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Abstract

This paper proposes a new framework to study multi-agent interaction in Markov
games: Markov α-potential games. Markov potential games are special cases
of Markov α-potential games, so are two important and practically significant
classes of games: Markov congestion games and perturbed Markov team games.
In this paper, α-potential functions for both games are provided and the gap α is
characterized with respect to game parameters. Two algorithms – the projected
gradient-ascent algorithm and the sequential maximum improvement smoothed
best response dynamics – are introduced for approximating the stationary Nash
equilibrium in Markov α-potential games. The Nash-regret for each algorithm is
shown to scale sub-linearly in time horizon. Our analysis and numerical exper-
iments demonstrates that simple algorithms are capable of finding approximate
equilibrium in Markov α-potential games.

1 Introduction

Markov potential games (MPG). It is a class of Markov game, originated in Macua et. al. [1]
and further generalized by [2] as a framework to study multi-agent interaction in Markov games
beyond zero sum games and common interest games. In this game, the change in utility of any
player who unilaterally deviates from her policy can be evaluated by the change in the value of a
potential function. Consequently, finding the Nash equilibrium of game can be reduced to solving
for the global optimum of the potential function. In fact, MPG is the only class of game besides
the zero-sum and common interest game for which provably convergent multi-agent reinforcement
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learning (MARL) algorithms exist. Since its inception, there is an extensive body of research on
MPG for the approximation and computation of the Nash equilibria [3–10, 1, 11].

Despite the promise and the potential of MPG, there is a lack of prominent applications for this class
of games in the existing literature. One major reason behind this is the difficulty in verifying the
existence or constructing the potential function for the game, which also is the main criticism of MPG
[11]. This is especially true when the game does not satisfy certain restrictive assumptions, such
as the state transition matrix being independent of players’ actions, or all players’ payoff functions
being identical. Furthermore, recent study by [2] has shown that even for games with each stage
being a static potential game and with a simple state transition structure may not be MPG.

Markov α-potential games. In this paper, we propose a new framework to study multi-agent
interaction in Markov games. We introduce a less restrictive and new notion of Markov games:
Markov α-potential games with α-potential function Φ, where the difference between the change
of any player’s long-run utility induced by a unilateral policy deviation and the change of the α-
potential function value is bounded by some positive number α. MPGs are special classes of Markov
α-potential games, with α = 0.

We provide a detailed analysis of two important classes of Markov α-potential games that hold
practical significance. The first is the Markov congestion game (MCG), which is popular in dynamic
traffic routing, robotics systems, ride-hailing markets, and cloud computing. It extends the well-
known static congestion games studied in [12] to a dynamic setting. The second is the perturbed
Markov team game (PMTG) whose special case – Markov team game – has been extensively studied
in the MARL community [13–17]. For both classes of game, we explicitly characterize their α and
α-potential functions in Propositions 3.3 and 3.4. We then show that any stationary Nash equilibrium
of the MPG is a α-stationary Nash equilibrium of the Markov α-potential game (Proposition 3.7).

Additionally, we introduce and analyze two algorithms for computing an approximate stationary
Nash equilibrium in Markov α-potential games, along with their corresponding Nash-regret analyses.
The first is the projected gradient-ascent algorithm, proposed and studied in [7] (Algorithm 1). The
second algorithm, termed the sequential maximum improvement smoothed best response, is a new
algorithm presented in this work (Algorithm 2). In the latter algorithm, players employ a smoothed
sequential best response dynamics, where at each stage a player with the maximum improvement
in their Q-function value is selected to update their policy as the smoothed best response. The
Nash-regret for both of these algorithms is analyzed, and the dependence of the regret on the gap
parameter α is presented in Theorems 4.1 and 4.2, respectively. A crucial technical step for the
latter algorithm’s Nash-regret analysis involves studying the path length of policy updates, which
is bounded in terms of the potential function’s change, in addition to the error arising from the gap
between the Markov α-potential game and the MPG. It is worth noting that this new algorithm and its
Nash-regret analysis can also be applied to compute equilibria in MPG. To the best of our knowledge,
this is the first regret analysis of smoothed best response dynamics, even for MPGs. Lastly, we
conduct a numerical study to illustrate and compare the convergence speed of the two proposed
algorithms for the MCG and PMTG.

Related works. The closest related work to ours is on static near-potential games, as introduced in
[18, 19], which is a relaxation of (static) potential games. Our work extends this static framework to
a Markov setting. Furthermore, previous studies on equilibrium approximation algorithms for static
near-potential games [18, 20–22] do not extend to Markov games. Furthermore, it is worth noting
that the MCGs studied in our work are closely related to Markov state-wise potential games, where
each state corresponds to a static potential game. However, existing research on Markov state-wise
potential games is limited, with only a few exceptions such as [10, 11], and cannot be directly applied
to the study of MCGs. In [10], the players are assumed to be myopic, whereas our work considers
non-myopic players. On the other hand, [11] propose certain conditions for a Markov state-wise
potential game to be a MPG, but these conditions impose restrictions such as action independence
or state independence in the state transition matrix, as well as separability of players’ rewards in
state and action. In our analysis of MCGs, we do not impose any such restrictions on either the
state transition or the reward structure. Additionally, a recent work [23] introduces an approximation
algorithm for MCGs and investigates Nash-regret. However, their approach specifically considers
Markov games with a finite time horizon and independent state transitions for each facility. This is
fundamentally different from the infinite time horizon game examined in our paper, where we do not
make any assumptions regarding the structure of state evolution. Furthermore, the results in [23] are
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tailored exclusively for congestion games, whereas our work focuses on a much broader framework
of Markov α-potential games. Some prior works have also focused on Markov team game in the
MARL literature, as evidenced by works such as [16, 17], among others. However, the prevailing
paradigm in prior research in this direction assumes that players share the same utility function. Our
work on PMTGs naturally subsume Markov team games while also allowing flexibility to incorporate
additional heterogeneity in the reward structure of players.

2 Setup

Consider a Markov game G = ⟨I, S, (Ai)i∈I , (ui)i∈I , P, δ⟩, where I is a finite set of agents, S
is a finite set of states s; Ai is a finite set of actions with generic member ai for each player
i ∈ I , and a = (ai)i∈I ∈ A = ×i∈IAi is the action profile of all players; ui : S × A → R
such that ui(s, a) is the one-stage payoff for player i with state s ∈ S and action profile a ∈ A;
P = (P (s′|s, a))s,s′∈S,a∈A is the probability transition matrix, where P (s′|s, a) is the one-step
probability that the state changes from s to s′ with action profile a; and δ ∈ (0, 1) is the discount factor.
We consider a stationary Markov policy πi = (πi(s, ai))s∈S,ai∈Ai ∈ Πi = ∆(Ai)

|S|, where πi(s, ai)
is the probability that player i chooses action ai given state s. Let πi(s) = (πi(s, ai))ai∈Ai for each
i ∈ I and each s ∈ S. Additionally, denote the joint policy profile as π = (πi)i∈I ∈ Π = ×i∈IΠi,
and the joint policy of all players except player i as π−i = (πj)j∈I\{i} ∈ Π−i = ×j∈I\{i}Πj . Let
Ā = maxi∈I |Ai| and C = maxi∈I,s∈S,a∈A ui(s, a).

The game proceeds in discrete-time step indexed by k = {0, 1, ...}. At k = 0, the initial state s0

is sampled from a probability distribution µ. At every step k, given the state sk, each player i’s
action aki ∈ Ai is realized from the policy πi(s

k), and the realized action profile is ak = (aki )i∈I .
The state of the next step sk+1 is realized according to the probability transition matrix P (·|sk, ak)
based on the current state sk and action profile ak. Given an initial state distribution µ, and a
stationary policy profile π, the expected total discounted payoff for each player i ∈ I is given by
Vi(µ, π) = E

[∑∞
k=0 δ

kui(s
k, ak)

]
where s0 ∼ µ, ak ∼ π(sk), and sk ∼ P (·|sk−1, ak−1). For the

rest of the article, with slight abuse of notation, Vi(s, π) is used to denote the expected total payoff
for player i when the initial state is a fixed state s ∈ S, and Pπ(·|·) denotes the transition probability
given a policy π, i.e., P (πi,π−i)(s′|s) =

∑
a−i∈A−i

∑
ai∈Ai

π−i(s, a−i)πi(s, ai)P (s′|s, a). Given a
policy π ∈ Π and initial state distribution µ ∈ ∆(S), the discounted state visitation distribution is
defined as dπµ(s) = (1− δ)

∑∞
k=0 δ

kP (sk = s|s0 ∼ µ).

3 Markov α-potential games

This section introduces the notion of Markov α-potential games with a few examples, and presents
the properties of stationary Nash equilibrium in this game framework. To begin with, recall the
original definition of Markov potential games proposed by [2].
Definition 3.1 (Markov potential games (MPG) [2]). A Markov game G is a Markov potential game
if there exists a state-dependent potential function Φ : S ×Π → R such that for every s ∈ S,

Φ(s, π′
i, π−i)− Φ(s, πi, π−i) = Vi(s, π

′
i, π−i)− Vi(s, πi, π−i), (1)

for any i ∈ I , any πi, π
′
i ∈ Πi, and any π−i ∈ Π−i.

Intuitively, a game is a MPG if there exists a potential function such that when a player unilaterally
deviates from her policy, the change of the potential function equals to the change of all players’ total
expected payoff. As pointed earlier, a key shortcoming of MPG framework is the difficulty ([11])
to check the existence or to compute Φ, thus limiting the scope of its real-world applications. Let
us now relax the equality (1) so that the difference between the change of any player’s utility from
unilateral deviation and the change of the potential function value is bounded by some α > 0, hence
the notion of Markov α-potential games.
Definition 3.2 (Markov α-potential game). A Markov game G is a Markov α-potential game for
some α > 0, if there exists a state-dependent potential function Φ : S ×Π → R such that for every
s ∈ S,

| (Φ (s, π′
i, π−i)− Φ (s, πi, π−i))− (Vi (s, π

′
i, π−i)− Vi (s, πi, π−i)) | ≤ α, (2)

for any i ∈ I , any πi, π
′
i ∈ Πi, and any π−i ∈ Π−i. We refer Φ as a α-potential function.
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3.1 Examples of Markov α-potential game

Markov potential game. It is clearly a Markov α-potential game with α = 0. Furthermore, there
exist two important classes of games that are widely recognized as not being Markov potential games.
We will demonstrate that these classes of games can be categorized as Markov α-potential games,
with explicit construction of their respective α-potential functions.

