michael-psenka/manifold-linearization


Psenka, Pai, Raman, Sastry, Ma

(a) Converged result of our algorithm on
noisy sine wave data

(b) Tangent space estimation performance
compared to local PCA on sine wave data

Figure 7: Results of FlatNet on data sampled uniformly from the graph of a sine wave embedded
in R2. In the left figure: the blue points are the training data X, the red points are the
flattened data Z, and the green line is the reconstruction of interpolated points X̂test.
On the right, each double sided arrow is a tangent space: black is ground truth, green is
our estimation method, and red is local PCA.

• and data sampled from a Gaussian process manifold with d = 2 and D = 3.

Since the Gaussian process manifold data generation process is not clear at first glance, we describe
it here. We first lay outN vectors of intrinsic coordinates in a matrix C ∈ Rd×N ; in our experiments,
these are uniformly generated. Then for each i ∈ {1, . . . , D}, we set up a correlation matrix
Σi ∈ RN×N whose coordinates (Σi)pq = Li

D e
−ρpq/2, where Li > 0 is a hyperparameter (set to be 1

in our quantitative experiments) and ρpq = ‖cp− cq‖22, where cp and cq are the columns of C. Then
the ith row of X (i.e. the ith coordinate of all datapoints, a vector in RN ) is sampled (independently
of all other rows) from the Gaussian N (0N ,Σi). Repeating this for all i ∈ {1, . . . , D} obtains the
full data matrix X =

[
x1 · · · xN

]
∈ RD×N .

We measure the performance of our algorithm in a few ways.

• Given data X ∈ RD×N , we can plot the features Z
.
= φnet(X) ∈ RD×N and reconstructions

X̂
.
= ρnet(Z) ∈ RD×N . Then the features Z should form an affine subspace and the recon-

structions X̂ should be close to X sample-wise. In order to understand how our method
generalizes, we may linearly interpolate between pairs of features in Z to get a large new
matrix Ztest ∈ RD×M for M � N , then reconstruct that as X̂test := ρnet(Ztest) ∈ RD×M .
Ultimately, we plot X, Z, and X̂test.

• If we know an explicit formula for the ground truth curve that generates the data, we may
compute the tangent space at each point. We may thus evaluate how close our tangent space
estimator used in the algorithm is to the ground truth tangent space. We do this by plotting
both the estimated tangent space and the true tangent space; they should greatly overlap.

In Figure 7, we demonstrate the performance of our algorithm FlatNet on data generated from
the graph of a (noisy) sine wave. More precisely, set N = 50, D = 2, d = 1, and M = 5000. In
the left figure we test linearization, reconstruction, and generalization, while in the right figure we
demonstrate tangent space estimation.

22



Representation Learning via Manifold Manipulation

In Figure 8, we demonstrate the performance of our algorithm FlatNet on data generated on a
manifold constructed via Gaussian processes (Lahiri et al., 2016; Lawrence and Hyvärinen, 2005).
Note that for such manifolds, we do not know ground truth tangent spaces, so we constrain our
experiments to demonstrating reconstruction and generalization performance. We set N = 50, D =
2, d = 1, and M = 5000 like before. We compare the reconstruction and generalization performance
of FlatNet against three types of variational autoencoders (VAEs): (1) the vanilla VAE (Kingma
and Welling, 2013), (2) β-VAE (β = 4) (Higgins et al., 2017), and (3) FactorVAE (γ = 30) (Kim and
Mnih, 2018). Each VAE encoder and decoder is a 5 layer multi-layer perceptron, with dimension
100 at each layer, and latent dimension d = 1. Each VAE is trained for 100 epochs with Adam
optimizer and 10−3 learning rate. The experiment demonstrates that FlatNet is convincingly better
at learning to reconstruct low-dimensional structures, and has better generalization performance,
than the VAEs we compare against.

In Figure 9, we demonstrate the performance of FlatNet on data generated on a manifold
constructed via Gaussian processes as before. This time, we set N = 50, D = 3, d = 2, and M =
5000. We do the same comparisons to VAEs as before; this time the VAEs have latent dimension
d = 2. The experiment again demonstrates that FlatNet is better at learning to reconstruct low-
dimensional structures and has better generalization performance.

6.2 High-dimensional manifold data

In this section we test our algorithm on random Gaussian process manifolds (Lahiri et al., 2016;
Lawrence and Hyvärinen, 2005) of varying intrinsic dimension d in extrinsic dimension D = 100
Euclidean space. We typically use N = 1000.

There are two quantitative ways we measure the performance of FlatNet in high dimensions:
reconstruction quality and ability to estimate the dimension of the manifold. Note that the latter
is essentially trivial in the low dimensional regime, yet in the high-dimensional regime it can be
thought of as a rough certificate for the accuracy of each local flattening iteration.

In Figure 10, we empirically evaluate the reconstruction error on our finite samples {x1, . . . , xN}
as

reconstruction error ≈ 1

N

N∑
i=1

‖xi − x̂i‖22, where x̂i := ρnet(φnet(xi)). (66)

We estimate the error across 3 trials of the experiment, and plot the mean curve and standard devia-
tion, for each d ∈ {5, 10, 15, 20}. We compare against FactorVAE, which has the same configuration
as previously discussed except for the latent dimension which is set to d.2 Overall, the experiment
demonstrates again that FlatNet is convincingly better at learning to reconstruct low-dimensional
structures than the VAEs we compare against.

In Figure 11, we empirically evaluate the dimension estimation capability. Given a trained
FlatNet encoder and decoder, we estimate the global intrinsic dimension of M using the follow-
ing procedure. Each iteration ` of the training process estimated an intrinsic local dimension
d̂k for some neighborhood of the manifold; to estimate the global dimension we simply compute
d̂
.
= mode(d̂` : ` ∈ [L]), i.e., the most commonly estimated local dimension. We estimate the intrin-

sic dimension across 3 trials of the experiment, and plot the mean curve and standard deviation, for
each d ∈ {5, 10, 15, 20}. We compare with the popular intrinsic dimension estimation algorithms
MLE (Levina and Bickel, 2004a) and TwoNN (Facco et al., 2017). Overall, the experiment demon-

2. We also compared against the vanilla VAE and β-VAE, but those had nearly identical performance to FactorVAE
and so are omitted from the chart for visual clarity.

