
Design and Implementation of a Sensor Network
System for Vehicle Tracking and Autonomous

Interception
Cory Sharp Shawn Schaffert Alec Woo Naveen Sastry Chris Karlof

Shankar Sastry David Culler

University of California, Berkeley

Abstract

We describe the design and implementation of PEG, a
networked system of distributed sensor nodes that detects
an uncooperative agent called theevader and assists an
autonomous robot called thepursuerin capturing the evader.
PEG requires services such as leader election, routing, net-
work aggregation, and closed loop control. Instead of using
general purpose distributed system solutions for these ser-
vices, we employ whole-system analysis and rely on spatial
and physical properties to create simple and efficient mech-
anisms. We believe this approach advances sensor network
design, yielding pragmatic solutions that leverage physical
properties to simplify design of embedded distributed sys-
tems.

We deployed PEG on a 400 square meter field using
100 sensor nodes, and successfully intercepted the evader in
all runs. While implementing PEG, we confronted practical
issues such as node breakage, packaging decisions, in situ
debugging, network reprogramming, and system reconfigura-
tion. We discuss the approaches we took to cope with these
issues and share our experiences in deploying a large sensor
network system.

I. I NTRODUCTION

The problem of vehicle tracking with autonomous inter-
ception provides a concrete setting in which to advance
sensor network and control system design. In our case, wire-
less sensor nodes containing magnetometers are distributed
throughout a large physical area to form a diffuse sensing
field. An uncooperative agent, theevader, enters and moves
within this area, where it is detected by the magnetometers.
Unlike environmental monitoring, it is not enough to obtain
measurements of the physical disturbance caused by evader;
we want to process the readings within the network and take
action in a timely matter. Thepursuer, a cooperative mobile
agent, enters the field and attempts to intercept the evader
using information obtained from the sensor network and its
own autonomous control capabilities.

Local signal processing can be performed at each node to
distill higher-level events given magnetic-field measurements
due to motions of multiple vehicles. Clusters of nodes that
sense sufficiently strong events can collectively compute an
estimate of the position of the vehicle causing the distur-
bance. These potentially noisy estimations from multiple

objects must be disambiguated and used to make continual
pursuer course corrections.

The autonomous interception problem concretely mani-
fests many of the capabilities envisioned for sensor net-
works [1], [2], including several levels of in-network process-
ing, routing to mobile agents, distributed coordination, and
closed-loop control. We address these issues in terms of the
whole system design, rather than as isolated subproblems.
Indeed, this whole-system view yields pragmatic solutions
that are more simple than what is generally found in the
literature for individual subproblems.

We built and demonstrated a working purser/evader system
comprising a field of 100 motes spread over a400m2 area
in July 2003. The evader was a four-wheeled robot driven by
a person using remote control. The pursuer was an identical
robot with laptop-class resources. This paper describes the
design, implementation, and experience with PEG. Section II
discusses our overall design philosophy with respect to re-
lated work. Section III describes the application, the hardware
platform, and the overall software system design. Section IV
describes the in-network processing components for local
detection and aggregation into a position estimate. Section V
focuses on effective mobile-to-mobile routing, including ef-
fective tree formation and efficient landmark routing. Section
VI describes the design of the navigation and control of
the pursuer. Section VII evaluates our system design, and
Section VIII outlines several of the experiences that have an
impact on the overall system design and implementation.

Our main contributions are:
• We describe the design and implementation of PEG,

a networked system of distributed sensor nodes that
detects an evader and aids a pursuer in capturing the
evader.

• We employ whole-system analysis and utilize spatial
and physical properties to design efficient and simple
distributed algorithms. We believe this approach is ap-
plicable to a variety of applications.

• We demonstrate one of the first operating large-scale
tracking and pursing system that uses computationally
and bandwidth limited sensor nodes.

• We share practical advice for deploying large sensor
network applications, including package design, debug-
ging techniques, and high-level network management
services.

2

Fig. 1. Illustration of an intruder interception system using sensor networks
to detect the intruder (arrow) and convey such information to the pursuing
robots. Each pursuer matches the sensor data to its local map for path
estimation and interception of the intruder.