Markov congestion game. It is a natural extension of the static congestion game introduced by
[24], where a finite number of players use a set of resources, and each player’s reward depends
on their aggregated usage of these resources. Each stage of a Markov congestion game, denoted
as Gmcg, is a static congestion game with a state-dependent reward function of each resource, and
the state transition depends on players’ aggregated usage of each resource. Specifically, denote the
finite set of resources in the one-stage congestion game as E. The action ai ∈ Ai ⊆ 2E of each
player i ∈ I is the set of resources chosen by player i, and the action set Ai is the set of all resource
combinations that are feasible for player i. The total usage demand of all players is D > 0, and
each player’s demand is D/|I|, for sake of simplicity and without loss of generality. Given an action
profile a = (ai)i∈I , the aggregated usage demand of each resource e ∈ E is given by

we(a) =
∑
i∈I

1(e ∈ ai) ·D/|I|. (3)

In each state s, the reward for using resource e, denoted as ce(s, we(a)), depends on the aggregated
usage demand. Thus, the one-stage payoff for player i ∈ I in state s ∈ S given the joint action profile
a ∈ A is ui(s, a) =

∑
e∈ai

ce(s, we(a)). The state transition probability, denoted as P (s′|s, w),
depends on the aggregate usage vector w = (we)e∈E induced by players’ action profile as in (3). The
next proposition shows that Gmcg is a Markov α-potential game under a suitable Lipchtiz conditions
for the state transition probability.
Proposition 3.3. If there exists some ζ > 0 such that for all s, s′ ∈ S it holds that |P (s′|s, w) −
P (s′|s, w′)| ≤ ζ∥w − w′∥1. Then the congestion game Gmcg is a Markov α-potential game with
α =

2ζ|S|Dδ|E|maxs,π Φ(s,π)
|I|(1−δ) , and the corresponding α-potential function Φ as

Φ(µ, π) = E
[ ∞∑
k=0

δk
(∑

e∈E

wk
e |I|/D∑
j=1

ce
(
sk,

jD

|I|
))]

, (4)

s0 ∼ µ, the aggregate usage vector wk is induced by ak ∼ π(sk), and sk ∼ P (·|sk−1, wk−1).

Note that the Markov potential function as in (4) is the expected value of the summation of each
stage’s static potential function. There are two key steps to derive it: first, each static congestion game

at stage k is a potential game with a potential function
∑

e∈E

∑wk
e |I|/D

j=1 ce
(
sk, jD/|I|

)
; second, we

establish in Lemma 7.1, that the change of state transition probability induced by a single player’s
policy devation decreases as the number of players increases, thus the gap between Gmcg and the
MPG decreases as the total demand is dispersed across more players. Furthermore, α scales linearly
with respect to the Lipchitz constant ζ, the size of state space |S|, resource set |E|, and decreases as
|I| increases. As |I| → ∞, the Gmcg becomes a MPG.

Perturbed Markov team game. This is a a Markov game denoted as Gpmtg =
⟨S, (Ai)i∈I , (ui)i∈I , P, δ⟩, where the payoff function for each player i ∈ I can be decomposed
as ui(s, a) = r(s, a) + ξi(s, a), where r(s, a) represents the common interest for the team, and
ξi(s, a) the perturbed payoff component which represents each player i’s heterogeneous preference.
In this game, the perturbed payoff component is assumed to satisfy ∥ξi(·)∥∞ ≤ κ, where κ is a small
positive number measuring each individual player’s deviation from the team’s common interest. As
κ → 0, Gpmtg becomes an Markov team game, which is a MPG [2]. The next proposition shows that a
Gpmtg is a Markov α-potential game, and the gap α decreases in the magnitude of payoff perturbation
κ. Moreover, the potential function is the total long-horizon expected team payoff.
Proposition 3.4. A perturbed Markov team game Gpmtg is a Markov α-potential game with α =

2κ
(1−δ)2 , and the corresponding α-potential function Φ(µ, π) = E

[∑∞
k=0 δ

kr(sk, ak)
]
, where s0 ∼ µ,

ak ∼ π(sk), and sk ∼ P (·|sk−1, wk−1).
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3.2 Properties of Markov α-potential game

Now we will study the stationary Nash Equilibrium of Markov α-potential games. First, recall

Definition 3.5 (Stationary Nash equilibrium). A policy profile π∗ is a stationary Nash equilibrium of
G if for any i ∈ I , any πi ∈ Πi, and any µ ∈ ∆(S), Vi(µ, π

∗
i , π

∗
−i) ≥ Vi(µ, πi, π

∗
−i).

That is, a stationary policy profile is a stationary Nash equilibrium of the game G if each player i’s
policy maximizes her expected total payoff given her opponents’ equilibrium policy. A stationary
Nash equilibrium always exists in any Markov game with finite states and actions [25]. To analyze
the Markov α-potential game, we will also need

Definition 3.6 (ϵ-Stationary Nash equilibrium). For any ϵ ≥ 0, a policy profile π∗ is an ϵ-stationary
Nash equilibrium of G if for any i ∈ I , any πi ∈ Πi, and any µ ∈ ∆(S), Vi(µ, π

∗
i , π

∗
−i) ≥

Vi(µ, πi, π
∗
−i)− ϵ.

Clearly, as ϵ → 0, an ϵ-stationary Nash equilibrium becomes a stationary Nash equilibrium. Now we
can establish the equilibrium properties of Markov α-potential game.

Proposition 3.7. Consider a Markov α-potential game G with an α-potential function Φ(µ, π). Any
π∗ ∈ Π such that π∗ ∈ argmaxπ∈Π Φ(s, π) for every s ∈ S is an α-stationary Nash equilibrium
policy. Moreover, any ϵ-stationary Nash equilibrium policy in the MPG associated with Φ yields an
(ϵ+ α)-stationary Nash equilibrium for the Markov α-potential game.

Proposition 3.7 shows that the maximizer of any α-potential function is an approximate stationary
Nash equilibrium in the Markov α-potential game, and the equilibrium approximation gap ϵ depends
on the gap of the potential function α. This indicates that when the α-potential function is known,
any algorithm that computes the maximizer of the potential function can be used to compute an
approximate stationary Nash equilibrium of the Markov α-potential game.

4 Approximation algorithms and Nash-regret analysis

In this section, we present two algorithms for computing an approximate stationary equilibrium
in Markov α-potential games. First, we present projected gradient-ascent algorithm, originally
proposed in [7] for MPGs. Next, we propose a new algorithm – Sequential Maximum Improvement
Smoothed Best Response algorithm. We evaluate the convergence rate of both algorithms in terms
of Nash-regret. Analysis in this section demonstrates that simple algorithms are capable of finding
approximate equilibrium in Markov α-potential games.

4.1 Approximation algorithms

First recall some notations: Given a joint policy π ∈ Π, we define the Q-function Qi(s, ai;π) for a
player i ∈ I as the infinite-horizon discounted utility of player i when choosing ai in the first stage,
and choosing policy π starting from the second stage given that the opponents choose π−i in all
stages, i.e. Qi(s, ai;π) =

∑
a−i∈A−i

π−i(s, a−i)
(
ui(s, ai, a−i) + δ

∑
s′∈S P (s′|s, a)Vi(s

′, π)
)
.

We denote the vector of Q-functions for all ai ∈ Ai as Qi(s;π) = (Qi(s, ai;π))ai∈Ai
. More-

over, following [3], we introduce the smoothed Markov game G̃, where the one-stage ex-
pected payoff of each player i with state s and policy π(s) is the original one-stage payoff
Ea∼π(s)[ui(s, a)] along with the entropy regularizer νi(s, πi) =

∑
ai∈Ai

πi(s, ai) log(πi(s, ai)).

That is, ũi(s, π) = Ea∼π(s)[ui(s, a)] − τνi(s, πi), where τ > 0. Under the smoothed one-
stage payoffs, the expected total discounted infinite horizon payoff of player i is given by
Ṽi(s, π) = E

[∑∞
k=0 δ

k
(
ui(s

k, ak)− τνi(s
k, πi)

)
|s0 = s

]
, the smoothed Q-function is given

by Q̃i(s, ai;π) =
∑

a−i∈A−i
π−i(s, a−i)(ũi(s, ai, πi) + δ

∑
s′∈S P (s′|s, a)Ṽi(s

′, π)), and the
smoothed potential function is given by Φ̃(s, π) = Φ(s, π)− τE[

∑
i∈I

∑∞
k=0 δ

kνi(s
k, πi)|s0 = s].

Projected gradient-ascent (Algorithm 1). The algorithm iterates for T steps. In every step
t ∈ [T − 1], each player i ∈ I updates her policy following a projected gradient-ascent algorithm as
in (5). This algorithm was recently proposed and analyzed in [7] for MPGs.
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Algorithm 1: Projected Gradient-Ascent Algorithm

Input: Step size η, for every i ∈ I, ai ∈ Ai, s ∈ S set π(0)
i (s, ai) = 1/|Ai|.

for t = 0, 1, 2, ..., T − 1 do
For every i ∈ I, s ∈ S update the policies as follows

π
(t+1)
i (s) = PΠi

(
π
(t)
i (s) + ηQ

(t)
i (s)

)
, (5)

where Q
(t)
i (s) = Qi(s, π

(t)) and PΠi
denotes the orthogonal projection on Πi.

end

Sequential maximum improvement smoothed best response (Algorithm 2). The algorithm
iterates for T time steps. In every time step t ∈ [T − 1], based on the current policy profile π(t),
the smoothed Q-function can be computed as Q̃(t)

i (s, πi) =
∑

ai∈Ai
πi(s, ai)Q̃i(s, ai;π

(t)) for all
s ∈ S and all i ∈ I . Then, each agent compute their one-stage best response strategy that maximizes
the smoothed Q-function value: for every i ∈ I, ai ∈ Ai, s ∈ S

BR
(t)
i (s, ai) =

(
argmax
π′
i∈Πi

(
Q̃

(t)
i (s, π′

i)− τνi(s, π
′
i)
))

ai

=
exp(Q̃

(t)
i (s, ai)/τ)∑

a′
i∈Ai

exp(Q̃
(t)
i (s, a′i)/τ)

,

and their maximum improvement of smoothed Q-function value in comparison to current policy:

∆
(t)
i (s) = max

π′
i

(
Q̃

(t)
i (s, π′

i)− τνi(s, π
′
i)
)
−
(
Q̃

(t)
i (s, π

(t)
i )− τνi(s, π

(t)
i )
)
, ∀s ∈ S. (6)

If the maximum improvement ∆(t)
i (s) ≤ 0 for all i ∈ I and all s ∈ S, then the algorithm terminates

and returns the current policy profile π(t). Otherwise, the algorithm chooses a tuple of player and
state (̄i(t), s̄(t)) associated with the maximum improvement value ∆

(t)
i (s), and updates the policy of

player ī(t) in state s̄(t) with the one-stage best response strategy.2 The policies of all other players
and other states remain unchanged.

