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Abstract—We present a compressed domain scheme that is able
to recognize and localize actions in real-time1. The recognition
problem is posed as performing an action video query on
a test video sequence. Our method is based on computing
motion similarity using compressed domain features which can
be extracted with low complexity. We introduce a novel motion
correlation measure that takes into account differences in motion
directions and magnitudes. Our method is appearance invariant,
requires no prior segmentation, alignment or stabilization, and
is able to localize actions in both space and time. We evaluated
our method on a large action video database consisting of 6
actions performed by 25 people under 3 different scenarios. Our
classification results compare favorably with existing methods at
only a fraction of their computational cost. We also perform a
systematic investigation of the effects of various encoding options
on our proposed approach. In particular, we present results
on the compression-classification trade-off, which would provide
valuable insight into jointly designing a system that performs
video encoding at the camera front-end and action classification
at the processing back-end.

I. INTRODUCTION

THE use of video cameras has become increasingly com-
mon as their costs decrease. In personal applications, it

is common for people to record and store personal videos
that comprise various actions, in part due to the widespread
availability of phone cameras and cheap cameras with video
recording capabilities. In security applications, multiple video
cameras record video data across a designated surveillance
area. A good example of this is the large network of surveil-
lance cameras installed in London. This proliferation of video
data naturally leads to information overload. It would not only
be incredibly helpful but also necessary to be able to perform
rudimentary action recognition in order to assist the users
in focusing their attention on actions of interest as well as
allowing them to catalog their recorded videos easily.

In this paper, we formulate the problem of action recogni-
tion and localization as follows: given a query video sequence
of a particular action, we would like to detect all occurrences
of it in a test video, and thereby recognizing an action as taking
place at some specific time and location in the video. The
approach should be person independent, hence we want our
method to be appearance invariant. In a surveillance setting,
it is critical to be able to respond to events as they happen.
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Even in a consumer application, it is desirable to minimize
processing time. Therefore, we want a solution that is fast
and can operate in real-time.

Any practical system that records and stores digital video
is likely to employ video compression such as H.263+ [2] or
H.264 [3]. It has long been recognized that some of the video
processing for compression can be reused in video analysis
or transcoding; this has been an area of active research (see
for example [4], [5]) in the last decade or so. Our approach
exploits this insight to attain a speed advantage.

It is reasonable to assume that a surveillance application
would consist of a front-end system that records, compresses,
stores and transmits videos, as well as a back-end system that
processes the transmitted video to accomplish various tasks.
One focus in this paper is on the action recognition task that
would presumably be performed at the back-end. However,
we recognize that various engineering choices, such as the
choice of video coding method, made at the front-end can
have an impact on the action recognition performance in the
back-end. In particular, we would also like to understand how
various video coding choices impact the action recognition
performance of our approach.

A. Related work

There has been prior work in action recognition using raw
video without the use of body landmark points. Efros et al. [6]
require the extraction of a stabilized image sequence before
using a rectified optical flow based normalized correlation
measure for measuring similarity. Shechtman and Irani [7]
exhaustively test motion-consistency between small space-time
(ST) patches to compute a correlation measure between a
query video and a test video. With their method, they are
able to detect multiple actions (similar or different) in the test
video and also perform localization in both space and time.
Schüldt et al. [8] use an approach based on local features in
which Support Vector Machines (SVM) are used to classify
actions in a large database of action videos that they collected.

There has also been prior work in performing action recog-
nition in the compressed domain. Ozer et al. [9] applied
Principal Component Analysis (PCA) on motion vectors from
segmented body parts for dimensionality reduction before
classification. They require that the sequences must have a
fixed number of frames and be temporally aligned. Babu
et al. [10] trained a Hidden Markov Model (HMM) to
classify each action, where the emission is a codeword based
on the histogram of motion vector components of the whole
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frame. In later work [11], they extracted Motion History Image
(MHI) and Motion Flow History (MFH) [12] from compressed
domain features, before computing global measures for clas-
sification.