II. A PPROACH

Variants of the pursuer-evader problems have been well
studied from a theoretical point of view [3], [4] and have been
used for distributed systems research [5]. Sophisticated algo-
rithms [6], [7] have been developed to associate readings with
logical tracks of multiple objects. Elaborate data structures
are used to deal with dynamic track creation and elimination
of potential tracks caused by input noise. In addition, there is
work [8] on closed loop control for the autonomous pursuer
starting with various assumptions about what information is
provided to the robot.

The early work on wireless sensor nets observed that dis-
tributing intelligence throughout the sensor array dramatically
simplified the tracking problem [2]. When dense sensing is
employed, each patch of sensors only has to deal with a
few objects in a limited spatial region. Signal processing is
greatly simplified because the sensors are close to the source,
so the SNR is high. Physical constraints, such as speed of
movement, allow for low-level filtering of false positives.

Others have studied a decentralized form of the problem
where object tracking, classification, and path estimation are
performed by a network of wireless sensors [9], [10]. In this
formulation, sensing and detection are performed by local
collaborative groups, each responsible for tracking a single
target. The solution is cast in traditional distributed system
terms with an explicit representation of the group associated
with each object. Movement of the object involves nodes
joining and leaving the group. Leader election is performed
so that a particular node represents the object at any point
in time and typically as the root of the collaborative signal
processing. Recent work optimizes a single objective function
that combines the cost of signal processing and tracking with
the benefits of obtaining the given data [11]. Sophisticated
programming environments have been proposed [12] to main-
tain the distributed data structure representing each logical
entity and the set of nodes associated with its track. Unsur-
prisingly, these studies suggest that quite powerful nodes are
required to perform distributed tracking. In addition, Welsh
and Mainland have proposed a higher-level programming

Calibration &
Sensing

Leader Election &
Data Aggregation

Data Filtering Interception
Planning

Pursuer
Navigation

Route to Mobile Pursuer

Nodes near evader

Pursuer

Fig. 2. Logical flow of information in PEG. After the nodes calibrate their
sensors, they listen for events in the network. When events are sensed near
several nodes, a leader is elected to aggregate the data into one packet. This
packet is routed to the moving pursuer via multi-hop routing. After data
filtering and interception planning, the pursuer chases the evader.

environment that uses abstract regions to simplify develop-
ment of sensor applications [13]. Recently, other researchers
have begun to focus on the use of very simple outputs from
dense networks of sensors. For example, Aslam et al. [14]
explore tracking where each sensor reports only a single bit
of information of whether the disturbance is getting closer.

We adopt a light-weight approach that stems from two
key observations. First, the autonomous interception problem
admits a natural hierarchy. The lowest-tier of nodes, which
are the most numerous and most resource constrained, are
responsible for simple detection functions and for provid-
ing distilled information to a higher-tier. The higher-tier is
capable of doing more substantial processing and initiating
actions based on the information. In a basic tracking problem,
the higher tier might include computer-controlled cameras,
whereas in the interception problem it is a mobile pursuer.
Elements in the lower tier generally do not need to know
much about the track or the identity of the object, as
their behavior does not change based on that information.
The robots are power intensive and require substantial local
processing, hence they are a natural point of concentrated
processing.

Second, in-network processing at the lowest tier is essential
to conserve bandwidth, thereby reducing contention and
keeping notification latency low. The processed results need
not be perfect as they will be further analyzed by the higher
tier. For example, an inconsistent leader election may cause
two closely related position estimations for an object at nearly
the same time. This is easily addressed in the higher level
processing. Inconsistency is far more benign here than in the
settings where distributed consensus is typically used, for
example to avoid multiple financial transactions [15], [16].

III. SYSTEM ARCHITECTURE

To provide pursuers with accurate detection events quickly
and often, we developed services for detection, routing, data
processing, and pursuit. We provide a sense of the overall in-
formation flow and describe the constituent system services.
Additional issues of power management and authentication
and encryption are beyond the scope of this paper.