Algorithm 2: Sequential Maximum Improvement Smoothed Best Response

Input: Smoothness parameter τ , for every i ∈ I, ai ∈ Ai, s ∈ S set π(0)
i (s, ai) = 1/|Ai|.

for t = 0, 1, 2, ..., T − 1 do
Compute the maximum improvement of smoothed Q-function {∆(t)

i (s)}i∈I,s∈S as in (6).
if ∆

(t)
i (s) ≤ 0 for all i ∈ I and all s ∈ S then

return π(t)

else
Choose the tuple (̄i(t), s̄(t)) with the maximum improvement

(̄i(t), s̄(t)) ∈ argmax
i,s

∆
(t)
i (s), (7)

and update policy

π
(t+1)

ī(t)
(s̄(t), ai) = BR

(t)

ī(t)
(s̄(t), ai) ∀ ai ∈ Aī(t) (8)

π
(t+1)
i (s) = π

(t)
i (s), ∀(i, s) ̸= (̄i(t), s̄(t)).

end
end

4.2 Nash-regret Analysis

In this section, we present Nash-regret analysis of Algorithm 1-2 to study global non-asymptotic
convergence property. Nash-regret of an algorithm is defined to be the average deviation of iterates of

2Any tie breaking rule can be used here if the maximum improvement is achieved by more than one tuple.
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the algorithm from Nash equilibrium. Formally,

Nash-regret (T ) :=
1

T

T∑
t=1

max
i∈I

R
(t)
i , where R

(t)
i := max

π′
i∈Πi

Vi(µ, π
′
i, π

(t)
−i)− Vi(µ, π

(t)).

Note that Nash-regret is always non-negative; and if Nash-regret(T ) ≤ ϵ for some ϵ > 0 then there
exists t∗ such that π(t∗) is an ϵ-Nash equilibrium.

Nash-regret analysis for Algorithm 1.
Theorem 4.1. Consider a Markov α-potential game with a α-potential function Φ and initial state

distribution µ. Then the policy updates generated from Algorithm 1 with η =
(1−δ)2.5

√
CΦ+|I|2αT

2|I||A|
√
T

ensures that

Nash-regret(T ) ≤ O

(√
κ̃µ|A||I|

(1− δ)
9
4

(
CΦ

T
+ |I|2α

) 1
4

)
.

where κ̃µ := minν∈∆(S) maxπ∈Π ∥dπ
µ

ν ∥∞ < +∞ is the minmax distribution mismatch coefficient
and CΦ > 0 is a constant satisfying |Φ(µ, π)− Φ(µ, π′)| ≤ CΦ for any π, π′, µ.

Proof sketch. First, from [7, Proof of Theorem 1], we note that for any ν ∈ ∆(S) the Nash-regret can
be bounded as the path length of policy updates of players

Nash-regret(T ) ≤
3
√
κ̃µ

η
√
T (1− δ)

3
2

×

√√√√ T∑
t=1

∑
i∈I,s∈S

d
π
(t+1)
i ,π

(t)
−i(s)

ν

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥2
2
, (9)

Next, we generalize [7, Lemma 3] from MPG to Markov α-potential game by appropriately ac-
counting for difference between unilateral deviations of players and potential function via (2) and
obtain

1

2η(1− δ)

∑
s∈S
i∈I

d
π
(t+1)
i ,π

(t)
−i

µ (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥2
2
≤ Φ(µ, π(t+1))− Φ(µ, π(t))

+
4η2|A|2|I|2

(1− δ)5
+ |I|2α.

By summing over all t and combining with (9), we obtain

Nash-regret(T ) ≤
3
√
κ̃µ

(1− δ)
3
2

×

√
2(1− δ)

ηT
(CΦ + 2|I|2αT ) + 8η|A|2|I|2

(1− δ)4

The claim of Theorem 4.1 follows by choosing the optimal stepsize η that minimizes the upper bound.

Nash regret analysis for Algorithm 2.
Theorem 4.2. Consider a Markov α-potential game with a α-potential function Φ and initial state
distribution µ such that mins∈S µ(s) = µ̄ > 0. Then the policy updates generated from Algorithm 2
with parameter τ

τ =

log(Ā) +

√
2 log(Ā)
1−δ√

α+ CΦ

T

+
log(Ā)(1− δ)

√
µ̄

4C
√
Ā
√
α+ CΦ

T

−1

satisfies that

Nash-Regret(T ) ≤ O

(√
|I|Ā log(Ā)

(1− δ)5/2
√
µ̄

(
max{

√
α, (α)1/4}+

(
CΦ̃

T

)1/4
))

where CΦ > 0 is a constant satisfying |Φ(µ, π)− Φ(µ, π′)| ≤ CΦ for any π, π′, µ.
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Proof sketch. First, we bound the instantaneous regret for any player i ∈ I at time t ∈ [T ] as follows:

R
(t)
i =

(a)

1

1− δ

(∑
s

d
π†
i ,π

(t)
−i

µ (s)∆
(t)
i (s) + 2τ log(|A|)

)
≤
(b)

1

1− δ

(
∆

(t)

ī(t)
(s̄(t)) + 2τ log(|A|)

)
,

where (a) is due to multi-agent performance difference lemma for smoothed game (Lemma 11(b)

in [3]), and (b) is due to the fact that
∑

s d
π†
i ,π

(t)
−i

µ (s) = 1 and ∆
(t)
i (s) ≤ ∆

(t)

ī(t)
(s̄(t)) as in (7). We

emphasize that (7) is a consequence of the fact that in each stage, our Algorithm 2 selects player ī(t)

and state s̄(t) for policy update such that the (̄i(t), s̄(t)) has the maximum one-stage improvement.
Thus,

Nash-regret(T ) =
1

T

∑
t∈[T ]

max
i∈I

R
(t)
i ≤ 1

T (1− δ)

∑
t∈[T ]

(
∆

(t)

ī(t)
(s̄(t)) + 2τ log(|A|)

)
. (10)

Next, we prove the following technical lemma:

Lemma 4.3. (a) ∆
(t)

ī(t)
(s̄(t)) ≤ 4C

√
|A| 1+τ log(|A|)

(1−δ)

∥∥∥π(t+1)

īt
(s̄t)− π

(t)

īt
(s̄t)

∥∥∥
2

∀ t ∈ [T ].

(b)
∑T−1

t=1 ∥π(t+1)

īt
(s̄t)− π

(t)

īt
(s̄t)∥22 ≤ 2

τµ̄

(
Φ̃(µ, π(T ))− Φ̃(µ, π(0)) + αT

)
.

In Lemma 4.3, (a) builds on the Cauchy-Schwartz inequality and the upper bound on the total
discounted payoff of the smoothed game. Additionally, (b) involves several technical steps that
exploit the definition of Markov α-potential game, the performance difference lemma of the smoothed
game, and the fact that Algorithm 2 is ensures that only one player is allowed to update its policy that
too in one state. Moreover, by combining (10) and Lemma 4.3, we obtain

Nash-Regret(T ) ≤
√
|A|1 + τ log(|A|)√

T (1− δ)2

√√√√T−1∑
t=1

∥∥∥π(t+1)

īt
(s̄t)− π

(t)

īt
(s̄t)

∥∥∥2
2
+

2τ log(|A|)
(1− δ)

, (11a)

≤
√
|A|1 + τ log(|A|)

(1− δ)2
√
τ µ̄

(√
ϵ+

CΦ

T
+ |I|1/2

√
τ log(|A|)

T

)
+

2τ log(|A|)
(1− δ)

(11b)

where (11a) builds on Lemma 4.3 (a) and the Cauchy-Schwartz inequality, and (11b) builds on
Lemma 4.3 (b) and the fact that |

(
Φ̃(µ, π)− Φ̃(µ, π′)

)
− (Φ(µ, π)− Φ(µ, π′)) | ≤ 2τ |I| log(|A|)

1−δ .
By choosing the optimal τ the minimizes the right-hand-side of (11b), we obtain the regret bound in
Theorem 4.2.
Remark 4.4. As α → 0, Theorem 4.2 provides the Nash regret bound of Algorithm 2 in MPG. This is
the first analysis of the sequential best response algorithm in MPG, and thus of independent interest.

Comparison of regret bounds. In Table 1, we summarize the dependency of Nash regret of
each algorithm with respect to the number of stages T , the number of players |I|, action set size
|A|, discount factor δ and gap parameter α. We can see that both algorithms have the same regret
dependency on T . Algorithm 1 has better regret dependency on the size of action profiles, α, and the
discount factor of the game. Other other hand, Algorithm 2 algorithm has better regret dependency
on the size of players.

Algorithm 1 O( 1
T 1/4 ) O(|I|) O(

√
|A|) O

(
1

(1−δ)9/4

)
O(α1/4)

Algorithm 2 O( 1
T 1/4 ) O(

√
|I|) O(

√
|A| log(|A|)) O

(
1

(1−δ)5/2

)
O(max{

√
α, α1/4})

Table 1: Comparison of Nash regret of Algorithms 1 and 2.

5 Numerical experiments

This section studies the empirical performance of Algorithm 1 and Algorithm 2 for Markov congestion
game (MCG) and perturbed Markov team game (PMTG) discussed in Section 3. Both algorithms
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(a) (b) (c)

Figure 1: Markov congestion game: (a) Distribution of players taking four actions in representative
states. (b) and (c) are mean L1-accuracy with shaded region of one standard deviation over all runs:
(b) using policy gradient with stepsize η = 0.01; (c) using sequential best response with regularizer
τt = 0.999t · 5

will be shown to converge in both class of games, although Algorithm 1 converges faster for PMTG
while Algorithm 2 converges faster for MCG. Below are the details for the setup of the experiments
and results.

MCG: We consider MCG with |I| = 8 players, where there are |E| = 4 facilities that each player
can select from, i.e, |Ai| = 4. For each facility j, there is an associated state sj : normal (sj = 0)
or congested (sj = 1), and the state of the game is s = (sj)j∈E . The reward for each player being
at facility k is equal to a predefined weight wsafe

k times the number of players at k = A,B,C,D.
The weights are wsafe

A = 1 < wsafe
B = 2 < wsafe

C = 4 < wsafe
D = 6, i.e., facility D is most preferable

by all players. However, if more than |I|/2 players find themselves in the same facility, then this
facility transits to the congested state, where the reward for each player is reduced by a large constant
c = −100. To return to thenormal state, the facility should contain no more than |I|/4 players.

