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In this paper, a dynamic path planning method for swarming of unmanned aerial 
vehicles (UAVs) in the urban environment is presented. For the missions of a team of UAVs 
in a complex environment, conflict-free paths for all vehicles should be calculated 
dynamically in real-time using the latest information on the changes in the surroundings 
such as pop-up threats. Therefore, we propose a hierarchical dynamic path planner that 
consists of a offline path planning and a real-time model predictive trajectory generator. In 
this framework, many existing and proven off-line algorithms can be deployed for globally 
optimal path planning. The pre-computed trajectory is sent to the model predictive layer, 
which generates locally feasible trajectory free from conflicts. In this manner, each vehicle is 
able to fly along its designated path to reach the destination while avoiding obstacles or 
vehicles in collision path with minimal deviation from the designated path. For validation, 
the proposed algorithm is applied to a deployment scenario of sixteen rotary-wing UAVs 
flying in a cluttered urban area and showed a satisfactory performance.  

I. Introduction 
nmanned aerial vehicles have been proven as an effective and affordable solutions that complement and 
support many operations traditionally performed by human. For now, UAVs are limitedly applied to solo 

missions and they require constant monitoring by a number of well-trained operators. However, as the onboard 
computing power increases and the reliability of overall system improves, it is anticipated that UAVs will operate as 
a team in a complex environment to achieve given mission objectives in near future.  
 In Nature, there are many species live in a large colony or in a group. Bees, ants, or termites form a large-scale 
colony where the individuals function as a part of the entire system, such as foragers, builders or soldiers. More 
evolved animals such as fish or birds protect themselves from predators by voluntarily joining a large and dense 
group. Wolves live in a hierarchical group and hunt a prey using group tactics. Their group behaviors referred to as 
shoaling, schooling, flocking, or swarming, differ slightly in shapes, numbers, or purpose. Inspired by these cases, it 
has been suggested that, in a simplest form of argument, if a single UAV has been so effective, a swarm of UAVs 
would be even more capable to carry out more difficult missions with higher resilience to adverse conditions. 
Termed as swarm intelligence, a group of simple agents can be organized to perform high level tasks as a collective 
entity. A UAV swarm will carry out given missions as a collective entity so that, even if some members of the teams 
are lost, the whole team can still accomplish the given mission by reallocating the tasks to the surviving members.  
 Maintaining a swarm of UAVs from the perspective of guidance, navigation, and control poses many unseen 
challenges in mission allocation, coordination, and communication. As for path planning, when UAVs flies in a 
swarm at a higher altitude, a relatively simple approach may suffice. Constraints such as no-fly zone, if there is any, 
are usually known a priori and many existing off-line path planning algorithms4 may be applied to solve for a 
globally optimal solution. The trajectories for individual vehicles obtained by the planner will be uploaded to each 
vehicle for tracking. However, when the vehicles need to fly close to the ground for close-range support, the path 
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planning and envelope protection problems become very complicated. Firstly, the path planning requires a detailed 
and accurate geometry of terrain and objects such as buildings, trees or power lines, which may not be detailed or 
accurate enough and therefore should be collected on the fly using onboard sensors. Secondly, when vehicles travel 
together as a swarm in a dynamic environment, one agent may affect the behavior of others in an unpredictable 
manner. For example, one may inadvertently enter other vehicles’ perimeter due to control error or urgent needs to 
avoid imminent collision from obstacles or other vehicles. Therefore, for a safe operation of a UAV swarm in an 
environment with obstacles, each vehicle should be equipped with a real-time collision avoidance capability. 
 Precedent to swarming, there have been strong research interests in the formation flight of UAVs1,2,3 as an 
attempt to improve fuel efficiency using the leading aircraft’s wingtip vortex14 or as an operational procedure2. 
Swarming is usually considered as a group behavior of a significantly large number of agents while the formation 
flight is mainly about the precision control of relative distances among smaller number of vehicles to maintain the 
required shape of the overall group. Therefore, in this paper, we interpret the concept of swarming as a collective 
behavior of a large number of UAVs flying in close proximity, not necessarily maintaining certain shape (as in V-
formation or similar).  
 In this paper, for swarming scenarios in a complex environment(Fig. 1), we propose a hierarchical system that 
consists of a global path planner as the upper layer and a local trajectory replanner as the lower layer. Using the map 
available prior to mission, the path planner generates a reference trajectory for each vehicle that leads to the 
destination without conflict. Based on the reference trajectory, the local planner solves for a conflict-free trajectory 
based on the information about the locations of other vehicles or any unexpected obstacles, which is collected using 
onboard sensors or by inter-vehicular communication. For trajectory replanning, a model predictive approach8,12 is 
chosen, which solves for a trajectory that 
minimizes the cost function on the tracking error 
and potential collision. Such online optimization 
over a finite horizon suits our scenario very well 
since it can take latest information and prediction 
of on the surrounding environment into 
consideration. The tendency of model predictive 
approach to converge to local minima during 
global path planning can be avoided by 
combining it with the higher-level global path 
planner.  
 In this paper, we introduce the formulation of 
local planner based on model predictive 
approach while we opt to avoid a detailed 
discussion of global planner as it has been 
exhaustively investigated in many literatures 
including those from the robotics community. 
We will present the overall architecture of the 
proposed swarming controller and validate it in a 
complex scenario of a deployment of a UAV 
swarm in an area full of buildings.  
 