A. Software Services

Figure 2 illustrates the information flow from the lower-
tier sensing field to the higher-tier processing unit at the

3

Path Following Pursuit
Services

Pu
rs

ue
r

A
rc

hi
te

ct
ur

e
Interception Planning Path Planning

Pursuer Position Estimation Estimation
Services

Entity Disambiguation Evader Position Estimation

Application
ServicesLocalization Leader Election and Aggregation

Se
ns

or
 N

et
w

or
k

A
rc

hi
te

ct
ur

e

Landmark Routing Tree Building Node Management Network
ServicesNetwork Reprogramming Config Neighborhood

Ranging Sensing and Entity Detection Intra-mote
servicesHardware Abstraction Messaging

Fig. 3. Hardware and functional division of services. The dotted line
separates services running on the pursuer from services running in the sensor
network.

pursuer. The sensor network detects the evader and routes
this information to the pursuer, and the pursuer acts on this
data to intercept the evader. Figure 3 shows the overall system
architecture of the services required to implement PEG. The
sensor tier basically performs two high-level services: self-
localization and vehicle detection. The first core service,
localization, is used to build a coordinate system of the entire
network upon which the pursuer can map the collected de-
tection events to meaningful physical locations. Ad-hoc self-
localization is achieved using time-of-flight ultrasonic rang-
ing technology with anchor-based localization algorithms.
The system architecture supports self-localization, but it was
not used in the live demonstration due to sporadic errors; this
is redressed in later work [17].

When a vehicle is present, the sensing and detection com-
ponent (Section IV-B) of nearby nodes will trigger detection
events and invoke the leader election algorithm (Section IV-
D) for data aggregation. The process of leader election is
realized over a tuple-space neighborhood service (Section IV-
C). The elected leader will propagate the aggregated data to
the pursuers using landmark routing, which operates over a
simple tree building mechanism (Section V).

When sensor readings reach the pursuer, the pursuer uses
an entity disambiguation service to determine the cause of
the event: the evader, the pursuer, or noise. Sensor readings
that are determined to correspond to the evader are sent to
the evader position estimation service. The pursuer position
estimation service uses data from the GPS unit to determine
an estimate of the pursuer position. Estimates of the position
of the pursuer and evader are sent to the interception service,
which generates a interception destination for the pursuer.
This destination is processed by the path planning service to
generate a feasible route. Finally, the route is submitted to
the path following service that tightly controls the pursuer
along this route. These mechanisms are further developed in
Section VI.

Beside the core functionally required for PEG, new system
services are also implemented to ease the difficulty in man-
aging and configuring the network at the time of deployment.
The Config component allows run-time configuration of

Exposed
components

Watertight
compartment

Ultrasound

Battery

Collision
absorption

CPU / Radio
Mag Sense

Power

Reflector

Fig. 4. Photograph of a PEG sensor deployed in the field on the day of
the demonstration (left), and a schematic of its basic elements (right). The
height between the plastic end caps is precisely 3.0 inches (7.6 cm), and the
height from the bottom spring base and top of the ultrasonic cone is slight
less than twice that distance.

system parameters that are useful for system tunings. The
node management component is used for node identification,
debugging, and network-wide power cycle management. Fi-
nally, network reprogramming allows rapid reprogramming
the entire system over the wireless medium, which is valuable
for rapid update of code image. We discuss these deployment
issues in Section VIII.

B. Sensor Tier Platform

The sensor tier of our system consists of Berkeley
Mica2Dot motes [18], a quarter-sized unit with an 8-bit
4 MHz Atmel ATMEGA128L CPU with 128 kB of instruc-
tion memory and 4 kB of RAM. Its radio is a low power
Chipcon CC1000 radio that delivers about 2 kB/s application
bandwidth with a maximum communication range of around
thirty meters for our particular antenna and environment.
Each node uses a magnetometer to detect changes in a mag-
netic field, presumably caused by a nearby moving vehicle.
An ultrasound transceiver at 25kHz is used for time-of-flight
ranging. A reflector cone is situated above the transceiver
to diffuse the ultrasonic waves for omni-directional ranging
which significantly reduces the ranging radius to about 2
meters.