B. Contributions

Our proposed method makes use of motion vector infor-
mation to capture the salient features of actions which are
appearance invariant. It then computes frame-to-frame motion
similarity with a measure that takes into account differences
in both orientation and magnitude of motion vectors. The
scores for each space-time candidate are then aggregated
over time using a method similar to [6]. Our approach is
able to localize actions in space and time by checking all
possible ST candidates, much like in [7], except that it is more
computationally tractable since the search space is greatly
reduced from the use of compressed domain features. Our
novelty lies in our ability to perform real-time localization of
actions in space and time by a novel combination of signal
processing and computer vision techniques. The proposed
method requires no prior segmentation, no temporal or spatial
alignment and minimal training.

We also study how various encoding options affect the
performance of our proposed approach. This aspect is often
overlooked in most other compressed domain processing work,
in which results are typically presented only on a single choice
of encoding parameters. However, we recognize that different
encoding options not only affect compression performance
but also influence the performance of compressed domain
processing. Hence, in this work, we undertake a systematic
investigation to determine the trade-offs between compression
performance and classification performance. This would be
useful in understanding how best to choose encoding options
to strike a good balance between compression and classifica-
tion, and between speed and accuracy.

The rest of the paper is organized as follows. Section II
outlines our proposed method and describes each step in detail.
The experimental setup and results are discussed in section III,
and we discuss the effects of different video encoding options
in section IV. We then present our concluding remarks in
section V.

II. APPROACH

Given a query video template and a test video sequence, we
carry out the steps shown in Figure 1 to compute a score for
how confident we are that the action presented in the query
video template is happening an each space-time location (to
the nearest macroblock and frame) in the test video. We will
elaborate on each of these steps in the following subsections.

In this paper, Xp denotes a video, with p ∈ {test, query}
referring to either the test video or query video. Each video
Xp has T p frames, with each frame containing N p × Mp

macroblocks. We assume that an action induces a motion
field that can be observed as a spatio-temporal pattern; let
~V p be the spatio-temporal pattern (motion field) associated
with video Xp. Furthermore, ~V p

n,m(i) = [V p,u
n,m(i) V p,v

n,m(i)]
denotes the motion vector at location (n,m) in frame i of Xp.

Fig. 1. Flow chart of action recognition and localization method. Optical flow
in the query and test videos are first estimated from motion vector information.
Next, frame-to-frame motion similarity is computed between all frames of
the query and test videos. The motion similarities are then aggregated over a
series of frames to enforce temporal consistency. To localize, these steps are
repeated over all possible space-time locations. If an overall similarity score
between the query and test videos is desired, a final step is performed with
the confidence scores.

Our working assumption is that similar actions will induce
similar motion fields. We will use (u)+ as a shorthand for
max(0,u).

A. Estimation of coarse optical flow

Motion compensation is an integral component of modern
video compression technology and motion vectors are by-
products of the motion compensation process. Motion vectors
are obtained from block matching and can be interpreted as
crude approximations of the underlying motion field or optical
flow. In addition, the Discrete Cosine Transform (DCT) coef-
ficients can also be used to provide a confidence measure on
the estimate. We follow the approach outlined by Coimbra and
Davies [13] for computing a coarse estimate and a confidence
map of the optical flow. To generate the optical flow estimate,
we use the following rules [13]:

1) Motion vectors are normalized by the temporal distance
of the predicted frame to the reference frame, and their
directions are reversed if the motion vectors are forward-
referencing.

2) Macroblocks with no motion vector information (e.g.
macroblocks in I-frames and intra-coded macroblocks)
retain the same optical flow estimate as in the previous
temporal frame.

3) Macroblocks with more than one motion vector (e.g. bi-
directionally predicted macroblocks in B-frames) take as
the estimate a weighted average of the motion vectors,
where the weights are determined by their temporal
distance to the respective reference frames.