PMTG: We consider an experiment with |I| = 16 players, and there are |Ai| = 2 actions, approve
(ai = 1) or disapprove (ai = 0), where each player can select; there are S = 2 states: high (s = 1)

and low (s = 0) levels of excitement for the project. A project will be conducted if at least |I|
2 player

approves. If the project is not conducted, each player’s reward is 0; otherwise, each player has the
common reward equal to 1 plus her individual reward. The individual reward of player i equals to
the sum of wi1{ai=s} (not disrupting the atmosphere) and −w′

iai (the cost of approving the project),
where wi = 10 · (|I|+ 1− i)/|I| and w′

i = (i+ 1)/|I| are predefined positive weights based on the
index of players. The state transits from high excitement to low if there are less than |I|/4 players
approving the current project; the state moves from low excitement to high if there are at least |I|/2
players approving the current project. For both games, we perform episodic updates with 20 steps and
a discount factor δ = 0.99. We estimate the Q-functions and the value functions using the average
of mini-batches of size 10. And for Algorithm 2, we apply a discounting regularizer τt = δtτ · τ
to accelerate convergence. Figure 1a, 1b and 2a, 2b show that the players learn the expected Nash
profile in selected states in all runs in both MCG and PMTG. Figure 1c and 2c depict the L1-accuracy
in the policy space at each iteration which is defined as the average distance between the current
policy and the final policy of all 8 players, i.e., L1-accuracy = (1/|I|)

∑
i∈I

∥∥πi − πfinal
i

∥∥
1
.

6 Conclusion

We propose a new framework to study multi-agent interaction in Markov games: Markov α-potential
games. This framework is demonstrated to encompass two practically relevant classes of games with
diverse applications, while ensuring efficient computation of approximate equilibria through simple
algorithms. Therefore, Markov α-potential games emerge as a promising game framework to be
explored in the field of MARL.
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(a) (b) (c)

Figure 2: Perturbed Markov team game: (a) and (b) are distributions of players taking actions
in all states: (a) using policy gradient with stepsize η = 0.05; (b) using sequential best response
with regularizer τt = 0.9975t · 0.05. (c) is mean L1-accuracy with shaded region of one standard
deviation over all runs.
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7 Proof of results in Section 3

Before presenting the proofs in this section we define some notation which simplify the exposition.
Given a policy (πi, π−i) ∈ Π, and state s, s′ ∈ S we define

Pπ(s′|s) =
∑

a−i∈A−i

π−i(a−i|s)
∑

ai∈Ai

πi(ai|s)P (s′|s, a) (12)

7.1 Proof of Proposition 3.3

Before presenting the proof of Proposition 3.3 we present a crucial lemma which is central to the
proof.

Lemma 7.1. If there exists some ζ > 0 such that for all s, s′ ∈ S it holds that |P (s′|s, w) −
P (s′|s, w′)| ≤ ζ∥w − w′∥1 then for any i ∈ I, πi, π

′
i ∈ Πi, π−i ∈ Π−i it holds that

∥Pπi,π−i − Pπ′
i,π−i∥∞ ≤ 2ζ|S|Dmaxai∈Ai

|ai|
|I|

(13)

Proof. For any i ∈ I, πi, π
′
i ∈ Πi, π−i ∈ Π−i, s, s′ ∈ S, we observe that

Pπi,π−i(s′|s)− Pπ′
i,π−i(s′|s)

(a)
=

∑
a−i∈A−i

π−i(s, a−i)
∑

ai∈Ai

πi(s, ai)P (s′|s, a)−
∑

a−i∈A−i

π−i(s, a−i)
∑

ai∈Ai

π′
i(s, ai)P (s′|s, a)

(b)
=

∑
a−i∈A−i

π−i(s, a−i)

( ∑
ai∈Ai

πi(s, ai)P (s′|s, w(a))−
∑

ai∈Ai

π′
i(s, ai)P (s′|s, w(a))

)

≤
∑

a−i∈A−i

π−i(s, a−i)

(
max
ai

P (s′|s, w(ai, a−i))−min
ai

P (s′|s, w(ai, a−i))

)
=

∑
a−i∈A−i

π−i(s, a−i) (P (s′|s, w(āi, a−i))− P (s′|s, w(ai, a−i))) , (14)

where āi ∈ argmaxai
P (s′|s, w(ai, a−i)) and ai ∈ argminai

P (s′|s, w(ai, a−i)). In the above set
of equations, (a) is due to (12), (b) is due to the structure of congestion games considered in Section
3 where the transition matrix only depends action through aggregate usage vector w.

Using (14), we observe that for any s ∈ S∑
s′∈S

|Pπi,π−i(s′|s)− Pπ′
i,π−i(s′|s)|

(a)

≤
∑
s′∈S

∑
a−i∈A−i

π−i(s, a−i)| (P (s′|s, w(āi, a−i))− P (s′|s, w(ai, a−i))) |

=
∑

a−i∈A−i

π−i(s, a−i)
∑
s′∈S

| (P (s′|s, w(āi, a−i))− P (s′|s, w(ai, a−i))) |

(b)

≤ ζ|S|
∑

a−i∈A−i

π−i(s, a−i)∥w(āi, a−i)− w(ai, a−i)∥1

= ζ|S|
∑

a−i∈A−i

π−i(s, a−i)
∑
e∈E

|we(āi, a−i)− we(ai, a−i)|

(c)
= ζ|S|D

|I|
∑

a−i∈A−i

π−i(s, a−i)
∑
e∈E

|1(e ∈ āi)− 1(e ∈ ai)|

=
2ζ|S|Dmaxai∈Ai |ai|

|I|
,
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where (a) is due to (14) and triangle inequality, (b) is due to the Lipschitz property of transition
assumed in statement of Lemma 7.1 and (c) is due to the definition of aggregate usage vector in (3).
This concludes the proof of the claim.

Proof of Proposition 3.3. Recall that for any s ∈ S, the stage game is a potential game with potential
function φ(s, a) =

∑
e∈E

∑we(a)|I|/D
j=1 ce (s, jD/|I|). That is, for any s ∈ S, i ∈ I, ai, a

′
i ∈

Ai, a−i ∈ A−i it holds that
φ(s, ai, a−i)− φ(s, a′i, a−i) = ui(s, ai, a−i)− ui(s, a

′
i, a−i). (15)

Under this notation we can equivalently write (4) as

Φ(s, π) = E
[ ∞∑
k=0

δkφ(sk, ak)
∣∣∣s0 = s

]
= φ(s, π) + δ

∑
s′∈S

P (s′|s, π)Φ(s′, π) (16)

For any πi, π
′
i ∈ Πi, π−i ∈ Π−i, using (16), we can write the difference of potential function at two

policies π = (πi, π−i), π
′ = (π′

i, π−i) as

Φ(s, π)− Φ(s, π′) = φ(s, π)− φ(s, π′) + δ
∑
s′∈S

(P (s′|s, π)Φ(s′, π)− P (s′|s, π′)Φ(s′, π′))

(17)

Additionally, recall that the value function of player i ∈ I with policy π ∈ Π starting from state
s ∈ S is given by

Vi(s, π) = ui(s, π) + δ
∑
s′∈S

P (s′|s, π)Vi(s
′, π) (18)

The difference in value function of player i at two policies is given by

Vi(s, π)− Vi(s, π
′) = ui(s, π)− ui(s, π

′) + δ
∑
s′∈S

P (s′|s, π)Vi(s
′, π)− P (s′|s, π′)Vi(s

′, π′)

(19)

Subtracting (17) from (19) we obtain
(Vi(s, π)− Vi(s, π

′))− (Φ(s, π)− Φ(s, π′))

= (ui(s, π)− ui(s, π
′))− (φ(s, π)− φ(s, π′))

+ δ
∑
s′∈S

P (s′|s, π) (Vi(s
′, π)− Φ(s′, π))−

∑
s′∈S

P (s′|s, π′) (Vi(s
′, π′)− Φ(s′, π′))

(a)
= δ

∑
s′∈S

P (s′|s, π) (Vi(s
′, π)− Φ(s′, π))−

∑
s′∈S

P (s′|s, π′) (Vi(s
′, π′)− Φ(s′, π′))

(b)
= δ

∑
s′∈S

P (s′|s, π) (Vi(s
′, π)− Vi(s

′, π′) + Φ(s′, π′)− Φ(s′, π))

−
∑
s′∈S

(P (s′|s, π′)− P (s′|s, π)) (Vi(s
′, π′)− Φ(s′, π′)) ,

where (a) is due to (15), (b) is by adding and subtracting the term∑
s′∈S P (s′|s, π) (Vi(s

′, π′)− Φ(s′, π′)) .

Thus it follows
max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

≤ δmax
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

+ δmax
s∈S

∣∣∣∣∣∑
s′∈S

((P (s′|s, π)− P (s′|s, π′)) (Φ(s′, π)− Vi(s
′, π)))

∣∣∣∣∣
≤ δmax

s∈S
|Vi(s, π)− Vi(s, π

′)− (Φ(s, π)− Φ(s, π′)) |

+ δmax
s′∈S

|Φ(s′, π)− Vi(s
′, π)|max

s∈S

∑
s′∈S

|P (s′|s, π)− P (s′|s, π′)|
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Rearranging terms leads to

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

≤ δ

1− δ
max
s′∈S

|Φ(s′, π)− Vi(s
′, π)|max

s∈S

∑
s′∈S

|P (s′|s, π)− P (s′|s, π′)|

=
δ

1− δ
max
s′∈S

|Φ(s′, π)− Vi(s
′, π)|∥Pπ − Pπ′

∥∞

Using Lemma 7.1 we obtain that

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) | ≤ 2δζ|S|Dmaxai∈Ai

|ai|
(1− δ)|I|

max
s′∈S

|Φ(s′, π)− Vi(s
′, π)|

The claim follows by noting that for and s′ ∈ S

|Φ(s′, π)− Vi(s
′, π)| =

∣∣∣∣∣E
[ ∞∑
k=0

δk
∑
e∈E

(
φ(sk, ak)− ui(s

k, ak)
)]∣∣∣∣∣

(a)

≤

∣∣∣∣∣E
[ ∞∑
k=0

δkφ(sk, ak)

]∣∣∣∣∣
≤ max

s,π
Φ(s, π),

where (a) follows by noting that

ui(s
k, ak) =

∑
e∈E

ce(s
k, wk

e )1(e ∈ aki ) ≤
∑
e∈E

ce(s
k, wk

e ) ≤ φ(sk, ak).