Figure 4 shows the complete packaging of a sensor node.
At the bottom of the node is a base that secures the node to
the ground and extends it a few inches above the ground. The
battery, voltage conversion board, magnetic sensor, and the
Mica2Dot are all protected by the plastic enclosure. The side
of the enclosure has a hole that allows a quarter-wavelength
piano wire antenna to be connected to the Mica2Dot. The
only sensor exposed is the ultrasound transceiver at the top,
with the cone securely mounted above it. The complete
packaging is robust against impact from vehicles, and the
spring at the base keeps the node upright even after collisions
to elevate the node a few inches above the ground plane for
effective radio communication.

All nodes at the sensor tier run TinyOS [18], an event-
driven operating system for networked applications in wire-
less embedded systems. The implementation of all the core

4

services shown in Figure 3 consumes about 60 kB of program
memory and about 3 kB of RAM.

C. Higher Tier Platform

Our ground robots are essentially mobile off-road laptops
equipped with GPS. Each robot runs Linux on a 266 MHz
Pentium2 CPU with 128 MB of RAM, 802.11 wireless
radio, a 20 GB hard drive, all-terrain off-road tires, a motor-
controller subsystem, and high-precision differential GPS.
This platform is sufficient to execute the simple higher-tier
services shown in Figure 3. The GPS typically provides
estimates every 0.1 seconds with an accuracy of about
0.02 meters. The top speed of the robot is about 0.5m/s,
with independent velocity control for each wheel. In our
deployment, we used one pursuer and one evader, each the
same model robot.

IV. V EHICLE DETECTION

Detecting a vehicle in the network begins with a node
gathering and processing data leading up to the formation of
a position estimate report. In this section, we show how a
bandwidth analysis of the overall system drives the design
of our phases of vehicle detection.

A. Bandwidth-Driven Design

We design our sensor network to provide full, redundant
sensor coverage – for sensors placed in a grid, a vehicle
excites at least four and up to nine sensors. From this
coverage requirement, we design the rest of the detection
system with an understanding of the impact of low-level
decisions on regional bandwidth limits.

Presuming a local aggregate bandwidth of 40 packets per
second, a single node can provide up to four reports per
second before a region of nine nodes saturates the shared
channel. If each node sends these detection events, the local
channel will be saturated leaving no bandwidth for other
communications such as routing these readings to the pursuer.
Additionally, as more vehicles are added to the system,
routing the data will increasingly tax the bandwidth of the
system. Clearly, we must use some techniques to conserve
bandwidth.

We use local aggregation to reduce many detection events
into one position report, We allocate half the total bandwidth
for exchanging local detection reports and the remaining
bandwidth for system wide behaviors such as routing position
estimates to pursuers. Even though sharing local detections
uses a significant portion of the local bandwidth, the pursuer
still receives frequent position updates. We decompose this
overall process into three distinct phases: calibration and
sensing, local detection reports, and leader election and
position estimation.

B. Calibration and Sensing

The magnetometer measures the entire magnetic environ-
ment. This includes static structures such as the Earth’s
magnetic field (these magnetometers are often used for digital

compassing) as well as, for instance, underground metal
pipes, the metal in a desk chair, or rebar in the concrete of a
parking garage structure. To detect changes in the magnetic
field caused by a moving vehicle, this static environment must
be accounted for in each node’s measurements. Each node
subtracts the output of an moving average from each reading.
This sets a minimum detectable speed on a vehicle, because
a sufficiently slowly moving object will be indistinguishable
from the static environment.

One interaction that we did not expect is a relationship
between the radio communication and the magnetometer. Be-
cause of the proximity of the radio chip and the magnetome-
ter chip, which is in part a result of the small package design
but also exacerbated by our hardware design, radio transmis-
sions excite significant readings from the magnetometer. As
a workaround, we invalidate magnetometer readings for a
short period whenever a radio packet is sent or received at
the node.

C. Local Detection Reports

To decide if a node should share its calibrated reading with
its neighbors, the node compares the 1-norm of its magnetic
reading against a preset threshold value. If the detected
value exceeds this threshold, the node sends a message
including the magnetic magnitude and its own(x, y)-position
as 8.8 fixed point values in meters. To limit a node’s local
detection report rate to 2 packets per second, each node is
subject to a reading timeout of 0.5 seconds during which it
is not allowed to share a new reading.