II. Formulation 
 In this paper, we are particularly interested in the conflict-free path generation problem of a swarm of UAVs in a 
complex environment. Therefore, we need to find a path for each UAV that leads from one point to another without 
any collision with obstacles or other vehicles. Under the assumption of complete knowledge on the surroundings and 
perfect tracking performance of each vehicle, a traditional path planning approaches can be used to compute 
collision-free trajectories for all participating UAVs using a centralized algorithm. However, the assumption needed 
here is highly impractical. In reality, the mapping always contains error, and, the individual motion of a large 
number of UAVs cannot be known during the path planning stage due to the disturbance, tracking error, interaction 
among vehicles, or any unpredictable changes. The swarming of large number of UAVs is challenging because 
traditional path planning methods cannot be applied to a partially known dynamic environment and uncertainty of 
the vehicles’ motion. In this research, we propose to compliment the high-level path planner with a model-predictive 
trajectory replanner, which solves for conflict-free trajectory over a finite horizon.  

Figure 1. A swarm of UAVs (conceptual drawing) 
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A. MPC Formulation 
Suppose we are given a nonlinear time-invariant dynamic system such that  
 
  ( 1) ( ( )) ( ( )) ( )x k f k g x k u k+ = +x  (1) 
  ( ) ( ( ))y k h x k=  (2) 
 
where , .x un nx X u U∈ ⊂ ∈ ⊂  The optimal control input sequence over the finite receding horizon N is obtained 
by solving the following nonlinear programming problem: 
 
  Find ( ), ,... 1u k k i i N= + − such that ( ) arg min ( , , )u k V x k u=  (3) 
        where 

  
1

( , , ) ( ( ), ( )) ( ( ))
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where L is a positive definite cost function and F is the terminal cost. Suppose * ( ),u k  ,..., 1k i i N= + − is the 
optimal control sequence that minimizes ( , , )V x k u  such that * *( , ) ( , , ( , )) ( , , )V x k V x k u x k V x k u= ≤ , ( )u k U∀ ∈ . 
The cost function term L is chosen such that  
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The first term penalizes the deviation from the original course. The second term penalizes the control input. ( )S x  is 
the term that penalizes any states not in X as suggested in Ref. 11. Finally, ( , )v lP x η is to implement the collision 
avoidance capability in this MPC framework: ( , )v lP x η is a function that increases with bound as 2|| || 0v lx η− → , 
where 3

vx ∈ is the position of the vehicle and lη  is the coordinates or l-th out of total on  obstacles being 
simultaneously tracked. As well known, MPC-based approaches require online optimization. During this process, 
the control input can be enforced to meet the saturation requirement. It is done by enforcing  
 

  
max max
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where 1 ... .

u

T

nu u u⎡ ⎤⎣ ⎦  In this manner, one can find the control input sequence that will be always within the 

physical limit of the given dynamic system. We use the optimization method based on indirect method of 
Lagrangian multiplier suggested in Ref. 10.  