7.2 Proof of Proposition 3.4

Proof. The goal is to show that for every i ∈ I, πi, π
′
i ∈ Πi, π−i ∈ Π−i it holds that

max
s∈S

|Vi(s, πi, π−i)− Vi(s, π
′
i, π−i)− (Φ(s, πi, π−i)− Φ(s, π′

i, π−i)) | ≤
2κ

(1− δ)2
,

where

Φ(s, π) = E

[ ∞∑
k=0

δkr(sk, ak)|s0 = s

]
= r(s, π) + δ

∑
s′∈S

P (s′|s, π)Φ(s′, π), (20)

Note that the potential function Φ satisfies Using (20) we can write the difference of potential function
at two policies π = (πi, π−i), π

′ = (π′
i, π−i) as

Φ(s, π)− Φ(s, π′) = φ(s, π)− φ(s, π′) + δ
∑
s′∈S

(P (s′|s, π)Φ(s′, π)− P (s′|s, π′)Φ(s′, π′))

(21)

Similarly, the difference in value function of player i at π, π′ is given as

Vi(s, π)− Vi(s, π
′) = ui(s, π)− ui(s, π

′) + δ
∑
s′∈S

P (s′|s, π)Vi(s
′, π)− P (s′|s, π′)Vi(s

′, π′)

(22)
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Subtracting (21) from (22) we obtain

(Vi(s, π)− Vi(s, π
′))− (Φ(s, π)− Φ(s, π′))

= (ui(s, π)− ui(s, π
′))− (r(s, π)− r(s, π′))

+ δ
∑
s′∈S

P (s′|s, π) (Vi(s
′, π)− Φ(s′, π))−

∑
s′∈S

P (s′|s, π′) (Vi(s
′, π′)− Φ(s′, π′))

(a)
= (ui(s, π)− ui(s, π

′))− (r(s, π)− r(s, π′))

+ δ
∑
s′∈S

P (s′|s, π) (Vi(s
′, π)− Vi(s

′, π′) + Φ(s′, π′)− Φ(s′, π))

−
∑
s′∈S

(P (s′|s, π′)− P (s′|s, π)) (Vi(s
′, π′)− Φ(s′, π′)) ,

where (a) is by adding and subtracting the term
∑

s′∈S P (s′|s, π) (Vi(s
′, π′)− Φ(s′, π′)) . Thus it

follows

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

≤ max
s∈S

| (ui(s, π)− ui(s, π
′))− (r(s, π)− r(s, π′)) |

+ δmax
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

+ δmax
s∈S

∣∣∣∣∣∑
s′∈S

((P (s′|s, π)− P (s′|s, π′)) (Φ(s′, π)− Vi(s
′, π)))

∣∣∣∣∣
(a)

≤ 2κ+ δmax
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

+ δmax
s′∈S

|Φ(s′, π)− Vi(s
′, π)|max

s∈S

∑
s′∈S

|P (s′|s, π)− P (s′|s, π′)| , (23)

where (a) is due to the fact

| (ui(s, π)− ui(s, π
′))− (r(s, π)− r(s, π′)) |

≤ 2max
π∈Π

|ui(s, π)− r(s, π)|

≤ 2 max
s∈S,π∈Π

|ξi(s, π)| ≤ 2κ.

Rearranging terms in (23) we obtain

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) |

≤ 2κ

1− δ
+

δ

1− δ
max
s′∈S

|Φ(s′, π)− Vi(s
′, π)|max

s∈S

∑
s′∈S

|P (s′|s, π)− P (s′|s, π′)|

=
2κ

1− δ
+

2δ

1− δ
max
s′∈S

|Φ(s′, π)− Vi(s
′, π)|. (24)

Finally, we note that

|Φ(s′, π)− Vi(s
′, π)| = |

∞∑
k=0

δkξi(s, π(s
k))| ≤ κ

1− δ
. (25)

Combining (24) and (25) we conclude that

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Φ(s, π)− Φ(s, π′)) | ≤ 2κ

1− δ
+

2δκ

(1− δ)2
=

2κ

(1− δ)2
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7.3 Proof of Proposition 3.7

Proof. First, we show that any π∗ ∈ Π such that π∗ ∈ argmaxπ∈Π Φ(s, π), for every s ∈ S, is
α-stationary Nash equilibrium of G. That is, we want to show that for every i ∈ I, s ∈ S, πi ∈ Πi

Vi(s, π
∗)− Vi(s, πi, π

∗
−i) ≥ −α.

To see this, we note that

Vi(s, π
∗)− Vi(s, πi, π

∗
−i)

(a)

≥ Φ(s, π∗)− Φ(s, πi, π
∗
−i)− α,

(b)

≥ −α,

where (a) is due to (2) and (b) is due to the fact that π∗ is the maximizer of potenial function Φ.

Next, we show that any ϵ-stationary Nash equilibrium for MPG associated with Φ is an (ϵ +

α)−stationary Nash equilibrium for G. Let Ĝ be the MPG associate with Φ and let V̂ be the
value function associated with Ĝ. That is, for any i ∈ I, πi, π

′
i ∈ Πi, π−i, π

′
−i ∈ Π−i, µ ∈ ∆(S) it

holds that
V̂i(s, πi, π−i)− V̂i(s, π

′
i, π−i) = Φ(s, πi, π−i)− Φ(s, π′

i, π−i). (26)

Let π̃ be a ϵ-stationary Nash equilibrium of Ĝ. That is, for every i ∈ I, s ∈ S, πi ∈ Πi

V̂i(s, π̃)− V̂i(s, πi, π̃−i) ≥ −ϵ. (27)
Then, the goal is to show that that for every i ∈ I, s ∈ S, πi ∈ Πi

Vi(s, π̃)− Vi(s, πi, π̃−i) ≥ −α− ϵ.

Towards that goal, we note that

Vi(s, π̃)− Vi(s, πi, π̃−i)
(a)

≥ Φ(s, π̃)− Φ(s, πi, π̃−i)− α

(b)
= V̂i(s, π̃)− V̂i(s, πi, π̃−i)− α

(c)

≥ −ϵ− α,

where (a) is due to (2), (b) is due to (26) and (c) is due to (27).

8 Proof of results in Section 4

8.1 Proof of Theorem 4.1

Lemma 8.1 (Performance difference). For the ith player, if we fix the policy π−i and any state
distribution µ, then for any two policies π′

i and πi,

Vi(µ, π
′
i, π−i)− Vi(µ, πi, π−i) =

1

1− δ

∑
s,ai

d
π′
i,π−i

µ (s) · (π′
i(s, ai)− πi(s, ai))Qi (s, ai;πi, π−i) .

Proof. It is a direct application of the performance difference lemma in [26].

For i, j ∈ {1, ..., |I|} with i < j, we denote by “i ∼ j" the set of indices {k | i < k < j}, “ < i" the
set of indices {k | k = 1, . . . , i− 1}, and “> j" the set of indices {k | k = j + 1, . . . , |I|}. We use
the shorthand πI := {πk}k∈I to represent the joint policy for all players k ∈ I . For example, when
I = i ∼ j, πI = {πk}j−1

k=i+1 is a joint policy for players from i+ 1 to j − 1;π<i,i∼j , π<i, and π>j

can be introduced similarly.
Lemma 8.2 (Lemma 2 in [7]). For any function fπ : Π → R, and any two policies π, π′ ∈ Π,

fπ′
− fπ =

|I|∑
i=1

(
fπ′

i,π−i − fπ
)

+

|I|∑
i=1

|I|∑
j=i+1

(
fπ<i,i∼j ,π

′
>j ,π

′
i,π

′
j − fπ<i,i∼j ,π

′
>j ,πi,π

′
j − fπ<i,i∼j ,π

′
>j ,π

′
i,πj + fπ<i,i∼j ,π

′
>j ,πi,πj

)
.
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Lemma 8.3 (Policy improvement: Markov α-potential games). For Markov α-potential game (3.2)
with any state distribution ν, the potential function Φ(ν, π) at two consecutive policies π(t+1) and
π(t) in Algorithm 1 satisfies

Φ(ν, π(t+1))− Φ(ν, π(t)) ≥ 1

2η(1− δ)

∑
i∈I,s∈S

d
π
(t+1)
i ,π

(t)
−i(s)

ν

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥2
−4η2|A|2|I|2

(1− δ)5
− |I|2α

Proof. We let π′ = π(t+1) and π = π(t) to ease the exposition. By Lemma 8.2 with fπ = Φ(ν, π),
it is equivalent to analyze

Φ(ν, π(t+1))− Φ(ν, π(t)) = Diffa +Diffb

where

Diffa =

|I|∑
i=1

Φ(ν, π′
i, π−i)− Φ(ν, π),

Diffb =

|I|∑
i=1

|I|∑
j=i+1

(
Φ(ν, π<i,i∼j , π

′
>j , π

′
i, π

′
j)− Φ(ν, π<i,i∼j , π

′
>j , πi, π

′
j)

−Φ(ν, π<i,i∼j , π
′
>j , π

′
i, πj) + Φ(ν, π<i,i∼j , π

′
>j , πi, πj)

)
(28)

Bounding Diffa. By the property of the potential function Φ(ν, π),

Φ(ν, π′
i, π−i)− Φ(ν, π) + α ≥ Vi(ν, π

′
i, π−i)− Vi(ν, π)

=
1

1− δ

∑
s,ai

d
π′
i,π−i

ν (s) (π′
i (s, ai)− πi (s, ai))Qi (s, ai;πi, π−i)

where the equality follows from Lemma 8.1. The optimality of π′
i = π

(t+1)
i in (5) leads to

⟨π′
i(s), Qi(s;πi, π−i)⟩Ai

− 1

2η
∥π′

i(s)− πi(s)∥
2 ≥ ⟨πi(s), Qi(s;πi, π−i)⟩Ai

.

Combine the above two parts to get

Φ(ν, π′
i, π−i)− Φ(ν, π) + α ≥ 1

2η(1− δ)

∑
s

d
π′
i,π−i

ν (s) ∥π′
i(s)− πi(s)∥

2
.