To share data among a neighborhood of nodes, we evolved
a new programming primitive called Hood [19]. A neighbor-
hood in Hood defines a set of criteria for choosing neighbors
and a set of variables to be shared. The neighborhood
membership, data sharing, data caching, and messaging is
managed by the Hood abstraction, allowing the developer
to focus on the properties of a neighborhood instead of its
mechanics. Hood exploits the cheap broadcast mechanism
of a sensor network to allow asymmetric membership –
a node broadcasts changes to its neighborhood values and
doesn’t know or care what other nodes consider it a member,
which is different from the group collaboration work found
in [9], [10]. Overall, our design is well suited for unreliable
communication channels such as those in sensor networks,
and defers concerns of reliability and consistency to the
application level.

For PEG, we created aMagHood that manages the mes-
saging and caching of local detection reports and prescribes
the neighborhood membership criteria. Because the magne-
tometer neighborhood represents a local physical relation-
ship, and because radio connectivity doesn’t have a clean
relationship with respect to physical distance, membership
in the neighborhood is restricted to only those nodes within
3 meters. And, similar to the report timeout, readings are
invalidated after timeout of 0.5 seconds, which sets a time
window on the validity of a neighbor’s reading.
D. Leader Election and Position Estimation

We cast leader election as primarily a bandwidth reduction
technique and relax the usual requirement of correlating a

5

single leader with a single entity, unlike [9], [10] where
vehicle classification is done on the sensor node. High level
processing on the pursuers imposes model constraints to
correlate position estimates with individual entities. This
decomposition allows us to construct a significantly more
simple and robust leader election protocol.

Using MagHood, each node gains a view of the recent
detection reports from nodes in its neighborhood. At this
point, the leader election protocol requires no additional
communication – a node elects itself leader if it has the
maximum magnetometer magnitude among the nodes in its
neighborhood. This lightweight mechanism embodies the
idea of loose consistency: in the worst case, every node that
detects the location of a vehicle reports it.

The pursuer receives reports about all position estimates
in the network – those caused by the evader, by itself, or by
noise. Even with this policy, redundant leaders for a single
object are the exception not the rule, because leadership
changes smoothly over time given the physical interactions.
Additionally, this design implicitly supports multi-object
tracking by providing all the data necessary for the pursuer
to do centralized filtering and correspondence.

The position estimate report contains an 8.8 fixed-point
(x, y)-position calculated as a center of mass, the total
number of nodes contributing to the report, and the sum of the
detection magnitudes. Similar to previous timeouts, a node is
only allowed to become leader and send a position estimate
report at most every 0.5 seconds. This estimated position is
again a loosely consistent value – instead of using a time
synchronization service to guarantee that all readings happen
within a strict epoch, the cache timeout establishes a notion
of a weak epoch.

Within an epoch, a node elects itself leader the instant
it determines it has the largest detection magnitude. As an
alternative, if a node would have waited a period of time
for additional readings, there exist certain vehicle paths that
prevent any node from becoming a leader, which would
produce no position estimates for the pursuer. Furthermore,
this protocol ensures that a node can become a leader if its
detection exceeds the threshold, meaning that the maximum
speed of the vehicle is only a function of the properties of
the sensor and the allocated bandwidth for position reports.

V. ROUTING

The primary routing requirement in PEG is to deliver the
evader detection events, as sensed by the network, to the
mobile pursuers. That is, we must route packets from many
sources to a few mobile destinations. This differs from the
typical many-to-one data collection traffic model found in
other sensor network applications [20], [21], [22]. However,
it resembles some of the work found in the mobile computing
literature, which provides different approaches to support
this mobile routing service. In this section, we first explore
these approaches and then discuss a simple and efficient
landmark routing approach to arrive with a solution, which
is potentially applicable to systems other than PEG.