 

B. Obstacle Sensing and Trajectory Replanning 
For swarming scenario, it is mandatory to know where the nearby vehicles are located, in addition to obstacles if 

present. Due to the large number of agents, it is highly desired to sense those using onboard sensors, not receiving 
the broadcast information on a wireless communication channel. Obstacle detection can be done in either active or 
passive manner and the choice depends on many factors including operating condition, accuracy, and maximum 
detection range. Laser scanning method12 can be very accurate and straightforward, so it is favored for short-range 
detection and three-dimensional mapping. However, as the detection range depends on the intensity of the light that 
radiates from the laser source, the range depends on the class of the laser head. Active radar has similar attributes 
since it operates in a similar principle: however, the resolution is much lower while the detection range can be 
significantly longer. Both methods are not applicable when the mission should be a covert one. For such cases, 
vision-based methods are favored as it is a passive sensing method and can offer a wealth of information if 
processed adequately. The ranging of objects using 2-D cameras can be performed either by using stereo parallax or 
optic flow algorithms.  
 For collision avoidance, as validated in Ref. 12, we choose ( , )v lP x η  in Eq. (5) such that  
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where G is positive definite and 0ε >  is to prevent ill conditioning when 2|| || 0.v lx η− → One can choose 

{ , , },x y zG diag g g g=  0ig > for an orthogonal penalty function. The penalty function Eq. (7) serves as a repelling 
field and has nonzero value for entire state space even when the vehicle is far enough from obstacles. The crucial 
difference from the potential field approach here is that we optimize over a finite receding horizon, not only for the 
current time as in the potential field approach. For obstacle avoidance, we consider two types of scenarios: 1) a 
situation when the vehicle needs to stay as far as possible from the obstacles even if no direct collision is anticipated 
and 2) a situation when the vehicle can be arbitrarily close to the obstacle as long as no direct conflict is caused. For 
the second situation, one can choose to enable Eq.  (7) only when 2 min|| ||v lx η σ− < , where minσ  is the minimum 
safety distance from other vehicles.  
 Since MPC algorithms optimize over a receding finite horizon into future, for moving obstacles, their predicted 
trajectories over ,..., 1k i i N= + − are needed in Eq. (7). It is observed that the inclusion of predicted obstacle 
locations in the optimization will produce more efficient evasion trajectory if the prediction is reasonably accurate. 
The simplest yet reasonable estimation is the extrapolation using the current position and velocity over the 
prediction horizon such that 
 
      ( ) ( ) ( )( 1)l l lk i k tv k iη η+ = + ∆ − , (8) 
 
It is noted that the prediction can be done in more elaborated manners using a Kalman filter15, exploiting any 
knowledge available on the motion of obstacles. 
 

C. System Architecture  
 For swarming of UAVs, unlike some swarming scenarios where agents can physically touch one another, each 
UAV should stay clear from other vehicles and nearby objects to avoid damage. Due to the highly volatile situation 
that involves many active agents and obstacles including those that are not identified a priori, it is practically 
impossible to solve for a globally optimal path using conventional path planning methods, which typically take very 
long time to run and require knowledge over the entire area. On the other hand, the model predictive approach has 
been shown effective to solve for collision-free trajectories8,11,12 in real time, but  it may suffer from local minimal in 
a situation like cul-de-sac. Therefore, we propose to combine the global planner with the MPC-based trajectory 
replanner so that the globally optimal path can be generated using the best information available and, during the 
flight, the local replanner generates collision-free trajectory if needed. The adjustment of the given trajectory is 
performed by the model predictive approach 
introduced in Section II-A. The trajectory 
replanning algorithm is run on each vehicle 
in a fully decentralized manner so that the 
computing and communication loads can be 
distributed in contrast to many algorithms 
that assume a central planner with high-
bandwidth communication. The overall 
system architecture is show in Fig. 2.  The 
geographic information database can be 
constantly updated by the local map built 
locally on each agent using onboard sensors. 
In cooperative scenarios, information 
collected by other vehicles in vicinity can be 
shared along with their location and future 
intentions. 