23



Psenka, Pai, Raman, Sastry, Ma

(a) FlatNet. (b) VAE.

(c) β-VAE. (d) FactorVAE.

Figure 8: Results of FlatNet contrasted with VAE, β-VAE, and FactorVAE. Data is N = 50 points
sampled from a random d = 1 dimensional Gaussian process manifold in RD = R2. Note
that FactorVAE completely degenerates on the low-dimensional data structure, while the
other two VAEs clearly do not perform as well as FlatNet.

24



Representation Learning via Manifold Manipulation

(a) FlatNet.

(b) VAE.

(c) β-VAE.

(d) FactorVAE.

Figure 9: Results of FlatNet contrasted with VAE, β-VAE, and FactorVAE. Data is N = 50 points
sampled from a random d = 2-dimensional Gaussian process manifold in RD = R3.
Again, FlatNet learns to reconstruct and generalize much better than the VAEs we test
againt. Also, the feature space for FlatNet is really a 2-dimensional affine subspace,
as desired; this would be clear after rotating the figure. Tools to perform interactive
visualization are present in the attached code.

25



Psenka, Pai, Raman, Sastry, Ma

Figure 10: Reconstruction error of FlatNet and FactorVAE. Data is N = 1000 points sampled
from a random d ∈ {5, 10, 15, 20} dimensional Gaussian process manifold in RD = R100.
Error margins are ±1 standard deviation across 3 trials.

strates that FlatNet is competitive with the state of the art at dimension estimation, even when
not explicitly designed for this task.

6.3 Real-world imagery data

Real-world imagery data such as MNIST tend to lie on high-curvature or non-differentiable patho-
logical manifolds (Wakin et al., 2005). In order to make such data tractable for the use of FlatNet,
we use the (vectorized) Fourier transform of the image, say F{xi}, instead of the image xi it-
self, as the input to FlatNet, where it becomes easier to smooth out domain transformations (e.g.
convolution with a Gaussian kernel).

We begin with a constructed manifold from MNIST to visualize how well FlatNet recovers
intrinsic features from 2D vision data. To this end, we take a single image from MNIST, and
both rotate it by various angles and translate it along the y-axis by various amounts. The result
is a 2-dimensional manifold embedded in pixel space (here, D = 32 × 32 = 1024). In Figure 12,
we present the results of running FlatNet on the constructed manifold, with both the features it
recovers and reconstruction accuracy.

We now move to the original MNIST dataset. In Figure 13, we demonstrate the empirical
reconstruction performance of FlatNet on MNIST data. Notice that the reconstruction is not
pixel-wise perfectly accurate; the reconstructed samples appear closer to an archetype of the digit
than the original image. This example hints that the encoder function φnet naturally compresses
semantically non-meaningful aspects of the input image, which is a useful property for encoders.

In Figure 14, we demonstrate that the feature space of FlatNet is linear in that it corresponds
to an affine subspace. In particular, we demonstrate that linear interpolation in feature space
corresponds to semantic interpolation in image space.

In Figure 15, we demonstrate that we can sample from the linear (structured) feature space to
generate semantically meaningful data in image space.

26



Representation Learning via Manifold Manipulation

Figure 11: Global intrinsic dimension estimation of FlatNet, MLE, and TwoNN. Data is N = 1000
points sampled from a random d ∈ {5, 10, 15, 20} dimensional Gaussian process manifold
in RD = R100. Error margins are ±1 standard deviation across 3 trials.

Figure 15: Sampling using FlatNet: x̂ = F−1{ρnet(z)} where z is a Gaussian random variable
supported on the affine subspace φnet(F{M}).

6.4 Low-dimensional counterexamples

We present two low-dimensional counterexamples to show potential limitations of the method, as
well as what the algorithm looks like when it hits a failure mode. We present two illustrative
results.

Closed circle. The first is data sampled from a closed curve, a circle, with noise. This represents
a manifold that is not even theoretically flattenable. While this represents a theoretical boundary
for FlatNet, note that any continuous autoencoding pair, regardless of the model, likewise cannot
flatten these manifolds. See Figure 16 for a visualization on how FlatNet behaves on such manifolds:
it will start to form flat patches until it cusps and is not flattenable or modelable anymore.

Unaugmented Swiss roll. The second is data sampled from the “Swiss roll” dataset. While this
manifold is theoretically flattenable, it is quite “crammed” in its ambient space: not only is it a
hypersurface (d = D − 1), its self-inward curling makes compression-based flattening methods like

27



Psenka, Pai, Raman, Sastry, Ma

(a) Original rotated/translated images (top) compared
to reconstruction ρnet(φnet(x)) from FlatNet (bottom)

(b) Intrinsic coordinates (y, θ) (c) Learned representation from
FlatNet

(d) Representation from PCA

Figure 12: Results of FlatNet on the following manifold: a base point is selected from MNIST (here
a “7”), and various y-transations between [-7, 7] pixels and rotations between [-30, 30]
degrees. The representation from FlatNet was run until convergence: it determined the
dataset was of dimension 2 automatically. Note that while the features look distorted
compared to the intrinsic features, FlatNet learns a representation that is relatively
smoothly deformable into the canonical coordinates. However, the PCA representation
obtained from taking the top two principal components (which requires knowledge of
d = 2 a-priori), yields a “tangled” representation: mapping the PCA representation
back into the intrinsic coordinates would require a more complex function.

Figure 13: Original xi (top) vs. reconstruction x̂i
.
= F−1{ρnet(φnet(F{xi}))} (bottom), using Flat-

Net flattening φnet and reconstruction ρnet on MNIST dataset.

28



Representation Learning via Manifold Manipulation

Figure 14: Comparison of interpolation: FlatNet (top), i.e., x̂
.
= F−1{ρnet(θφnet(F{x1}) + (1 −

θ)φnet(F{x2}))}, versus linear interpolation (bottom), i.e., x̂
.
= θx1 + (1− θ)x2.