It has been recognized that optical flow estimation per-
formance at each image location depends on the amount of
texture in its local neighborhood [14]. In particular, if the local
neighborhood suffers from the aperture problem, then it is
likely to have an unreliable optical flow estimate. By threshold-
ing a confidence measure derived from the DCT coefficients
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that measures the amount of texture in the block [13], we can
filter out optical flow estimates that are likely to be noisy. To
compute the confidence measure for intra-coded macroblocks,
we use [13]:

λ =
1

N

N
∑

i=1

(

Fi(0, 1)
2 + Fi(1, 0)

2
)

(1)

where λ is the confidence measure, and Fi(u, v) is the 2D
DCT of the ith block, fi(x, y), out of N blocks within the
macroblock. Coimbra and Davies have shown that Fi(1, 0)
and Fi(0, 1) can be interpreted as a weighted average of
spatial gradient in the x and y direction respectively [13].
For predicted macroblocks, we update the confidence map
by taking a weighted average of the confidence map in the
reference frame(s) as indicated by motion vector information.

By thresholding λ, we then decide whether to keep the
optical flow estimate for the block or to set it to zero, hence
obtaining ~V p. As we will show later in section III-B, this
step removes unreliable estimates and greatly improves the
classification performance of our proposed algorithm.

B. Computation of frame-to-frame motion similarity

For the purpose of discussion in this section, both the
test frame and query frame are assumed to have a spatial
dimension of N × M macroblocks (the equal size restriction
will be lifted later). We would like to measure the motion
similarity between the motion field of the ith test frame,
~V test

n,m(i), and that of jth query frame, ~V query
n,m (j).

One way of measuring similarity is to follow the approach
taken by Efros et al. [6]. Each motion field is first split into
non-negative motion channels, e.g. (V p,u

n,m(i))+, (−V p,u
n,m(i))+,

(V p,v
n,m(i))+ and (−V p,v

n,m(i))+. We can then vectorize these
channels and stack them into a single vector ~Up(i). The
similarity between frame i of the test frame and frame j of
the query frame, S̃(i, j), is then computed as a normalized
correlation:

S̃(i, j) =
〈~U test(i), ~U query(j)〉

‖~U test(i)‖‖~U query(j)‖
(2)

We will refer to this similarity measure as Non-negative
Channels Normalized Correlation (NCNC).

NCNC does not take into account the differences in magni-
tudes of individual motion vectors. To address this, we propose
a novel measure of similarity:

S̃(i, j) =
1

Z(i, j)

N
∑

n=1

M
∑

m=1

d(~V test
n,m(i), ~V query

n,m (j)) (3)

where if ‖ ~V1‖ > 0 and ‖ ~V2‖ > 0,

d( ~V1, ~V2) =

(

〈 ~V1, ~V2〉
)

+

‖ ~V1‖‖ ~V2‖
· min

(

‖ ~V1‖

‖ ~V2‖
,
‖~V2‖

‖~V1‖

)

=

(

〈 ~V1, ~V2〉
)

+

max
(

‖~V2‖2, ‖~V1‖2
)

(4)

and d( ~V1, ~V2) = 0 otherwise. Also, the normalizing factor,
Z(i, j), in (3) is:

Z(i, j) =

N
∑

n=1

M
∑

m=1

I[‖~V test
n,m(i)‖ > 0 or ‖~V query

n,m (j)‖ > 0] (5)

In other words, we want to ignore macroblocks in both the
query and test video which agree on having no motion. This
has the effect of not penalizing corresponding zero-motion
regions in both the query and test video. We term this novel
measure Non-Zero Motion block Similarity (NZMS).

C. Aggregation of frame-to-frame similarities

Section II-B describes how to compute S̃(i, j), which tells
us how similar the motion fields of frame i of the test
frame and frame j of the query frame are. To take temporal
dependencies into account, we need to perform an aggregation
step. We do this by convolving S̃(i, j) with a T × T filter
parameterized by α, Hα(i, j), to get an aggregated similarity
matrix S(i, j) = (S̃∗Hα)(i, j) [6]. S(i, j) tells us how similar
a T -length sequence centered at frame i of the test video is to
a T -length sequence centered at frame j of the query video.
Hα(i, j) can be interpreted as a bandpass filter that “passes”
actions in the test video that occur at approximately the same
rate as in the query video. We use the following filter [6]:

Hα(i, j) =
∑

r∈R

e−α(r−1) (χ(i, rj) + χ(j, ri)) , −T/2 ≤ i, j ≤ T/2

(6)
where

χ(u, v) =

{

1 if u = sign(v) · b|v|c

0 otherwise
(7)

R is the set of rates (which has to be greater than one) to allow
for and α (α ≥ 1) allows us to control how tolerant we are
to slight differences in rates; the higher α is, the less tolerant
it is to changes in the rates of actions. Figure 2(a) shows this
kernel graphically for α = 2.0.