A. Design Approaches

One design approach is to treat the entire network and the
mobile pursuers as one ad-hoc mobile system, and deploy
well-known mobile routing algorithms such as DSR, AODV,
and TORA [23], [24], [25] to provide an any-to-any routing
service. These protocols are designed to support any pairs
of independent traffic flows while the traffic in PEG are
correlated and directed only to a few moving end points
(the pursuers). Nonetheless, the resulting routing paths with
this approach would be efficient as these algorithms optimize
routes based on the shortest path metric.

Another approach is to decouple the network from the
mobile pursuers and exploit the static network topology to
decrease the communication complexity for routing. This
resembles the home-agent work found in mobile computing
[26], where every pursuer is assigned a home-agent for data
forwarding purposes. For example, recent work to support
group communication among a set of moving agents over
a sensor network in a bounding box has been proposed
[27]. It assumes that any-to-any routing comes free by using
geographical routing and maintains a horizontal backbone
across the bounding box. Through these home agents on the
backbone, communication between the moving agents and
the network is achieved. Mobile agents need to register with
the backbone to discover new home agents as they move;
these migrating home agents allow more efficient routing
paths to be established. The communication complexity thus
depends on the overhead of backbone maintenance and home
agent migration frequency.

For efficiency and simplicity, the approach we use also
exploits the static network topology, but we do not assume
any geographical routing support. Furthermore, we minimize
protocol communication overhead by distributing soft state
across the network and slightly sacrificing routing efficiency.
We uselandmark routing[28] to split the many-to-few rout-
ing problem into two subproblems: many-to-landmark and
landmark-to-few. Landmark routing is a simple mechanism
that uses a known rendezvous point to route packets from
many sources to a few destinations. For a node in the
spanning tree to route a detection event to a pursuer, it first
sends a message up a spanning tree to the root node, the
landmark. Then the landmark forwards the message to the
pursuer. The original landmark paper discusses the scalability
of this approach using a hierarchy of landmarks. In this work,
we only consider a single landmark. This approach results
in longer routing paths as traffic must be relayed through
the landmark, which hurts latency, but requires less control
bandwidth to maintain routes to the moving target than other
protocols such as AODV.

For the many-to-landmark routing, we first considered
using a simple grid-based routing such as [29] since loca-
tion information of each node is known and the network
layout is a grid. However, we did not pursue this direction
since it does not address link reliability issues, which is
essential for creating reliable routing over unreliable links.
Our approach to the many-to-landmark routing is based on a
simple flooding mechanism that can rapidly build spanning

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

to (4,0)
3 hops

to (4,0)
3 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (10,2)
2 hops

to (10,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (10,2)
2 hops

to (8,8)
2 hops

to (8,8)
1 hop

to (12,2)
2 hops

to (12,2)
2 hops

to (12,2)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (8,8)
2 hops

to (6,4)
1 hop

to (8,8)
2 hops

to (8,8)
1 hop

to (12,4)
2 hops

no conn. to (14,6)
2 hops

to (2,6)
3 hops

to (6,4)
2 hops

to (6,4)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (14,6)
2 hops

to (14,6)
2 hops

to (2,8)
3 hops

to (6,10)
2 hops

no conn.no conn.landmark to (8,8)
1 hop

to (8,8)
1 hop

to (14,6)
1 hop

to (14,6)
2 hops

to (14,6)
2 hops

to (0,12)
3 hops

to (8,10)
3 hops

to (6,10)
2 hops

to (8,8)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (8,8)
1 hop

to (14,12)
2 hops

to (14,12)
2 hops

to (14,12)
2 hops

to (8,10)
2 hops

to (8,10)
2 hops

to (6,12)
3 hops

to (8,12)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (12,14)
2 hops

to (8,8)
1 hop

to (14,12)
2 hops

to (14,12)
2 hops

to (0,12)
3 hops

to (8,12)
2 hops

to (8,12)
2 hops

to (8,12)
2 hops

to (10,14)
2 hops

to (8,8)
1 hop

to (8,8)
1 hop

to (14,12)
2 hops

to (14,12)
2 hops

to (14,12)
2 hops

to (2,14)
3 hops

to (4,16)
3 hops

to (8,12)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (12,14)
2 hops

to (12,14)
2 hops

to (12,14)
2 hops

to (16,16)
3 hops

to (4,16)
3 hops

to (4,16)
3 hops

to (4,16)
3 hops

to (10,14)
2 hops

no conn.to (10,14)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (10,14)
2 hops

to (16,18)
3 hops

x position (meters)

y
po

si
tio

n
(m

et
er

s)