(a) X (b) φ1:20(X) (c) φ1:40(X)

(d) φ1:60(X) (e) φ1:80(X)

Figure 16: Plots of resulting features φ1:`(X) through the first ` layers of the flattening map φnet,
for data sampled from a noisy circle. We observe denoising of the dataset onto a closed
curve which oscillates but ultimately does not converge to a linear representation.

FlatNet fold the manifold into itself before. If FlatNet is run on the pure Swiss roll, it runs into
the same problems as the closed circle: it quickly cannot make any invertible flattening progress,
and thus halts without changing the manifold much at all.

However, if a simple nonlinear feature is appended ((x1, x2, x3) 7→ (x1, x2, x3, x
2
1 + x2

3)), then
FlatNet is able to both efficiently flatten the manifold and give an approximate reconstruction.
While the approximate reconstruction has noticeable differences from the original manifold3, the
learned features correspond closely to the intrinsic coordinates that generated the Swiss roll dataset.
See Figure 17 for plots of the results.

7. Conclusion and future work

In this work, we propose a computationally tractable algorithm for flattening data manifolds, and
in particular generating an autoencoding pair in a forward fashion. Of primary benefit for this
methodology is the automation of network design: the network’s width and height for example are
both chosen automatically to be as minimal as possible. For researchers training a new autoencoder
model from scratch, this can pose a large practical benefit.

3. As we are also forcing the reconstruction to fit the artificially constructed feature x4 = x+ 12 +x23, we can expect
a decrease in the reconstruction quality as a cost for easier flattening.

29



Psenka, Pai, Raman, Sastry, Ma

(a) X (b) φnet(X) (features) (c) ρnet(φnet(X))
(reconstruction)

Figure 17: Plots of (a) the Swiss roll dataset (N = 3000), (b) the learned features after a con-
verged FlatNet flattening, and (c) the learned reconstruction from the FlatNet. Note
the reconstruction suffers from the same compounding errors problem near the bound-
ary of the manifold, akin to the sine wave example depicted in Figure 7. However,
the representations learned by FlatNet are noticeably close to the original generating
coordinates.

There is still a lot of room for future work. Our work focuses on the local autoencoding problem
for simplicity, but we see the problems of this approach experimentally through the accumulation
of the small, local errors through the global map. There are many potential ways one could modify
our approach to learn and correct the autoencoder’s layers based on the global error. Further, the
geometric model for real-world data can be improved and modernized. Outside of the flattenability
assumptions (which excludes any closed loops in the manifold, like for example rotation groups
for computer vision), it is still a strong assumption that the entire dataset is a single, connected
manifold of a single dimension. One common example is a “multiple manifolds hypothesis” (Brown
et al., 2022; Vidal et al., 2005; Yu et al., 2020), but there is still more work to do for a geometric
model that captures realistic, hierarchical structures. Nonetheless, we feel the presented work
builds grounds for geometric-based learning methods in more practical environments which scale
with modern data requirements.

Acknowledgements

We thank Sam Buchanan of TTIC for helpful discussions around existing approaches to manifold
flattening and learning.

30



Representation Learning via Manifold Manipulation

A. Additional experiments

We provide below additional figures to help the reader visualize the performance of FlatNet.

(a) FactorVAE (b) FlatNet (ours)

Figure 18: Intrinsic distortion of FactorVAE vs. FlatNet (brighter picture is better), on a random
manifold of embedding dimension D = 100, intrinsic dimension d = 10, and training
set size N = 6000. We measure the distortion rate by the elementwise ratio of matrices
EDM(φnet(X))/EDM(C), where EDM(·) ∈ RN×N is the Euclidean distance matrix of
a matrix of samples, X ∈ RD×N is the training data, and C ∈ Rd×N are the intrinsic
coordinates that generated X. Depicted results are scaled by the maximum of the EDM
ratio.

We also test the intrinsic distortion of FactorVAE of a random manifold over various stopping
times (Figure 19).

B. Differential geometry overview

For the sake of being self-contained, we give a brief introduction to some fundamental definitions
and constructs in differential geometry needed for this paper. These definitions are not meant
to be mathematically complete, but communicate the main ideas used in this paper. Please see
the appendix for a more detailed overview, and see Boumal (2020); Lee (2012, 2018) for further
introductions to differential geometry and embedded submanifolds.

B.1 Embedded submanifolds

While general differential geometry studies general manifolds, our focus for this paper are manifolds
that pertain to the manifold hypothesis; that is, lower dimensional manifolds explicitly embedded
in higher-dimensional Euclidean spaces. The following is a typical definition for such manifolds:

Definition 9. An embedded submanifold (or a manifold) M is a subset of some Euclidean space
RD such that for every x ∈ M , there is some nonempty neighborhood Nε(x) = M ∩ Bε(x) that is
diffeomorphic with a subset of Rd. The integer d is called the dimension of the manifold, denoted
dim(M).

Intuitively, a an embedded submanifold is a continuous structure that is at every point locally
invertible to a d-dimensional vector representation. For this paper, we will further require manifolds
to be smooth in order to discuss geodesics and curvature. Please see Lee (2012) for a comprehensive
definition.

31



Psenka, Pai, Raman, Sastry, Ma

(a) 40 Epochs (b) 60 Epochs (c) 80 Epochs

(d) 100 Epochs (e) 120 Epochs

Figure 19: Intrinsic distortion of FactorVAE, on a random manifold of embedding dimension D =
100, intrinsic dimension d = 4, and training set size N = 300. We also observed similar
performance with BetaVAE and VanillaVAE.

B.2 Tangent space, extrinsic curvature

Akin to how smooth functions can be locally approximated by a linear function via its derivative,
smooth manifolds can be locally approximated by a linear subspace using its tangent space; this
is a construct commonly used in classical manifold learning. There are many ways to define the
tangent space; we provide one here.

Definition 10. Let M ⊂ RD be a manifold of dimension d, and x ∈ M . The tangent space at x,
denoted TxM is defined as the collection of all velocity vectors of smooth curves γ on M from x:

TxM
.
=

{
d

dt
γ(0)

∣∣∣∣γ : [0, 1]→M,γ(0) = x

}
. (67)

This is a linear space of dimension d, and we call its orthogonal compliment NxM
.
= {v |

〈v, w〉 = 0 forall w ∈ TxM} the normal space. Thus TxM encodes a linear approximation to local
movement around x on the manifold.