Figure 2(b) shows a pre-aggregation similarity matrix,
S̃(i, j). Note the presence of near-diagonal bands, which is
a clear indication that the queried action is taking place in
those frames. Figure 2(c) shows the post-aggregation similarity
matrix, S(i, j), which has much smoother diagonal bands.

We will show later in section III-C that this aggregation
step is crucial in performing action classification. However,
the choice of α is not that important; experimental results
show that performance is relatively stable over a range of α.

D. Space-time localization

Sections II-B and II-C tell us how to compute an aggregated
similarity between each frame of a T test-frames test sequence
and each frame of a T query-frames query sequence, both of
which are N × M macroblocks in spatial dimensions. To
compute an overall score on how confident we are that frame
i of the test frame is from the query sequence, we use:

C(i) = max
max(i−T

2
,1)≤k≤min(i+ T

2
,T test)

1≤j≤T query

S(k, j) (8)
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(a) (b) (c)

Fig. 2. An example similarity matrix and the effects of applying aggregation. In these graphical representations, bright areas indicate a high value. (a)
Aggregation kernel, (b) Similarity matrix before aggregation, (c) Similarity matrix after aggregation. Notice that the aggregated similarity matrix is less noisy
than the original similarity matrix.

Fig. 3. Illustration of space-time localization. The query video space-time
patch is shifted over the entire space-time volume of the input video, and the
similarity, C(n, m, i) is computed for each space-time location.

Maximizing S(k, j) over j of the query video allows us to
pick up the best response that a particular frame of the test
video has to the corresponding frame in the query video. We
also maximize S(k, j) over k in a T -length temporal window
centered at i. The rationale is that if a T -length sequence
centered at frame k of the test video matches well with the
query video, then all frames in that T -length sequence should
also have at least the same score.

The above steps can be easily extended to the case where
the test video and query video do not have the same spatial
dimensions. In that case, as proposed by Shechtman and
Irani [7], we simply slide the query video template over all
possible spatial-temporal locations (illustrated in figure 3),
and compute a score for each space-time location using (8).
This results in a action confidence volume, C(n,m, i), which
represents the score for the (n,m) location of the ith frame
of the test video. A high value of C(n,m, i) can then be
interpreted as the query action being likely to be occurring at
spatial location (n,m) in the ith frame.

While this exhaustive search seems to be computationally
intensive, operating in the compressed domain allows for a
real-time implementation.

E. Action video similarity score

Given C(n,m, i), we can compute a non-symmetric simi-
larity, ρ(X test, Xquery), of the test video to the query video by

using:

ρ(X test, Xquery) =
1

L

Ttest
∑

i=1

η(i)

(

max
n,m

C(n,m, i)

)

(9)

where the normalization factor L is given by:

L =

Ttest
∑

i=1

η(i) (10)

and η(i) is an indicator function which returns one if at least T
frames in the (2T +1)-length temporal neighborhood centered
at frame i have significant motion and returns zero otherwise:

η(i) = I





i+T
∑

j=i−T

I [Q(j) ≥ δ] ≥ T



 (11)

and the fraction of significant motion vectors in frame j, Q(j),
is given by:

Q(j) =

∑N test−1
n=0

∑M test−1
m=0 I

[

‖~V test
n,m(j)‖ > ε

]

N test · M test
(12)

A frame is asserted to have significant motion if at least δ
proportion of the macroblocks have reliable motion vectors
(reliable in the sense defined in section II-A) of magnitude
greater than ε, i.e. Q(j) ≥ δ.