Fig. 5. Spanning tree generated by PEG using 100 mica2dot nodes. PEG
uses a basic flooding algorithm that adapts to different node densities and
parent selection algorithms for better trees.

trees with efficient routes and reasonable communication
reliability. This approach of rapid tree-building provides a
quick fail over to cope with the flakiness found in sensor
networks, and maintains the soft-state design principle.

B. Building Good Trees

For many-to-landmark routing, we rely on a spanning tree
rooted at the landmark. All packets received or generated
by a node are forwarded to its parent until they reach the
landmark.

A common approach to building a spanning tree is to flood
the network with a beacon, and each node marks its parent in
the tree as the first node from which it receives the beacon,
and then rebroadcasts the beacon. This approach of flooding
the network and routing using the reversed paths is used
in ad-hoc routing algorithms such as AODV [24] and DSR
[23] to build a topology quickly and trade off optimality for
handling mobility.

In such a topology formation process using flooding, two
potential problems must be addressed: quality route selection
and the broadcast storm problem [30]. The routing protocol
must avoid selecting bad links for routing; in particular,
asymmetric connectivity should be avoided if routing paths
are formed by reversing the path discovered by flooding.
Route selection solely using hop count cannot address these
issues. The second issue is related to the broadcast storm,
which occurs when many nodes receive a beacon simultane-
ously and attempt to rebroadcast the beacon immediately. As
a result, a storm of packet collisions is created and significant
message losses would occur, which leads to an ill-formed
topology containing manyback edges. Back edges occur
when nodes miss a beacon message because of collisions,
but later overhear it from nodes further down the tree. Back
edges create unnecessarily long routes.

In exploring the different routing algorithms that use flood-
ing for route discovery, not all of these issues are addressed
by the protocols together. Empirical data in real sensor
networks have shown that if these issues are not addressed,
the resulting topology will be ill-formed and the routing paths
are likely to be composed of long unreliable links not suitable
for multihop communication [31]. Following our simplicity
guideline, we devised two simple mechanisms that interact
with the routing layer and the link layer to address these two
issues together.

Our first challenge in building spanning trees is route
selection. The goal is to ensure a high end-to-end packet
transmission rate while minimizing the tree’s depth. A node
must consider both the quality of the link to its parent and
its parent’s tree depth. Without any rapid link estimation
mechanism, we rely on the received signal strength indicator
(RSSI). Recent studies for both sensor networks [32] and
802.11 networks [33] showed that RSSI is not a good
predictor of link quality. However, we can exploit spatial
information to our advantage to rely on RSSI values. With
all nodes on roughly a grid configured to transmit at the
same power and the fact that signal strength decays at least
1/d2 when close to the ground, it is possible to use RSSI
threshold filter to scope the neighborhood relative to the
physical distance. By empirically measuring the relationship
between link reliability and RSSI values among all the nodes
at different grid distances beforehand, we determine a high
confidence RSSI value for the entire network that maximizes
communication distance while reliably preserving bidirec-
tional link reachability. This is essential for our landmark
approach since it utilizes the reverse paths on the self-
discovered spanning tree. When receiving messages, a node
only accepts it if it is greter than the RSSI threshold value,
even if it was able to properly decode the message. The rout-
ing layer can be a simple algorithm that selects the shortest
hop-count parent that passed the RSSI filter. Section VII
presents measurements of the end-to-end reliability of the
routing paths discovered by this approach.

The second challenge is to alleviate the broadcast storm
problem. We used a time-delayed back off that adapts to the
observed cell density. Broadcast storms occur because several
nodes simultaneously attempt to rebroadcast the beacon.
Suppose, instead, each node waits a random time before re-
broadcasting the beacon, then network congestion decreases.
With random back-off, the number of nodes in a radio cell
should be proportional to the number of potential wait times:
as node density increases, nodes must wait longer periods
of time. Choosing the maximum wait time, then, requires
knowledge of the density; by choosing a sufficiently large
interval, we can guarantee that each node has sufficient time
to broadcast its announcement without preventing other nodes
from doing so.