We now introduce curvature. Recall that for smooth functions, if the derivative is constant
everywhere, i.e. d

dxf(x) = c for some c, then f is a globally linear function. We can equivalently

conclude this if d2

dx2
f(x) = 0 everywhere. If the tangent space is analogous to the derivative, then

the extrinsic curvature is analogous to the second derivative, and heuristically measures how much
the tangent space is changing locally. There are again many definitions of extrinsic curvature, and
one commonly used definition is through the second fundamental form:

Definition 11. Let M ⊂ RD be a manifold of dimension d, and x ∈M . The second fundamental
form at x, denoted IIx, is the bilinear map IIx : TxM × TxM → NxM defined as the following:

IIx(v, w)
.
= DvPTxM{w}, (68)

32



Representation Learning via Manifold Manipulation

where PTxM is the orthogonal projector from RD onto TxM , and DvPTxM{w} is the differential of
the base point x along v.

Please see (Boumal, 2020, eq. (5.37)) for a more complete and rigorous version of the above
definition. Intuitively, IIx measures how much the tangent space changes locally. Indeed, if IIx is
identically 0 everywhere on M , then the tangent space TxM doesn’t change anywhere, and M is a
globally linear subspace of dimension d. This motivates our use of II to characterize the nonlinearity
of a manifold M , and motivates our definition of flatness and the following immediate corollary:

Definition 12. A manifold M ⊂ RD is said to be flat if IIx(v, w) = 0 for all x ∈ M and all
v, w ∈ TxM .

Corollary 13. If a manifold M ⊂ RD of dimension d is flat, then M is globally contained within
an affine subspace of dimension d, i.e., M ⊂ TxM + x for any x ∈M .

Finally, we introduce geodesics. One primary challenge of nonlinear datasets is the inability to
interpolate via convex interpolation; indeed, for manifolds, the linear chord γ(t)

.
= (1− t)x+ ty for

x, y ∈M rarely stays in the manifold for all t ∈ [0, 1]. While there are typically many interpolations
γ(t) between x and y that stay within M , there is at most one that minimizes the path length: this
is called the geodesic between x and y.

Definition 14. Let M ⊂ RD be a manifold of dimension d. For any two x, y ∈M , if there exists
a smooth curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y, the geodesic between x and y is
the interpolating curve of minimal arc length:

γ?
.
= argmin

γ : [0,1]→M
γ(0)=x,γ(1)=y

∫ 1

0

∥∥∥∥ d

dt
γ(t)

∥∥∥∥
2

dt. (69)

For this paper, we assume for all manifolds M that all pairs of points have geodesics between
them; this is akin to assuming the manifold is connected.

C. Geometric flows for manifold flattening

We now draw a relation between Algorithm 1 and a more traditional methods of manifold flattening:
geometric flows. A common practice in differential geometry for manifold manipulation is to define
a differential equation and study the evolution of M through the corresponding dynamics. Such
equations are often called geometric evolution equations, or geometric flows, and are typically
designed to evolve complicated manifolds into simpler, more uniform ones. They are responsible
for some powerful geometric theorems, such as the uniformization theorem, and are a heavily
studied area in differential geometry.

Arguably the most well-known of the geometric flows is the Ricci flow (Hamilton, 1982). While
commonly used in theoretical work, the Ricci flow is ill-suited for embedded submanifold flattening,
as it is an open problem as to whether a realization of the Ricci flow even exists in the embedding
space (Coll et al., 2020). There are also geometric flows that minimize extrinsic curvature (as
opposed to intrinsic curvature), such as the curve-shortening flow (Abresch and Langer, 1986) and
mean curvature flow (Huisken, 1984). While there is rich theory behind both of these flows, each
requires restricted settings which are non-ideal for data manifolds, with the former being defined
only on curves (d = 1) and the latter on hypersurfaces (d = D − 1).

In this section, we introduce a new geometric flow that is well-defined on general embedded
submanifolds of a Euclidean space, thus extending to more realistic settings for data manifolds.
Our flow will flatten the input manifold M. The encoding map φCC : RD → RD we seek to learn
will then act on a point x0 ∈ RD by approximating the flow starting at x0.

33



Psenka, Pai, Raman, Sastry, Ma

C.1 Convexification flow

Recall from Theorem 6 that flatness and convexity are intimately connected. Thus, our flow focuses
on minimizing the volume of the difference between convex hull of the manifold and the manifold
itself. Accordingly, we call it the convexification flow.

We now discuss the mechanics of how the flow should behave. In order to compress M until
it becomes convex, it should point the velocity vector of all points x0 ∈ M towards the boundary
∂ conv(M). However, conv(M) is challenging to compute in high dimensions (Erickson, 1996; Gale,
1963, Chp. 3), so the flow should only use local information that computes a direction from x0

towards ∂ conv(M).
Fix a smooth integrable function ψ : RD → [0, 1]. Recall that the local average overM, defined

as

AM(x0)
.
=

∫
M xψ(x) dx∫
M ψ(x) dx

(70)

is not necessarily contained in M, but when there is some nonzero curvature (i.e., the manifold is
not locally flat) it is contained in the set difference conv(M) \M. Thus, it seems that we can use
local averages to direct the flow velocity towards the boundary of the convex hull.

More precisely, we define the following flow, which (as previously stated) we call the convexifi-
cation flow.

Definition 15 (Convexification Flow). Let x0 ∈M. The trajectory under the convexification flow
x : [0,∞)→ RD of x0 is given by the initial value problem (IVP):

d

dt
x(t) = x̄(t)− x(t), (71)

x(0) = x0. (72)

Here x̄(t) is a short-hand for the local average of x(t) at time t:

x̄(t)
.
= AM(t)(x(t)), (73)

where M(t) is the transformation of the original manifold M under the flow until time t:

M(t)
.
= {x(t) | eq. (71) holds for x on [0, t), x(0) ∈M}. (74)

Fix t ≥ 0. Suppose that M(t) is convex. Then if x(t) is in the interior M(t)◦, we have
x(t) = x̄(t). This suggests that the above flow is stationary, or halts, whenever M(t) is convex.
However, even ifM(t) is convex, the equality x̄(t) = x(t) does not necessarily hold on the boundary
∂M(t). This phenomenon is important; as is the case with many unnormalized geometric flows,
this ODE will evolve M(t) into a singularity as t→∞. Thus, we need to normalize this flow.