III. EXPERIMENTAL RESULTS

We evaluate our proposed algorithm on a comprehensive
database compiled by Schüldt et al. [8]2. As illustrated in
figure 4, their database captures 6 different actions (boxing,
handclapping, handwaving, running, jogging and walking),
performed by 25 people, over 4 different environments (out-
doors, outdoors with scale variations, outdoors with different
clothes and indoors). Since our system was not designed to
handle scale-varying actions, we considered only the three
environments that do not have significant scale variations.

Within each environment, we divide the action videos into a
training set of videos performed by 16 subjects, and a test set
of videos performed by 9 subjects. To classify each of the test
video, we simply use nearest neighbor classification (NNC) by

2http://www.nada.kth.se/cvap/actions/
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Fig. 4. Snap-shot of frames from action videos in database [8]. From left to right: boxing, handclapping, handwaving, running, jogging, walking. From top
to bottom: outdoors environment, outdoors with different clothing environment, indoors environment. The subjects performing each action is the same across
the different environments.

evaluating the action video similarity score (see section II-E
with each of the videos in the training set.

In our experiments, we used K = 9, δ = 1
30 , ε = 0.5

pels/frame, α = 2.0 and T = 17. For comparison, we also
tested both NCNC (2) and NZMS (3) when computing frame-
to-frame motion similarity.

A. Classification performance

The action classification confusion matrix for our algorithm
when using NZMS is shown in table I, while that using
NCNC [6] is shown in table II. Each entry of the matrix gives
the fraction of videos of the action corresponding to its row
that were classified as an action corresponding to the column.
Our overall percentage of correct classification is 86%, which
compares favorably to Schüldt et al. ’s [8] best reported result
(just under 80%) on the same data set.

Looking at the confusion matrices, we see that our proposed
NZMS measure vastly outperforms NCNC. This is due to
the fact that our measure looks at each corresponding pair
of macroblocks separately instead of looking across all of
them. NZMS also considers both differences in motion vector
orientations and norms, and ignores matching zero-motion
macroblocks.

Using NZMS, most of the confusion is between “Running”
and “Jogging”, with a significant proportion of “Jogging”
videos being erroneously classified as “Running”. Looking
at the actual videos visually, we found it hard to distinguish
between some “Running” and “Jogging” actions. There are
cases where the speed of one subject’s “Jogging” is faster
than the speed of another subject’s “Running”!!

B. Performance gain from thresholding optical flow confi-
dence map

Table III shows the effects of thresholding on action classifi-
cation performance using our proposed approach. By removing
noisy estimates of the optical flow, we are able to achieve a
10% gain in classification performance.

TABLE I
CONFUSION MATRIX USING NZMS

Box Hc Hw Run Jog Walk

Boxing 0.82 0.11 0.00 0.00 0.00 0.07
Handclapping 0.01 0.95 0.04 0.00 0.00 0.00
Handwaving 0.07 0.04 0.89 0.00 0.00 0.00

Running 0.00 0.00 0.00 0.91 0.00 0.09
Jogging 0.00 0.00 0.00 0.41 0.58 0.01
Walking 0.00 0.00 0.00 0.00 0.00 1.00

TABLE II
CONFUSION MATRIX USING NORMALIZED CORRELATION [6]

Box Hc Hw Run Jog Walk

Boxing 0.80 0.00 0.03 0.00 0.00 0.17
Handclapping 0.88 0.11 0.01 0.00 0.00 0.00
Handwaving 0.09 0.00 0.87 0.00 0.00 0.00

Running 0.00 0.00 0.00 0.75 0.25 0.00
Jogging 0.01 0.00 0.00 0.01 0.98 0.00
Walking 0.00 0.00 0.00 0.55 0.00 0.45

C. Effect of α variation on classification performance

To understand the effect of α on classification, we ran an
experiment using NZMS with varying values of α. Table IV
shows the results of this experiment. We see that the classifi-
cation performance is relatively stable over a range of α. More
importantly, it is also clear that the aggregation step described
in Section II-C is critical for action classification.