By summing up i from 1 to |I|, we can get

Diffa ≥ 1

2η(1− δ)

|I|∑
i=1

∑
s

d
π
(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥2 − |I|α (29)

Bounding Diffb. For any π̃−ij , π
′
i, πi, π

′
j , πj , it holds that

Φ(ν, π̃−ij , π
′
i, π

′
j)− Φ(ν, π̃−ij , πi, π

′
j)− Φ(ν, π̃−ij , π

′
i, πj) + Φ(ν, π̃−ij , πi, πj) + 2α

≥Vi(ν, π̃−ij , π
′
i, π

′
j)− Vi(ν, π̃−ij , πi, π

′
j)− Vi(ν, π̃−ij , π

′
i, πj) + Vi(ν, π̃−ij , πi, πj)

≥− 8η2|A|2

(1− δ)5

where the second inequality is from results in Lemma 3 in [7]. Thus,

Diffb ≥ −|I|(|I| − 1)

2
×
(
8η2|A|2

(1− δ)5
+ 2α

)
≥ −4η2|A|2|I|2

(1− δ)5
− |I|(|I| − 1)α (30)

Combining (29) and (30) finishes the proof.
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8.1.1 Proof of Theorem 4.1

Proof. Observe that (5) is equivalent to

π
(t+1)
i (s) :=

πi(s)∈∆(Ai)
argmax

{〈
πi(s), Q

(t)
i (s)

〉
Ai

− 1

2η

∥∥∥πi(s)− π
(t)
i (s)

∥∥∥2} . (31)

which implies that for any π′
i ∈ Πi,〈

π′
i(s)− π

(t+1)
i (s), ηQ

(t)
i (s)− π

(t+1)
i (s) + π

(t)
i (s)

〉
Ai

≤ 0,

Hence, if η ≤ 1−δ√
A

, then for any π′
i ∈ Πi,〈

π′
i(s)− π

(t)
i (s), Q

(t)
i (s)

〉
Ai

=
〈
π′
i(s)− π

(t+1)
i (s), Q

(t)
i (s)

〉
Ai

+
〈
π
(t+1)
i (s)− π

(t)
i (s), Q

(t)
i (s)

〉
Ai

≤1

η

〈
π′
i(s)− π

(t+1)
i (s), π

(t+1)
i (s)− π

(t)
i (s)

〉
Ai

+
〈
π
(t+1)
i (s)− π

(t)
i (s), Q

(t)
i (s)

〉
Ai

Note that for any two probability distributions p1 and p2, ∥p1 − p2∥ ≤ ∥p1 − p2∥1 ≤ 2. Thus we can
continue the above calculations by〈

π′
i(s)− π

(t)
i (s), Q

(t)
i (s)

〉
Ai

≤2

η

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥+ ∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥ ∥∥∥Q(t)
i (s)

∥∥∥
≤3

η

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥
(32)

where the last inequality is due to
∥∥∥Q(t)

i (s)
∥∥∥ ≤

√
A

1−δ and η ≤ 1−δ√
A

. Hence, by the Performance
Difference Lemma 8.1 and (32),

T · Nash-regret(T ) =
T∑

t=1

max
i

(
max
π′
i

Vi(µ, π
′
i, π

(t)
−i)− Vi(µ, π

(t))

)
(a)
=

1

1− δ

T∑
t=1

max
π′
i

∑
s,ai

d
π′
i,π

(t)
−i

µ (s)
(
π′
i (s, ai)− π

(t)
i (s, ai)

)
Q

(t)
i (s, ai)

(b)

≤ 3

η(1− δ)

T∑
t=1

∑
s

d
π′
i,π

(t)
−i

µ (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥
where in the equality (a) we slightly abuse the notation i to represent argmaxi and in (b) we slightly
abuse the notation π′

i to represent argmaxπ′
i
. Now we proceed the above calculation by choosing an

arbitrary ν ∈ ∆(S) and using the following inequality

d
π′
i,π

(t)
−i

µ (s)

d
π
(t+1)
i ,π

(t)
−i

ν (s)

≤ d
π′
i,π

(t)
−i

µ (s)

(1− δ)ν(s)
≤

supπ∈Π

∥∥dπµ/ν∥∥∞
1− δ

to get:
T · Nash-regret(T )

≤
3
√
supπ∈Π

∥∥dπµ/ν∥∥∞
η(1− δ)

3
2

T∑
t=1

∑
s

√
d
π′
i,π

(t)
−i

µ (s)× d
π
(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥
(a)

≤
3
√
supπ∈Π

∥∥dπµ/ν∥∥∞
η(1− δ)

3
2

√√√√ T∑
t=1

∑
s

d
π′
i,π

(t)
−i

µ (s)×

√√√√ T∑
t=1

∑
s

d
π
(t+1)
i ,π

(t)
−i(s)

ν

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥2
(b)

≤
3
√
supπ∈Π

∥∥dπµ/ν∥∥∞
η(1− δ)

3
2

√√√√ T∑
t=1

∑
s

d
π′
i,π

(t)
−i

µ (s)×

√√√√ T∑
t=1

|I|∑
i=1

∑
s

d
π
(t+1)
i ,π

(t)
−i(s)

ν

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥2
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where (a) follows from Cauchy-Schwartz inequality and in (b) we replace i (argmaxi) by the sum
over all players.

Now we proceed the above calculation with ν∗ = argminν∈∆(S) maxπ∈Π ∥dπ
µ

ν ∥∞ and apply Lemma
8.3 to get
T · Nash-regret(T )

≤
3
√
κ̃µ

η(1− δ)
3
2

√
T ×

√
2η(1− δ)

(
Φ(ν∗, π(T ))− Φ(ν∗, π(0))

)
+

8η3|A|2|I|2
(1− δ)4

T + 2η(1− δ)|I|2α · T

≤
3
√
κ̃µ

η(1− δ)
3
2

√
T ×

√
2η(1− δ)CΦ +

8η3|A|2|I|2
(1− δ)4

T + 2η(1− δ)|I|2α · T

= 3

√
2κ̃µT (CΦ + |I|2α · T )

η(1− δ)2
+

8κ̃µηT 2|A|2|I|2
(1− δ)7

where the second inequality follows from ∥Φ(ν∗, π) − Φ(ν∗, π′)∥ ≤ CΦ for any π, π′. By taking

step size η =
(1−δ)2.5

√
CΦ+|I|2αT

2|I|A
√
T

, we can complete the proof with

Nash-regret(T ) ≤
3 · 2 3

2

√
κ̃ρA|I|

(1− δ)
9
4

(
CΦ

T
+ |I|2α

) 1
4

8.2 Proof of Theorem 4.2

Before presenting the proof of Theorem 4.2, we some crucial lemmas.
Lemma 8.4. If G is Markov α-potential game with Φ as its α-potential then G̃ is also a Markov
α-potential game with Φ̃ as its α-potential where for any s ∈ S, π ∈ Π

Φ̃(s, π) = Φ(s, π)− τE[
∑
i∈I

∞∑
k=0

δkνi(s
k, πi)]

Proof. We want to show that if for all s ∈ S, i ∈ I, π′
i, πi ∈ Πi, π−i ∈ Π−i

| (Φ (s, π′
i, π−i)− Φ (s, πi, π−i))− (Vi (s, π

′
i, π−i)− Vi (s, πi, π−i)) | ≤ α,

then
|
(
Φ̃ (s, π′

i, π−i)− Φ̃ (s, πi, π−i)
)
−
(
Ṽi (s, π

′
i, π−i)− Ṽi (s, πi, π−i)

)
| ≤ α.

It is sufficient to show that for all s ∈ S, i ∈ I, π′
i, πi ∈ Πi, π−i ∈ Π−i(

Φ̃ (s, π′
i, π−i)− Φ̃ (s, πi, π−i)

)
−
(
Ṽi (s, π

′
i, π−i)− Ṽi (s, πi, π−i)

)
= (Φ (s, π′

i, π−i)− Φ (s, πi, π−i))− (Vi (s, π
′
i, π−i)− Vi (s, πi, π−i)) .

To see this, recall that for every i ∈ I, πi ∈ Πi, π−i ∈ Π−i, µ ∈ ∆(S)

Ṽi(µ, πi, π−i) = Vi(µ, πi, π−i)− τE

[ ∞∑
k=0

δkνi(s
k, πi)|s0 ∼ µ

]
. (33)

Thus, we observe that for every s ∈ S, i ∈ I, π′
i, πi ∈ Πi, π−i ∈ Π−i(

Φ̃ (s, π′
i, π−i)− Φ̃ (s, πi, π−i)

)
−
(
Ṽi (s, π

′
i, π−i)− Ṽi (s, πi, π−i)

)
=

(
Φ(s, π′

i, π−i)− τE[
∞∑
k=0

δkνi(s
k, π′

i)]− Φ(s, πi, π−i) + τE[
∞∑
k=0

δkνi(s
k, πi)]

)

−

(
Vi(s, π

′
i, π−i)− τE[

∞∑
k=0

δkνi(s
k, π′

i)]− Vi(s, πi, π−i) + τE[
∞∑
k=0

δkνi(s
k, πi)]

)
= (Φ (s, π′

i, π−i)− Φ (s, πi, π−i))− (Vi (s, π
′
i, π−i)− Vi (s, πi, π−i)) .
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This concludes the proof.

Lemma 8.5. [[3, Lemma 11]] For any i ∈ I, µ ∈ ∆(S), πi, π
′
i ∈ Πi, π−i ∈ Π−i, π =

(πi, π−i), π
′ = (π′

i, π−i) it holds that

Ṽi(µ, π
′)− Ṽi(µ, π) =

1

1− δ

∑
s′∈S

dπ
′

µ (s′)
(
(π′

i − πi)
⊤Q̃i(s;π) + τνi(s, πi)− τνi(s, π

′
i)
)
. (34)

Lemma 8.6. For any i ∈ I, s ∈ S, π ∈ Π the update π+
i = argmaxπ′

i∈Πi

(
Q̃i(s)

⊤π′
i − τνi(s, π

′
i)
)

satisfies∑
ai∈Ai

Q̃i(s, ai)
(
π+
i (s, ai)− π′

i(s, ai)
)
≥ τ

∑
ai∈Ai

log
(
π+
i (s, ai)

) (
π+
i (s, ai)− π′

i(s, ai)
)
, ∀ π′

i ∈ Πi

Proof. From the first order conditions of optimality for the update π+
i =

argmaxπ′
i∈Πi

(
Q̃

(t)
i (s, π′

i)− τνi(s, π
′
i)
)

it holds that

(
Q̃i(s)− τ∇πiνi(s, π

+
i )
)⊤ (

π
(+)
i (s)− π′

i(s)
)
≥ 0, ∀ π′

i ∈ Πi.