C.2 Normalized convexification flow

Analyzing the cause of singularity in Equation (71), we see that fatal collapse only starts when
d
dtx(t) points towardsM(t) itself. This can be alleviated by restricting the velocity vector x̄(t)−x(t)
to belong to the normal space Nx(t)M(t) at x(t). Thus, we define the following flow, which we call
the normalized convexification flow.

Definition 16 (Normalized Convexification Flow). Let x0 ∈M. The trajectory under the normal-
ized convexification flow x : [0,∞)→ RD of x0 is given by the following IVP:

d

dt
x(t) = PNx(t)M(t){x̄(t)− x(t)}, (75)

x(0) = x0. (76)

34



Representation Learning via Manifold Manipulation

Here PNx(t)M(t) is the orthogonal projection operator onto the subspace Nx(t)M(t), and x̄(t) and

M(t) are defined analogously to before:

x̄(t) := AM(t)(x(t)), (77)

M(t) := {x(t) | eq. (75) holds for x on [0, t), x(0) ∈M}. (78)

This flow does not completely avoid singularities; we resolve this issue shortly when we discretize
the flow, and in the next section when we make some algorithmic tweaks.

C.3 Discretizing the normalized convexification flow

We now show how to recover a simplified version of Algorithm 1 by discretizing the convexification
flow. Fix h > 0 to be our discretization interval, and let k ≥ 0 be a non-negative integer. From
here on, we will write x[k] to denote x(kh), and similarly for x̄ and M.

Let x : [0,∞) → RD evolve according to the normalized convexification flow in Equations (75)
and (76). Our discretization will write x[k + 1] = x((k + 1)h) (approximately) in terms of x[k] =
x(kh). We use a first-order Taylor approximation around x[k + 1]:

x[k + 1] = x((k + 1)h) (79)

≈ x(kh) + h

[
d

dt
x(t)

]
t=kh

(80)

= x(kh) + hPNx(kh)M(kh){x̄(kh)− x(kh)} (81)

= x[k] + hPNx[k]M[k]{x̄[k]− x[k]} (82)

= x[k] + h(idRD − PTx[k]M[k]){x̄[k]− x[k]} (83)

= x[k] + hx̄[k]− hx[k]− hPTx[k]M[k]x̄[k] + hPTx[k]M[k]x[k] (84)

= (1− h)x[k] + h(x̄[k] + PTx[k]M[k]{x[k]− x̄[k]}), (85)

= (1− h)x[k] + hPTx[k]M[k]+x̄[k]{x[k]} (86)

with exact equality achieved as h→ 0. If we extend this step in Equation (86) to a neighborhood
around x[k], fixing the projector PTx[k]M[k]+x̄[k] with respect to the central point x[k], then Equa-

tion (86) matches the forward map defined in Equations (9) and (16); in particular, the quantity h
in Equation (86) corresponds to the partition of unity ψ(x) in Equation (16).

D. Proofs

We provide below important proofs for theory included in the main body.

Proof of Theorem 6
As we are primarily studying the set φ(M), we denote this manifold Z for brevity.

1. This comes as an immediate corollary to the following geometric lemma (Lee, 2018, Proposi-
tion 8.12):

Lemma 17. An embedded submanifold M⊂ RD is flat if and only if the geodesics of M are
geodesics in the embedding space RD.

As the geodesics of Euclidean space are straight lines, it follows that the geodesics of Z are
likewise straight lines. Since h is smooth and M is compact and connected, it follows that

35



Psenka, Pai, Raman, Sastry, Ma

Z is compact and connected, and each pair of points z1, z2 have a geodesic between them.
Thus, all point pairs z1, z2 ∈ Z are connected by straight lines, making the set Z convex.

2. This claim is proven in two parts: (a) Z ⊂ z + TzZ for any z ∈ Z, and (b) z1 + Tz1Z =
z2 + Tz2Z for all z1, z2 ∈ Z.

Fix an arbitrary z ∈ Z. As established in part 1, all pairs of points in Z are connected by a
geodesic, and all geodesics of Z are straight lines. Thus, all points z′ ∈ Z can be represented
as z′ = z + tv for some t ∈ R and v ∈ TzZ, and it follows that Z ⊂ z + TzZ.

For the second claim, note that Tz1Z = Tz2Z for all pairs of points z1, z2 ∈ Z, as the second
fundamental form is identically zero everywhere. Denoting the shared tangent space TzZ, it
then suffices to show that z1 − z2 ∈ TzZ for all z1, z2 ∈ Z. This is indeed the case, as the
geodesics of Z are of the form γ(t) = z1 + t(z2 − z1), and γ′(0) = z2 − z1.

3. The autoencoding property g(f(x)) = x for all x ∈ M holds trivially from construction, so
what is left is to show is that there is no pair of functions f : RD → Rp and g : Rp → RD
where g(f(x)) = x for all x ∈M, and p < d.

Denote Df(x)[v] := limt→0
f(x+tv)−f(x)

t , the differential of f at x along v. This notation is
used to emphasize that Df(x) is a linear map. The following chain rule holds (Boumal, 2020):

D(g ◦ f)(x)[v] = Dg(f(x))[Df(x)[v]]. (87)

Using the autoencoding equality overM, and the fact that D(id)[v] = v, we get the following
equality for any fixed x ∈M:

Dg(f(x))[Df(x)[v]] = v, (88)

for any v ∈ TxM. Since Tx M is a linear space of dimension d, it follows that the composite
linear map Dg(f(x))[Df(x)[v]] must have rank of at least d. Since Df(x)[v] is a linear map
from RD to Rp, this implies that p ≥ d.