TABLE III
CLASSIFICATION PERFORMANCE WITH AND WITHOUT THRESHOLDING

CONFIDENCE MAP

Method
With

thresholding
Without

thresholding

NZMS 85.2% 75.3%
NCNC 72.2% 71.6%
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TABLE IV
CLASSIFICATION PERFORMANCE WITH VARYING α

α Classification performance

1.0 83.3%
2.0 85.2%
3.0 84.6%
4.0 84.6%

No aggregation 62.3%

(a)

(b) (c)

(d) (e)

Fig. 5. Localization Results. The false color in (d) and (e) denotes detection
responses, with blue and red indicating a low and high response respectively.
(a) A frame from the query video, (b) An input video frame with one person
walking, (c) An input video frame with two people walking, (d) Detection of
one person walking, (e) Detection of two people walking.

D. Localization performance

Unlike most other methods, with the notable exception of
[7], we are able to localize an action in space and time and as
well as detect multiple and simultaneous occurring activities
in the test video. Figure 5 shows an example (the “beach” test
sequence and walking query sequence from Shechtman and
Irani [7]) which demonstrates our algorithm’s ability to detect
multiple people walking in the test video.

E. Computational costs

On a Pentium-4 2.6 GHz machine with 1 GB of RAM, it
took just under 11 seconds to process a test video of 368×184
pixels with 835 frames on a query video that is of 80 × 64
pixels with 23 frames. We extrapolated the timing reported in
[7] to this case; it would have taken about 11 hours. If their
multi-grid search was adopted, it would still have taken about
22 minutes. Our method is able to perform the localization,
albeit with a coarser spatial resolution, up to 3 orders of
magnitude faster. On the database compiled in [8], each video
has a spatial resolution of 160×120 pixels, and has an average
of about 480 frames. For each environment, we would need
to perform 22500 cross-comparisons. Yet, each run took an
average of about 8 hours. In contrast, [7] would have taken
an extrapolated run time of 3 years!

IV. EFFECTS OF VIDEO ENCODING OPTIONS

In the experiments described in the previous section, we
have used input video compressed with MPEG [15], with
a group-of-pictures (GOP) size of 15 frames, and a GOP
structure of I-B-B-P-B-B-, where ‘I’ refers to an Intra-frame,
‘P’ refers to a Predicted-frame, and ‘B’ refers to a Bi-
directionally predicted-frame. It would be interesting to see
if there is any discernible difference when different encoding
options, such as GOP size, GOP structure and the use of half-
pel or quarter-pel motion estimation, are used. In addition,
while MPEG uses 16×16 macroblocks as the basis of motion
compensation, newer encoding standards such as H.263+ and
H.264 allow the use of smaller block sizes [2], [3].

These experiments would be useful for a systems engineer
in choosing a video encoder and its encoding options. While
storage space and video quality are important considerations,
it would be helpful to know if sacrificing a little compression
performance would yield large gains in surveillance tasks such
as action detection.

In the experiments below, we have used the publicly avail-
able “FFMPEG” video encoder3. When applicable, we will
describe the encoder options, and specify the actual flags used
with FFMPEG in parentheses. Unless otherwise mentioned,
the encoding options used are that the MPEG-4 video codec is
used (“-vcodec mpeg4”), the output video is of similar quality
to the input video (“-sameq”), and the “AVI” container format
is used.

A. GOP size and structure

We look at how varying GOP size and structure affects clas-
sification performance. We consider two commonly used GOP
structure, I-B-B-P-B-B- (“-bf 2”) and I-P-P-P-P-P-. We also
look at a variety of GOP sizes {9, 12, 15, 18, 30, 60, 120, 240}
(“-g [GOP size]”). By looking at how classification perfor-
mance varies with compression performance, we can get an
idea of what trade-offs are possible by varying GOP param-
eters when performing video encoding. In these experiments,
the output video quality is kept relatively similar over all GOP
size and structure.