Finally, we note that for any s ∈ S, i ∈ I, ai ∈ Ai it holds that ∇πi(s,ai)νi(s, πi) = 1+log(πi(s, ai)).
Therefore,∑
ai

Q̃i(s, ai)
(
π+
i (s, ai)− π′

i(s, ai)
)
≥ τ

∑
ai

(
1 + log

(
π+
i (s, ai)

)) (
π+
i (s, ai)− π′

i(s, ai)
)
, ∀ π′

i ∈ Πi

≥ τ
∑
ai

log
(
π+
i (s, ai)

) (
π+
i (s, ai)− π′

i(s, ai)
)
, ∀ π′

i ∈ Πi,

where in the last inequality we are able to drop 1 because the policies add upto 1.

Lemma 8.7. For any i ∈ I, s ∈ S, πi, π
′
i ∈ Πi it holds that

νi(s, πi)− νi(s, π
′
i) ≥

∑
ai∈Ai

(log(π′
i(s, ai))) (πi(s, ai)− π′

i(s, ai)) +
1

2
∥πi(s)− π′

i(s)∥2

Proof. To prove the lemma, we first claim that entropy π 7→ νi(s, π) is a 1-strongly convex function
for every s ∈ S. This can be observed by computing the Hessian which is a RAi×Ai diagonal matrix
with (ai, ai) entry as 1/π(s, ai). Note that since πi(s, ai) ≤ 1 it follows that the diagonal entries of
Hessian matrix are all greater than 1. Thus, νi(s, π) is 1-strongly convex function.

The result in Lemma follows by noting that for any κ-strongly convex function f it holds that

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
κ

2
∥y − x∥2.

Lemma 8.8. For any i ∈ I, µ ∈ ∆(S), πi, π
′
i ∈ Πi, π−i ∈ Π−i∣∣∣(Vi(µ, πi, π−i)− Vi(µ, π

′
i, π−i))−

(
Ṽi(µ, πi, π−i)− Ṽi(µ, π

′
i, π−i)

)∣∣∣ ≤ 2τ log |Ai|
1− δ
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Proof. The claim follows by expanding the definition of smoothed infinite horizon utility. Indeed, for
every i ∈ I, µ ∈ ∆(S), πi, π

′
i ∈ Πi, π−i ∈ Π−i, we observe that∣∣∣(Vi(µ, πi, π−i)− Vi(µ, π

′
i, π−i))−

(
Ṽi(µ, πi, π−i)− Ṽi(µ, π

′
i, π−i)

)∣∣∣
=

∣∣∣∣∣ (Vi(µ, πi, π−i)− Vi(µ, π
′
i, π−i))

−

(
Vi(µ, πi, π−i)− τE

[ ∞∑
k=0

δk
(
νi(s

k, πi)
)]

− Vi(µ, π
′
i, π−i) + τE

[ ∞∑
k=0

δk
(
νi(s

k, π′
i)
)]) ∣∣∣∣∣

=

∣∣∣∣∣
(
−τE

[ ∞∑
k=0

δk
(
νi(s

k, πi)
)]

+ τE

[ ∞∑
k=0

δk
(
νi(s

k, π′
i)
)]) ∣∣∣∣∣

≤ 2τ maxs,πi
νi(s, πi)

(1− δ)
=

2τ log(|Ai|)
(1− δ)

.

Lemma 8.9. For any i ∈ I, t ∈ [T ], ai ∈ Ai

τ | log(π(t)

ī(t)
(s̄(t), ai))| ≤ 2∥Q̃(t∗)

ī(t)
(s)∥∞ + τ log(|Ai|)

Proof. We note that there exists t∗ ≤ t when player ī(t) updated its state s̄(t) before time t. Therefore,

π
(t)

ī(t)
(s̄(t), ai) =

exp(Q̃
(t∗)

ī(t)
(s̄(t), ai))∑

a′
i∈Ai

exp(Q̃
(t∗)

ī(t)
(s̄(t), a′i))

≥
exp(Q̃

(t∗)

ī(t)
(s̄(t), ai)/τ)

|Ai| exp(Q̃(t∗)

ī(t)
(s̄(t), āi)/τ)

=
1

|Ai|
exp

((
Q̃

(t∗)

ī(t)
(s̄(t), ai)− Q̃

(t∗)

ī(t)
(s̄(t), āi)

)
/τ
)
,

where āi ∈ argmaxai∈Ai
Q̃

(t∗)

ī(t)
(s̄(t), ai) and ai ∈ argminai∈Ai

Q̃
(t∗)

ī(t)
(s̄(t), ai). Consequently, we

obtain that

τ | log(π(t)

ī(t)
(s̄(t), ai))| ≤ 2∥Q̃(t∗)

ī(t)
(s)∥∞ + τ log(|Ai|).

Lemma 8.10. For any t ∈ [T ], i ∈ I, s ∈ S

∥Q̃(t)
i (s)∥∞ ≤ C

1 + τ log(|Ai|)
(1− δ)

,

where C = maxs,i∈I,a∈A |ui(s, a)|.

Proof. First, we show that maxs∈S |Ṽi(s, π)| ≤ C 1+τ log(|Ai|)
(1−δ) . Indeed,

max
s∈S

|Ṽi(s, π)| = max
s∈S

∣∣∣∣∣E
[ ∞∑
k=0

δkũi(s
k, ak)

]∣∣∣∣∣
≤ max

s∈S
E

[ ∞∑
k=0

δk|ũi(s
k, ak)|

]

≤ max
s∈S

E

[ ∞∑
k=0

δk
(
|ui(s

k, ak)|+ τ log(|Ai|)
)]

≤ C
1 + τ log(|Ai|)

(1− δ)
.
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Finally, from the definition of Q̃i it follows that

|Q̃i(s, ai)| =

∣∣∣∣∣∣
∑

a−i∈A−i

π−i(s, a−i)(ũi(s, ai, πi) + δ
∑
s′∈S

P (s′|s, a)Ṽi(s
′, π))

∣∣∣∣∣∣
≤

∑
a−i∈A−i

π−i(s, a−i)

∣∣∣∣ũi(s, ai, πi) + δ
∑
s′∈S

P (s′|s, a)Ṽi(s
′, π)

∣∣∣∣
≤

∑
a−i∈A−i

π−i(s, a−i)

(∣∣∣∣ũi(s, ai, πi)

∣∣∣∣+ δ
∑
s′∈S

P (s′|s, a)
∣∣∣∣Ṽi(s

′, π)

∣∣∣∣
)

≤ C
∑

a−i∈A−i

π−i(s, a−i)

(
(1 + τ log(|Ai|)) +

δ

1− δ
(1 + τ log(|Ai|))

)

= C
1 + τ log(|Ai|)

(1− δ)
.

8.2.1 Proof of Lemma 4.3

Proof of Lemma 4.3. (a) We note that for any t ∈ [T ]

∆
(t)

ī(t)
(s̄(t)) =

1

1− δ

( ∑
ai∈A

ī(t)

((
π
(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

)
Q̃

(t)

ī(t)
(s̄(t), ai)

)
+ τνī(t)(s̄

(t), π
(t)

ī(t)
)− τνī(t)(s̄

(t), π
(t+1)

ī(t)
)

)
(a)

≤ 1

1− δ

( ∑
ai∈A

ī(t)

((
π
(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

)
Q̃

(t)

ī(t)
(s̄(t), ai)

)
+ τ
( ∑

ai∈A
ī(t)

log(π
(t)

ī(t)
(s̄(t), ai))

(
π
(t)

ī(t)
(s̄(t), ai)− π

(t+1)

ī(t)
(s̄(t), ai)

)))

=
1

1− δ

( ∑
ai∈A

ī(t)

((
π
(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

)(
Q̃

(t)

ī(t)
(s̄(t), ai)− τ log(π

(t)

ī(t)
(s̄(t), ai))

))
≤ 1

1− δ

( ∑
ai∈A

ī(t)

(∣∣∣∣ (π(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

) ∣∣∣∣∣∣∣∣ (Q̃(t)

ī(t)
(s̄(t), ai)− τ log(π

(t)

ī(t)
(s̄(t), ai))

) ∣∣∣∣)
(b)

≤ 1

1− δ

√
Ā max

ai∈Ai

∣∣∣∣ (Q̃(t)

ī(t)
(s̄(t), ai)− τ log(π

(t)

ī(t)
(s̄(t), ai))

) ∣∣∣∣ ∥∥∥π(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

∥∥∥
2

≤ 1

1− δ

√
Ā

(
max
ai∈Ai

∣∣∣∣Q̃(t)

ī(t)
(s̄(t), ai)

∣∣∣∣+ max
ai∈Ai

τ

∣∣∣∣ log(π(t)

ī(t)
(s̄(t), ai))

∣∣∣∣) ∥∥∥π(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

∥∥∥
2

(c)

≤ 1

1− δ

√
Ā
(
∥Q̃(t)

ī(t)
(s̄(t))∥∞ + 2∥Q̃(t∗)

ī(t)
(s̄(t))∥∞ + τ log(Ā)

)∥∥∥π(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

∥∥∥
2

(d)

≤ 4C
1 + τ log(Ā)

1− δ

√
Ā
∥∥∥π(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

∥∥∥
2

where (a) follows due to convexity of νi(s, ·) and (b) follows due to Cauchy-Schwartz
inequality, (c) follows due to Lemma 8.9 and (d) is due to Lemma 8.10.