Proof of Lemma 7
Define βz(x) := (1 − e−λze−λx)2x, PU+xc{z} := UU>(z − xc) + xc, and (I − PU+xc){z} :=

z − PU+xc{z}. Since βz(x) is a strictly monotonically increasing function for x, z ≥ 0 (product of
strictly monotonically increasing functions on positive input), βz(x) is an invertible scalar function
for all z ≥ 0. Denote η1 := ‖PU+xc{z}‖22 = ‖PU+xc{x}‖22, and η2 := ‖(I − PU+xc){z}‖22 =
(1 − ψ(x))2‖(I − PU+xc){x}‖22. Further notate the original norms ν1 := ‖PU+xc{x}‖22 and ν2 :=
‖(I − PU+xc){x}‖22. Note that under this notation, ψ(x) = e−λ(ν1+ν2). Since ν1 = η1, we simply
need to find an equation for ν2 from η1, η2.

η2 = (1− φ(x))2‖(I − PU,xc)x‖22, (89)

= (1− e−λ(ν1+ν2))2ν2, (90)

= (1− e−λη1e−λν2)2ν2, (91)

= βη1(ν2). (92)

Finally, we get the following equation for our partition of unity as a function of the output features
z:

ψ(x) = ξ(z) := αe
−γ
(
‖PU,xcz‖22+β−1

‖PU,xcz‖
2
2

(‖(I−PU,xc )z‖22)

)
. (93)

36



Representation Learning via Manifold Manipulation

Computing the above function amounts to inverting a scalar function, which reduces to scalar root-
finding.

Proof of Proposition 8

1. For convenience, let αij =
〈
ũj , Ũ Ũ

>(xi − x0)
〉

= 〈ũj , xi − x0〉. We write

Lψ(Ũ , Ṽ ) (94)

=
1

N

N∑
i=1

ψ(xi)
2
∥∥∥Ṽ (Ũ Ũ>(xi − x0), Ũ Ũ>(xi − x0))− (I − Ũ Ũ>)(xi − x0)

∥∥∥2

2
, (95)

=
1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥
d∑
j=1

d∑
k=1

αijαikṽjk − (I − Ũ Ũ>)(xi − x0)

∥∥∥∥∥∥
2

2

, (96)

=
1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥Ũ Ũ>
 d∑
j=1

d∑
k=1

αijαikṽjk

− (I − Ũ Ũ>)

xi − x0 −
d∑
j=1

d∑
k=1

αijαikṽjk

∥∥∥∥∥∥
2

2

,

(97)

=
1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥Ũ Ũ>
 d∑
j=1

d∑
k=1

αijαikṽjk

∥∥∥∥∥∥
2

2

(98)

+
1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥(I − Ũ Ũ>)

xi − x0 −
d∑
j=1

d∑
k=1

αijαikṽjk

∥∥∥∥∥∥
2

2

≥ 1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥(I − Ũ Ũ>)

xi − x0 −
d∑
j=1

d∑
k=1

αijαikṽjk

∥∥∥∥∥∥
2

2

(99)

with equality if and only if Ũ Ũ>
(∑d

j=1

∑d
k=1 αijαikṽjk

)
= 0 for all i ∈ {1, . . . , N}, which

since Ũ are full rank is true if and only if Ũ>
(∑d

j=1

∑d
k=1 αijαikṽjk

)
= 0.

2. This amounts to noticing the cost function Lψ(Ũ , Ṽ ) can be written as a least squares prob-
lem, and accounting for trivial redundancy. We rewrite the formula of Lψ(Ũ , Ṽ ) here for
convenience:

Lψ(Ũ , Ṽ ) (100)

=
1

N

N∑
i=1

ψ(xi)
2
∥∥∥Ṽ (Ũ Ũ>(xi − x0), Ũ Ũ>(xi − x0))− (I − Ũ Ũ>)(xi − x0)

∥∥∥2

2
, (101)

=
1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥
d∑
j=1

d∑
k=1

ṽjk 〈ũj , xi − x0〉 〈ũk, xi − x0〉 − (I − Ũ Ũ>)(xi − x0)

∥∥∥∥∥∥
2

2

. (102)

Define B again as in the proposition statement: Bijk = 〈ũj , xi − x0〉 〈ũk, xi − x0〉. We can

flatten out the last two indices to get a matrix A ∈ RN×d2 , such that Ai,j+d·k = Bijk. If we

37



Psenka, Pai, Raman, Sastry, Ma

further stack the vectors ṽjk into a matrix Mṽ ∈ Rd2×D, where the (j+d ·k)th row is ṽjk, and
a matrix C ∈ RN×D such that the ith row of C is (I − Ũ Ũ>)(xi − x0). Then we can write
the following:

Lψ(Ũ , Ṽ ) = ‖Dψ(xi)AMṽ −Dψ(xi)C‖
2
F , (103)

where Dψ(xi) ∈ RN×N is the diagonal matrix such that Dψ(xi)ii = ψ(xi).

An important problem with the above formulation is that A will never be full rank, since
Bijk = Bikj ; this will lead to trivial duplicate entries in the rows of A. This is where the

proposition’s construction comes in: if we instead construct A′ ∈ RN×
1
2

(d2+d) such that the
ith row is only the flattened upper diagonal component of Bi ∈ Rd×d, and further modify
M ′ṽ ∈ R

1
2

(d2+d)×D to only contain upper-diagonal entries of the list ṽjk, scaling each off-
diagonal entry by 2, then we can write the following:

Lψ(Ũ , Ṽ ) = ‖Dψ(xi)A
′M ′ṽ −Dψ(xi)C‖

2
F , (104)

where the matrix A′ can now feasibly be full column-rank. As the above is a standard least
squares problem, the solution M ′v̂ (and equivalently the solution for V̂ ) is unique only when

Dψ(xi)A
′ is of full column-rank, which since ψ(xi) > 0 for all xi means V̂ is unique only when

A′ is full rank.

3. Note that, using the notation of part 2., part 1. implies that A′M ′v̂Ũ = 0. Since A′ is of
full column rank, this implies that M ′v̂Ũ = 0, which implies Ũ>v̂jk = 0 for all 1 ≤ j, k,≤ d.

Since any output of V̂ is a linear combination of v̂jk, it follows that Ũ>V̂ (w1, w2) = 0 for all
w1, w2 ∈ RD.