It should be expected, and is in fact the case, that the
larger the GOP size, the smaller the compressed videos,
since predicted frames such as P and B frames can be more
efficiently compressed than I frames. The results in Figure 6
further shows that in general, increasing GOP size also results
in decreasing classification performance. This could be due to
the fact that the update of the confidence measure computed
as in Section II-A suffers from error propagation with each
P frame. To test out this hypothesis, we also ran experiments
where the confidence measure is computed from the DCT of
the actual decoded frame pixels instead. Looking at the curve
for the I-P-P-P-... GOP structure with no texture propagation
error, we see that the classification accuracy is indeed fairly
constant over a wide range of GOP size. This confirms that
the main source of performance degradation with increasing
GOP size is due to the propagation errors in computing the
confidence measure.

3Available at http://ffmpeg.mplayerhq.hu/



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

540 560 580 600 620 640
65

70

75

80

85

90
Performance vs Compressed database size

Compressed database size (MB)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

 

 

I−B−B−P−...
I−P−P−P−...
I−P−P−P−... (no propagation)

Fig. 6. Effect of varying GOP size on classification performance and com-
pression performance. In general, increasing GOP size results in decreasing
classification performance. Also, having no B frames in the GOP structure
offers a better compression-classification trade-off. The fairly constant per-
formance of the scheme using I-P-P-P-... with no texture propagation error
indicates that the main source of performance degradation with increasing
GOP size is due to propagation errors in computing block texture.

Figure 6 also shows that for the most part, the I-P-P-P-
... GOP structure offers a better classification-compression
trade-off than the I-B-B-P... GOP structure. There are two
possible reasons for this. First, because of the complexity
of articulated motion, B-frames are unable to provide any
substantial compression gains over P-frames, while suffering
from overhead. Hence, the I-B-B-P-... structure, for the same
GOP size, actually performs worse in terms of compression
performance. Second, the I-B-B-P-... structure introduces inac-
curacy into the optical flow estimation process. The P frames
are spaced 3 frames apart, and hence its estimated motion is
actually over 3 temporal frames and not over 1 frame.

The experiments in this section seem to suggest that if action
classification is an important factor in determining encoding
options, then no B frames should be used in the encoding.
This also has other advantages such as simpler encoders and
decoders requiring less frame buffer memory. Further, if we
used the confidence measure as computed in Section II-A, the
GOP size should not be too large. A GOP size of 12, 15 or 18
seems to offer a good balance between compression and action
classification. There might also be other factors in determining
GOP size however, such as ease of random access.

B. Quarter-pel accuracy motion estimation

In MPEG, motion estimation was carried out to half-pel
accuracy. It was found that better motion compensation is
possible with a further increase in accuracy to quarter-pel [3],
[16]. This motivates us to investigate if an increase in motion
estimation accuracy (“-qpel 1”) would also translate into better
action classification performance.

Figure 7 shows that using quarter-pel accuracy in mo-
tion estimation does not actually improve the classification-
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Fig. 7. Effect of quarter-pel accuracy motion estimation on classification
performance and compression performance. There seems to be no significant
improvement in the compression-classification trade-off by using motion
estimation with quarter-pel accuracy instead of half-pel accuracy.

compression trade-off. There are two main reasons for this.
First, we observe that on this set of action videos, for the same
GOP size, using quarter-pel accuracy actually performs worse
than half-pel accuracy in terms of compression performance.
This could be due to the storage overhead of motion vectors
with increased accuracy. Second, quarter-pel accuracy does not
translate into better action recognition performance.

C. Block size in motion compensation

As mentioned earlier, newer encoding standards have the
option of allowing smaller block sizes to be used in motion
compensation [2], [3]. We compare the effect of forcing
smaller blocks in motion compensation (“-mv4 1”) on both ac-
tion classification performance and compression performance.
In this set of experiments, we used a GOP structure of I-B-B-
P-...

Figure 8 shows that using smaller blocks in motion com-
pensation does result in a better performance vs compression
trade-off. Smaller blocks allows for a more refined motion
compensation and prediction, hence resulting in better com-
pression performance. At the same time, with higher reso-
lution motion vectors, action classification performance also
improves. Of course, while using smaller blocks for motion
compensation improves the trade-off, it has to be weighted
by the increase in computation time. In our experiments,
increasing the motion estimation resolution by 2 in each
dimension resulted in about 5 times increase in run-time.