 
Figure 2. System architecture of swarming algorithm scenario 
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III. Simulation Results 
 In order to validate the swarming algorithm proposed above, we consider a scenario where sixteen UAVs are to 
be deployed into an urban are. Fig. 3 shows aerial photographs of Fort Benning in Georgia, where the scenario takes 
to occur. This area is partitioned into a number of cells and each cell is assigned with unique numbers. The geometry 
of buildings and their locations are known a priori. In this area, some of corridors that the UAVs are required to fly 
through is as narrow as five meters. Therefore the scenario calls for small-size rotorcraft UAVs that can fit into the 
area and fly slow enough. In this scenario, sixteen helicopter UAVs are initially flying in a four by four formation, 
and they should fly to the designated cells. After initial formation, they are required to divide into three subgroups. 
Some of these subgroups ingress into the area below the roof line (Team A and C) between the buildings while 
others fly over the roof top (Team B).  
 With this scenario, the path planner computes initial paths that are clear from the buildings, but not necessarily 
from other agents. In fact, if we were to consider the inter-
vehicular conflict at the initial planning, the computation can 
be not only heavy due to iteration but also wasteful if the 
vehicle deviates from the initial planning due to any 
unforeseen event occurs. The model predictive layer plays an 
important role here when such events do occur; the online 
trajectory layer solves for safe trajectory by minimizing the 
cost function that penalizes the near-collision conditions.  
  The simulation is implemented using MATLAB/Simulink. 
Sixteen blocks of a detailed helicopter model with fifteen 
states and nonlinear kinematics matched with a MPC solver 
are  built and run in parallel during simulation. The vehicles’ 
positions are shared among the sixteen blocks, assuming the 
existence of a communication channel that broadcast the 
position information at the sampling rate of 40 ms, which is 
deemed rather fast in reality. More study will be performed 
on the necessary communication rate. We impose a 30 m 
sensing limit of other agents. Since the model predictive 
algorithm is numerically heavy, it is implemented using the 
CMEX feature of Simulink to speed up. The core algorithm is 
architected to be compatible with CMEX and the flight 
control software in C/C++ so that the code validated in 
MATLAB can be readily ported into the actual flight 
software. In fact, the model predictive algorithm has been 
already implemented in the test vehicle shown in Fig. 4 and 
used to demonstrate MPC-based trajectory algorithm in Ref. 
8. Tests show that the implemented model predictive 
algorithm may run in real-time on a Pentium III 700MHz 
core of an industrial PC board known as PC-104.  
 The simulation result is given in Fig. 5. Initially, the 
helicopter UAVs fly at 10m/s in a loose four by four 
formation (Fig. 5-(a)) where the trajectory generator only 
considers the tracking of the reference path segment 
generated by the path planner off-line and the collision 
avoidance with other agents. Then, just before they enter the 
town, they are divided into three subgroups. This behavior is 
achieved by generating a common reference path for each 
team. The collision-aware tracking capability commands each 
vehicle to divide into three subgroups nicely without any 
collision (Fig. 5-(c)). As they approach the area with fixed 
obstacles, i.e., the buildings, the collision avoidance term Eq. 
(8) in Eq. (5) begins to increase substantially. In this 

Figure 3. Aerial photographs of Fort Benning,
Georgia.  

Figure 4. A UAV testbed with flight control
software enabled with model-predictive
algorithm (UC Berkeley, 2006) 
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simulation, since the algorithm is fully decentralized, the vehicles sometimes show mob-like behavior: as one 
vehicle is about to enter the corridor, due to the collision avoidance cost, it is pushed away from by the following 
vehicles from the opening of the corridor while the followers succeed to enter the corridor. This observation 
suggests a coordination among neighboring UAVs may be necessary for more efficient deployment. In Fig. 5-(f), all 
UAVs arrives their destinations without any collision. 

   

IV. Conclusion 
 This paper presented a hierarchical system for swarming. The upper layer is responsible for offline path planning 
while the lower is the trajectory replanner based on model predictive algorithms. The complementary structure 
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Figure 5. Simulation result of a swarming into an urban area 
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generates initial path globally optimal offline and adjusts it if collision is anticipated. The proposed algorithm is 
applied to a deployment scenario in a cluttered urban environment and shows the fully decentralized approach 
demonstrates satisfactory performance. It is also observed that the overall behavior may improve further if 
coordination among neighboring agents can be achieved under the constraints of communication bandwidth. In near 
future, the proposed algorithm will be applied to a series of experiments using the rotorcraft UAV shown in Fig. 4.  
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