E. Algorithmic analysis

We provide here some algorithmic analysis to give the reader an idea for the computational burden
that computing FlatNet entails. While we currently do not have rigorous computational guarantees,
we can give ideas for scaling by providing critical point characterization, and time complexity of
computing the cost function (including all network evaluations).

E.1 Time complexity

To give the reader an idea of how FlatNet scales with data size and complexity, we provide some
basic asymptotic time complexity analysis on the main bottleneck computation for constructing
a FlatNet pair f, g: the optimization in eq. (40). The following theorem encapsulates this time
complexity analysis:

Theorem 18. The loss function given in eq. (40) of the main body can be computed in O(NDd2)
flops.

Proof For reference, the cost function in question is the following:

Lψ(Ũ , Ṽ ) =
1

N

N∑
i=1

ψ(xi)
2

∥∥∥∥∥∥
d∑
j=1

d∑
k=1

ṽjk 〈ũj , xi − x0〉 〈ũk, xi − x0〉 − (I − Ũ Ũ>)(xi − x0)

∥∥∥∥∥∥
2

2

. (105)

38



Representation Learning via Manifold Manipulation

The outer sum’s size of eq. (105) will be at most N , so we can incur an O(N) cost and focus
our analysis on the summand for fixed x ∈ X:∥∥∥∥∥∥

d∑
j=1

d∑
k=1

ṽjk 〈ũj , xi − x0〉 〈ũk, xi − x0〉 − (I − Ũ Ũ>)(xi − x0)

∥∥∥∥∥∥
2

2

(106)

Since U ∈ RD×d, U>(xi−x0) is computable in O(Dd) flops, and the subsequent multiplication of
U requires another O(Dd) flops. Thus, (I− Ũ Ũ>)(xi−x0) is computable in O(Dd) multiplications.
For the remaining double sum

∑d
j=1

∑d
k=1 ṽjk 〈ũj , xi − x0〉 〈ũk, xi − x0〉, we can reduce to a single

summand as before and incur a cost of O(d2), reducing time complexity analysis to the following:

ṽjk 〈ũj , xi − x0〉 〈ũk, xi − x0〉 (107)

Since 〈ũj , xi − x0〉 have already been computed from U>(xi − x0) and ṽjk ∈ RD, the resulting
expression requires O(D) multiplications to compute. Thus, eq. (106) requires O(Dd2) flops to com-
pute. The last uncomputed operation is the final L2 norm of the D-dimensional difference vector,
which requires O(D) flops. Finally, the overall computation takes O(N(Dd2+Dd+D)) = O(NDd2)
flops.

References

U. Abresch and J. Langer. The normalized curve shortening flow and homothetic solutions. Journal
of Differential Geometry, 23(2):175–196, 1986.

S. Arora, A. Risteski, and Y. Zhang. Do gans learn the distribution? some theory and empirics.
In International Conference on Learning Representations, 2018.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural computation, 15(6):1373–1396, 2003.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

T. Birsan and D. Tiba. One hundred years since the introduction of the set distance by dimitrie
pompeiu. System Modelling and Optimization, 199:35–39, 2005.

N. Boumal. An introduction to optimization on smooth manifolds. Available online, Aug, 2020.

B. C. Brown, A. L. Caterini, B. L. Ross, J. C. Cresswell, and G. Loaiza-Ganem. The union
of manifolds hypothesis and its implications for deep generative modelling. arXiv preprint
arXiv:2207.02862, 2022.

P. Campadelli, E. Casiraghi, C. Ceruti, and A. Rozza. Intrinsic dimension estimation: Relevant
techniques and a benchmark framework. Mathematical Problems in Engineering, 2015:1–21, 2015.

K. M. Carter, R. Raich, and A. O. Hero III. On local intrinsic dimension estimation and its
applications. IEEE Transactions on Signal Processing, 58(2):650–663, 2009.

K. Chan, Y. Yu, C. You, H. Qi, J. Wright, and Y. Ma. Redunet: A white-box deep network from
the principle of maximizing rate reduction. Journal of machine learning research, 23(114), 2022.

39



Psenka, Pai, Raman, Sastry, Ma

C. P. Chen. A rapid supervised learning neural network for function interpolation and approxima-
tion. IEEE Transactions on Neural Networks, 7(5):1220–1230, 1996.

S. Chen, S. Chewi, J. Li, Y. Li, A. Salim, and A. R. Zhang. Sampling is as easy as learning the score:
theory for diffusion models with minimal data assumptions. arXiv preprint arXiv:2209.11215,
2022.

V. E. Coll, J. Dodd, and D. L. Johnson. Ricci flow on surfaces of revolution: an extrinsic view.
Geometriae Dedicata, 207(1):81–94, 2020.

J. A. Costa and A. O. Hero. Determining intrinsic dimension and entropy of high-dimensional
shape spaces. In Statistics and analysis of shapes, pages 231–252. Springer, 2006.

L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

J. Dieudonné. Sur les fonctions continues numérique définies dans une produit de deux espaces
compacts. Comptes Rendus Acad. Sci. Paris, 205:593–595, 1937.

J. G. Erickson. Lower bounds for fundamental geometric problems. University of California, Berke-
ley, 1996.

E. Facco, M. d’Errico, A. Rodriguez, and A. Laio. Estimating the intrinsic dimension of datasets
by a minimal neighborhood information. Scientific reports, 7(1):1–8, 2017.

C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis. Journal of the
American Mathematical Society, 29(4):983–1049, 2016.

C. Fraikin, K. Hüper, and P. V. Dooren. Optimization over the stiefel manifold. In PAMM:
Proceedings in Applied Mathematics and Mechanics, volume 7, pages 1062205–1062206. Wiley
Online Library, 2007.

D. Gale. Neighborly and cyclic polytopes. In Proc. Sympos. Pure Math, volume 7, pages 225–232,
1963.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27,
2014.

R. S. Hamilton. Three-manifolds with positive ricci curvature. Journal of Differential geometry,
17(2):255–306, 1982.

K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16000–16009, 2022.

M. Hein and J.-Y. Audibert. Intrinsic dimensionality estimation of submanifolds in rd. In Proceed-
ings of the 22nd international conference on Machine learning, pages 289–296, 2005.