(b) Here, we show that

T−1∑
t=1

∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))∥22 ≤ 2

τ µ̄

(
Φ̃(µ, π(T ))− Φ̃(µ, π(0)) + αT

)
.
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To see this, we note that

Φ̃(π
(t+1)

ī(t)
, π

(t)

−ī(t)
)− Φ̃(π

(t)

ī(t)
, π

(t)

−ī(t)
)

(a)
= Ṽī(t)(π

(t+1)

ī(t)
, π

(t)

−ī(t)
)− Ṽī(t)(π

(t)

ī(t)
, π

(t)

−ī(t)
)− α

(b)
=

1

1− δ

∑
s∈S,a∈A

ī(t)

d
π
(t+1)

ī(t)
,π

(t)

−ī(t) (s)

(
(π

(t+1)

ī(t)
(s, a)− π

(t)

ī(t)
(s, a))Q̃

(t)

ī(t)
(s, ai)

+ τνī(t)(s, π
(t)

ī(t)
)− τνī(t)(s, π

(t+1)

ī(t)
)

)
− α

(c)
=

1

1− δ

∑
a∈A

ī(t)

d
π
(t+1)

ī(t)
,π

(t)

−ī(t) (s̄(t))

(
(π

(t+1)

ī(t)
(s̄(t), a)− π

(t)

ī(t)
(s̄(t), a))Q̃

(t)

ī(t)
(s̄(t), a)

+ τνī(t)(s̄
(t), π

(t)

ī(t)
)− τνī(t)(s̄

(t), π
(t+1)

ī(t)
)

)
− α

(d)

≥ τ

1− δ

∑
a∈A

ī(t)

d
π
(t+1)

ī(t)
,π

(t)

−ī(t) (s̄(t)) log(π
(t+1)

ī(t)
(s̄(t), a))(π

(t+1)

ī(t)
(s̄(t), a)− π

(t)

ī(t)
(s̄(t), a))

+
τ

1− δ

∑
a∈A

ī(t)

d
π
(t+1)

ī(t)
,π

(t)

−ī(t) (s̄(t)) log(π
(t+1)
i (s̄(t), a))

(
π
(t)

ī(t)
(s̄(t), a)− π

(t+1)

ī(t)
(s̄(t), a)

)
+

τ

2(1− δ)
d
π
(t+1)

ī(t)
,π

(t)

−ī(t) (s̄(t))∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))∥2 − α

=
τ

2(1− δ)
d
π
(t+1)

ī(t)
,π

(t)

−ī(t) (s̄(t))∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))∥2 − α

(e)

≥ τµ(s̄(t))

2
∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))∥2 − α,

where (a) follows from Lemma 8.4, (b) follows from Lemma 8.5, (c) follows from the fact
that π(t+1)

ī(t)
(s) = π

(t)

ī(t)
(s) for all s ̸= s̄(t), (d) follows from Lemma 8.6 and 8.7, (e) follows

by noting that dπ
(t+1)
i ,π

(t)
−i (s̄(t)) ≥ (1− δ)µ(s̄(t)).

8.2.2 Proof of Theorem 4.2

Proof. Note that for all i it holds that

R
(t)
i = max

π′
i∈Πi

Vi(µ, π
′
i, π

(t)
−i)− Vi(µ, π

(t)) = Vi(µ, π
†
i , π

(t)
−i)− Vi(µ, π

(t)),

where π†
i ∈ argmaxπ′

i∈Πi
Vi(µ, π

′
i, π

(t)
−i). Using Lemma 8.8 we obtain

R
(t)
i ≤ Ṽi(µ, π

†
i , π

(t)
−i)− Ṽi(µ, π

(t)) +
2τ log(Ā)

(1− δ)
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Next, we note that for any i ∈ I, µ ∈ ∆(S) it holds that

Ṽi(µ, π
†
i , π

(t)
−i)− Ṽi(µ, π

(t)
i , π

(t)
−i)

(a)
=

1

1− δ

∑
s,ai

d
π†
i ,π−i(t)

µ (s)
((

π†
i (s, ai)− π

(t)
i (s, ai)

)
Q̃

(t)
i (s, ai) + τνi(s, π

(t)
i )− τνi(s, π

′
i)
)

(b)

≤ 1

1− δ

∑
s

d
π†
i ,π−i(t)

µ (s)

(
max
π′
i

∑
ai∈Ai

((
π′
i(s, ai)− π

(t)
i (s, ai)

)
Q̃

(t)
i (s, ai)

)
+ τνi(s, π

(t)
i )− τνi(s, π

′
i)

)
,

(c)
=

1

1− δ

∑
s

d
π†
i ,π−i(t)

µ (s)
(
∆

(t)
i (s)

)
,

(d)

≤ 1

1− δ

∑
s

d
π†
i ,π−i(t)

µ (s)
(
∆

(t)

ī(t)
(s̄(t))

)
,

(e)
=

1

1− δ

(
∆

(t)

ī(t)
(s̄(t))

)
,

where (a) is due to Lemma 8.1 and (b) is due to the fact that dπ
†
i ,π−i(t)

µ (s) ≥ 0, (c) is by (6), (d)

is because ∆
(t)
i (s) ≤ ∆

(t)

ī(t)
(s̄(t)) for all i ∈ I, s ∈ S, (e) is because

∑
s d

π†
i ,π−i(t)

µ (s) = 1. To
summarize, we obtain

R
(t)
i ≤ 1

1− δ

(
∆

(t)

ī(t)
(s̄(t)) + 2τ log(Ā)

)
.

Therefore,

Nash-Regret(T ) ≤ 1

T (1− δ)

∑
t∈[T ]

(
∆

(t)

ī(t)
(s̄(t)) + 2τ log(Ā)

)
(a)

≤ 4C
√
Ā(1 + τ log(Ā))

T (1− δ)2

∑
t∈[T ]

∥∥∥π(t+1)

ī(t)
(s̄(t), ai)− π

(t)

ī(t)
(s̄(t), ai)

∥∥∥
2
+

2τ log(Ā)

(1− δ)

(b)

≤ 4C
√
Ā(1 + τ log(Ā))√
T (1− δ)2

√√√√∑
t∈[T ]

∥∥∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))

∥∥∥2
2
+

2τ log(Ā)

(1− δ)

(c)

≤ 8C
√
Ā(1 + τ log(Ā))√
τ µ̄(1− δ)2

√
α+

CΦ̃

T
+

2τ log(Ā)

(1− δ)

(d)

≤ 8C
√
Ā(1 + τ log(Ā))√
τ µ̄(1− δ)2

√
α+

CΦ

T
+

2τ |I| log(Ā)

T (1− δ)
+

2τ log(Ā)

(1− δ)

(e)

≤ 8C
√
Ā(1 + τ log(Ā))√
τ µ̄(1− δ)2

(√
α+

CΦ

T
+

√
2τ |I| log(Ā)

T (1− δ)

)
+

2τ log(Ā)

(1− δ)

where (a) is due to Lemma 4.3(a), (b) is due to Cauchy-Schwartz inequality, (c) is due to Lemma
4.3(b), (d) is the fact that |CΦ − CΦ̃| ≤

2τ |I| log(|A|)
1−δ , and (e) is due to the fact that for any two

positive scalars x, y it holds that
√
x+ y ≤

√
x+

√
y.

For ease of exposition, we define

D1 =
8C

√
Ā√

µ̄(1− δ)2
, D2 =

√
α+

CΦ̃

T
, D3 =

√
2 log(Ā)

(1− δ)

Then, it follows that

Nash-Regret(T ) ≤
(
D1√
τ
+
√
τD1 log(Ā)

)
D2 +

(
D1√
τ
+

√
τD1 log(Ā)

)
D3

√
|I|
√

τ

T
+ τD2

3

=
√
τ
(
D1D2 log(Ā)

)
+ τ

(
D1D3 log(Ā)

√
|I|
T

+D2
3

)
+

D1D2√
τ

+
D1D3

√
|I|√

T
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Consider τ < 1 then it holds that τ ≤
√
τ . Thus, we obtain

Nash-Regret(T ) =
√
τ

(
D1D2 log(Ā) +D1D3 log(Ā)

√
|I|
T

+D2
3

)
+

D1D2√
τ

+
D1D3

√
|I|√

T

If we select τ to be

τ =

√√√√ D1D2

D1D2 log(Ā) +D1D3 log(Ā)
√

|I|
T +D2

3

,

which is strictly less than 1, it follows that

Nash-Regret(T ) ≤

√
D2

1D
2
2 log(Ā) +D2

1D2D3 log(|A|)
√

|I|
T

+D1D2D2
3 +

D1D3

√
|I|√

T
,

≤ D1D2

√
log(Ā) +D1

√
D2D3 log(|Ā|)

(
|I|
T

)1/4

+
√
D1D2D3 +

D1D3

√
|I|√

T

Note that D3 ≥ 1 and additionally, if we assume that D1 ≥ 1 (assuming C is large enough) then it
follows that

Nash-Regret(T ) ≤ 2D1D3

√
log(Ā)

(
D2 +

√
D2

(
1 +

(
|I|
T

)1/4
)

+

√
|I|
T

)

≤ 16C
√
Ā√

µ̄(1− δ)2

√
2 log(Ā)

(1− δ)

√
log(Ā)

((
α+

CΦ̃

T

)1/2

+

(
α+

CΦ̃

T

)1/4
(
1 +

(
|I|
T

)1/4
)

+

√
|I|
T

)

≤ 16C
√
Ā√

µ̄(1− δ)2

√
2 log(Ā)

(1− δ)

√
log(Ā)

((
α+

CΦ̃

T

)1/2

+

(
α+

CΦ̃

T

)1/4
(
1 +

(
|I|
T

)1/4
)

+

√
|I|
T

)

≤ O

(√
|I|Ā log(Ā)

(1− δ)5/2
√
µ̄

((
α+

CΦ̃

T

)1/2

+

(
α+

CΦ̃

T

)1/4
))

≤ O

(√
|I|Ā log(Ā)

(1− δ)5/2
√
µ̄

(
√
α+

√
CΦ̃

T
+ (α)1/4 +

(
CΦ̃

T

)1/4
))

≤ O

(√
|I|Ā log(Ā)

(1− δ)5/2
√
µ̄

(
max{

√
α, (α)1/4}+

(
CΦ̃

T

)1/4
))

.

This completes the proof.

9 Additional Experiments

In this section, we expand on the numerical experiments discussed in Section 5 and investigate the
impact of random transitions on the performance of Algorithm 1 and 2. To this end, we simulate a
PMTG with the same parameters as before, i.e., |I| = 16 agents, and |Ai| = 2 possible actions for
each agent i ∈ I . However, we introduce a stochastic transition rule based on a logistic function:

P (High|Low) =
1

1 + exp
(
−κ
(
n(a)− |I|

2

))
P (High|High) =

1

1 + exp
(
−κ
(
n(a)− |I|

4

))

where n(a) denotes the number of agents who approve the project, and κ modulates the steepness of
the transition function as it passes through its midpoint.
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(a) (b) (c)

Figure 3: Perturbed Markov team game (κ = 50): (a) and (b) are distributions of players taking
actions in all states: (a) using policy gradient with stepsize η = 0.05; (b) using sequential best
response with regularizer τt = 0.9975t · 0.05. (c) is mean L1-accuracy with shaded region of one
standard deviation over all runs.

We set κ = 50 as the parameter in the logistic transition function. We apply a regularizer of the
form τt = 0.9975t · 0.05 in Algorithm 2 and a fixed step size η = 0.05 in Algorithm 1. As shown in
Figures 3a and 3b, both algorithms successfully converged to deterministic Nash policies, despite
the randomness in transitions. Figure 3c further illustrates that the rate of convergence for the two
algorithms is similar in this particular problem setting.
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