V. CONCLUSION

We have designed, implemented and tested a system for
performing action recognition and localization by making use
of compressed domain features such as motion vectors and
DCT coefficients which can be obtained with minimal decod-
ing. The low computational complexity of feature extraction
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Fig. 8. Effect of using different block sizes in motion compensation on
classification performance and compression performance. Using a smaller
block size results in a better compression-classification trade-off, but this has
to be weighed against the resulting increase in computational time.

and the inherent reduction in search space makes real-time
operation feasible. We combined existing tools in a novel way
in the compressed domain for this purpose and also proposed
NZMS, a novel frame-to-frame motion similarity measure. Our
results compare favorably with existing techniques [8] on a
publicly available database.

Our experimental results provide justification for the en-
gineering choices made in our approach. In particular, we
showed the value of filtering motion vectors with low texture,
and of aggregating frame-to-frame similarities. We also sys-
tematically investigated the effects of various encoding options
on the action classification performance of our proposed ap-
proach. The results showed that for action videos, using a GOP
structure with only P frames results in a better compression-
classification trade-off. We also found that while a larger
GOP size might result in a lower classification performance,
it is mostly due to the effects of drift in computing block
texturedness. Furthermore, quarter-pel accuracy in motion
estimation does not appear to provide any benefits. While
using smaller blocks in motion compensation does lead to
better action classification and compression performance, the
increased computational time of both encoding and action
classification should be taken into account.

In future work, we plan to extend this to a multi-grid
platform which would allow us to approach the spatial res-
olution of existing methods at a lower computational cost. For
example, while we can encode video with smaller blocks in
motion compensation, the algorithm can first perform action
recognition at a coarser level, and then perform a finer level
search in promising regions. We also plan to investigate the
use of more sophisticated classifiers such as support vector
machines (SVM) to improve our classification results. While
our method is robust to small variations in scale, we would
like to explore a truly scale-invariant approach in future work.

Another interesting angle to consider is the type of motion
estimation used at the encoder. RD optimization is commonly
performed in sophisticated video encoders to seek an optimum
trade-off between compression and reconstruction quality [17].
It has also been used in the motion compensation process to
reduce the rate used for coding motion vectors [18], [19]. This
has the effect of smoothing the motion vector field which can
be interpreted as a de-noising process. We hypothesize that
this has a positive influence on the compression-classification
trade-off, but this would have to be verified.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation (NSF) under Grant No. CCR-0330514 and Army
Research Office (ARO) Award W911NF-06-1-0076. Chuohao
Yeo is funded by the Agency for Science, Technology and
Research, Singapore (A*STAR). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the NSF or ARO or A*STAR.

REFERENCES

[1] C. Yeo, P. Ahammad, K. Ramchandran, and S. S. Sastry, “Compressed
domain real-time action recognition,” in Proc. IEEE Workshop on
Multimedial Signal Processing, Victoria, BC, Canada, Oct. 2006.

[2] G. Cote, B. Erol, M. Gallant, and F. Kossentini, “H. 263+: video coding
at low bit rates,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 8, no. 7, pp. 849–866, 1998.

[3] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of
the H. 264/AVC video coding standard,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560–576, 2003.

[4] S.-F. Chang, “Compressed-domain techniques for image/video indexing
and manipulation,” in Proc. IEEE International Conference on Image
Processing, 1995, pp. 314–317.

[5] S. Wee, B. Shen, and J. Apostolopoulos, “Compressed-domain video
processing,” Hewlett-Packard, Tech. Rep. HPL-2002-282, 2002.

[6] A. Efros, A. Berg, G. Mori, and J. Malik, “Recognizing action at a
distance,” in Proc. IEEE International Conference on Computer Vision,
Nice, France, Oct. 2003.

[7] E. Shechtman and M. Irani, “Space-time behavior based correlation,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
San Diego, USA, Jun. 2005, pp. 405–412.
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