40



Representation Learning via Manifold Manipulation

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-
chner. beta-vae: Learning basic visual concepts with a constrained variational framework. In
International conference on learning representations, 2017.

G. Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. In
Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pages
19–26, 1993.

G. Huisken. Flow by mean curvature of convex surfaces into spheres. Journal of Differential
Geometry, 20(1):237–266, 1984.

A. Jansen, G. Sell, and V. Lyzinski. Scalable out-of-sample extension of graph embeddings using
deep neural networks. Pattern Recognition Letters, 94:1–6, 2017.

H. Kim and A. Mnih. Disentangling by factorising. In International Conference on Machine
Learning, pages 2649–2658. PMLR, 2018.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review of current
methods, arxiv e-prints. arXiv preprint arXiv:1908.09257, 2019.

M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233–243, 1991.

S. Lahiri, P. Gao, and S. Ganguli. Random projections of random manifolds. arXiv preprint
arXiv:1607.04331, 2016.

N. Lawrence and A. Hyvärinen. Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of machine learning research, 6(11), 2005.

J. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in Mathematics. Springer-
Verlag New York, 2nd edition, 2012. doi: 10.1007/978-1-4419-9982-5.

J. M. Lee. Introduction to Riemannian manifolds, volume 176. Springer, 2018.

E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. Advances in neural
information processing systems, 17, 2004a.

E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In L. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, vol-
ume 17. MIT Press, 2004b. URL https://proceedings.neurips.cc/paper/2004/file/

74934548253bcab8490ebd74afed7031-Paper.pdf.

B. Li, Y.-R. Li, and X.-L. Zhang. A survey on laplacian eigenmaps based manifold learn-
ing methods. Neurocomputing, 335:336–351, 2019. ISSN 0925-2312. doi: https://doi.org/10.
1016/j.neucom.2018.06.077. URL https://www.sciencedirect.com/science/article/pii/

S0925231218312645.

41

https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0925231218312645
https://www.sciencedirect.com/science/article/pii/S0925231218312645


Psenka, Pai, Raman, Sastry, Ma

J. Li, L. Fuxin, and S. Todorovic. Efficient riemannian optimization on the stiefel manifold via the
cayley transform. arXiv preprint arXiv:2002.01113, 2020.

J.-B. Li, J.-S. Pan, and S.-C. Chu. Kernel class-wise locality preserving projection. Information
Sciences, 178(7):1825–1835, 2008. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2007.12.
001. URL https://www.sciencedirect.com/science/article/pii/S0020025507005658.

J. Lucas, G. Tucker, R. Grosse, and M. Norouzi. Understanding posterior collapse in generative
latent variable models. 2019.

Y. Ma, D. Tsao, and H.-Y. Shum. On the principles of parsimony and self-consistency for the
emergence of intelligence. Frontiers of Information Technology & Electronic Engineering, 23(9):
1298–1323, 2022.

L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and projection for
dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

M. G. Monera, A. Montesinos-Amilibia, and E. Sanabria-Codesal. The taylor expansion of the
exponential map and geometric applications. Revista de la Real Academia de Ciencias Exactas,
Fisicas y Naturales. Serie A. Matematicas, 108(2):881–906, 2014.

S. Oue. On asymptotics of local principal component analysis. Hitotsubashi journal of commerce
and management, pages 1–11, 1996.

Q. Qu, Y. Zhai, X. Li, Y. Zhang, and Z. Zhu. Geometric analysis of nonconvex optimization
landscapes for overcomplete learning. In International Conference on Learning Representations.

D. J. Rezende and F. Viola. Taming vaes. arXiv preprint arXiv:1810.00597, 2018.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10684–10695, 2022.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

W. F. Schmidt, M. A. Kraaijveld, R. P. Duin, et al. Feed forward neural networks with random
weights. In International conference on pattern recognition, pages 1–1. IEEE Computer Society
Press, 1992.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265. PMLR, 2015.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

G. Takács and D. Tikk. Alternating least squares for personalized ranking. In Proceedings of the
sixth ACM conference on Recommender systems, pages 83–90, 2012.

42

https://www.sciencedirect.com/science/article/pii/S0020025507005658


Representation Learning via Manifold Manipulation

J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319–2323, 2000.

J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th annual meeting of the association for com-
putational linguistics, pages 384–394, 2010.

A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space. Advances in
Neural Information Processing Systems, 34:11287–11302, 2021.

A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

B. Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM Journal on
Optimization, 23(2):1214–1236, 2013.

R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis (gpca). IEEE transactions
on pattern analysis and machine intelligence, 27(12):1945–1959, 2005.

M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk. The multiscale structure of non-
differentiable image manifolds. In Wavelets XI, volume 5914, page 59141B. International Society
for Optics and Photonics, 2005.

J. Wright and Y. Ma. High-dimensional data analysis with low-dimensional models: Principles,
computation, and applications. Cambridge University Press, 2022.

J.-W. Xu, A. R. Paiva, I. Park, and J. C. Principe. A reproducing kernel hilbert space framework
for information-theoretic learning. IEEE Transactions on Signal Processing, 56(12):5891–5902,
2008.

Y. Yu, K. H. R. Chan, C. You, C. Song, and Y. Ma. Learning diverse and discriminative repre-
sentations via the principle of maximal coding rate reduction. Advances in Neural Information
Processing Systems, 33:9422–9434, 2020.

Y. Zhai, H. Mehta, Z. Zhou, and Y. Ma. Understanding l4-based dictionary learning: Interpretation,
stability, and robustness. In International conference on learning representations.

Y. Zhai, Z. Yang, Z. Liao, J. Wright, and Y. Ma. Complete dictionary learning via l 4-norm
maximization over the orthogonal group. The Journal of Machine Learning Research, 21(1):
6622–6689, 2020.

P. Zhang, H. Qiao, and B. Zhang. An improved local tangent space alignment method for manifold
learning. Pattern Recognition Letters, 32(2):181–189, 2011.

Z. Zhang and H. Zha. Nonlinear dimension reduction via local tangent space alignment. In Intel-
ligent Data Engineering and Automated Learning: 4th International Conference, IDEAL 2003,
Hong Kong, China, March 21-23, 2003. Revised Papers 4, pages 477–481. Springer, 2003.

43