An alternative extends the prior idea to result in a more
adaptive technique. Upon the reception of a broadcast mes-
sage, each receiver starts a timer to fire in a random amount
of time less thanR. Every time the node receives a broadcast
message before its timer expires, it resets the timer to fire in
a new random time. Thus, theR interval from which nodes

7

wait is significantly smaller than in the naive protocol since
the total wait time is now adaptive and inversely proportional
to the radio cell density, which is the number of times the
same broadcast message is heard. In both sparse and dense
networks, then, propagation within local cells finishes in
R · n/2 time, wheren is the cell density andR is chosen
uniformly.

One typical spanning tree is in Figure 5. The data was
collected from 100 mica2dot nodes with 2m spacing in either
direction. The landmark is located near the center of the field,
at position (8,8). The tree has depth three, considerably less
than if grid routing were used. Four nodes did not join the
spanning tree because they are broken; Section VIII addresses
breakage. Additionally, most nodes’ parents are physically
closer to the landmark. In those cases where this is not true,
such as at (0,10), the physically closer parent is not any closer
by the hop-count metric.

C. Efficient Landmark Routing

With the spanning tree built using the previous mechanism,
any nodes in the network can send messages to the landmark,
which must then be able to forward the messages to the
moving pursuers. To accomplish this, the pursuer periodically
informs the network by picking a node in its proximity to
route a special message to the landmark, thereby laying a
“crumb trail.” Instead of maintaining all the routing states
at the landmark, this message deposits a “crumb” with each
intermediate router on the spanning tree so that messages
destined to the pursuers at the landmark can reverse the path
that the crumb message took. Since each node along the
crumb trail knows its next hop, communication overhead is
smaller as it is not necessary to include the entire reverse
path in each packet.

We support multiple concurrent crumb trails, allowing for
many mobile destinations. Each crumb trail is identified by
the pursuer’s ID when it deposits its crumb.

The pursuer increments a sequence to give a time di-
mension to these crumb trails such that these paths can
dynamically track pursuer’s position. All such routing states
are soft in that they become stale over time, and thus, stale
crumb trails prune themselves automatically.

Our approach to solving the many-to-few routing problem
is efficient. The tree-building overhead is anO(N) opera-
tion. As discussed earlier, ad-hoc protocols requireO(N)
overhead to route to a mobile destination. In our landmark
scheme, the overhead in maintaining mobility is solely the
crumb messages, which has a communication complexity of
O(d), whered is the network diameter. This means that we
can route to a pursuer with significantly less overhead.

Note that there is no explicit coupling between the land-
mark and the moving pursuers as in the case of the home
agent approach. In fact, the pursuers do not even know the
address of the landmark. This is a nice property, allowing the
landmark node to move over to another node if the first fails.

A shortcoming of this approach is that the landmark is a
central point of failure. However, there are many techniques
to eliminate this vulnerability. Since the crumb trails and

the spanning tree can be built rapidly, it is easy to switch
over to another landmark if the original fails. Additionally,
it is simple to maintain two separate instances of landmark
routing with independent crumb trails and landmarks. This
quick switch over capability is important to cope with the
flakiness inherent in sensor networks.

VI. NAVIGATION AND CONTROL

The pursuer must decide how to assimilate an aggregated
sensor packet to minimize evader capture time. In this sec-
tion, we will describe the difficulties in designing this control
system, the techniques used to overcome these difficulties,
and the final architecture. Although the control architecture
we present is not new, the modality of the sensor network
data is significantly different than those of traditional control
systems. We will discuss how these concerns are addressed
with our implementation.

A. Design Issues

Classical feedback control design [34] typically assumes
that periodic sensor readings occur and arrive at their des-
tination in zero time, that the computation of the control
law is instantaneous, and that control signals are applied to
the actuators immediately. These requirements are typically
necessary to analyze a controller’s stability and performance.
Several techniques have been studied to relax these assump-
tions [35], and some researchers have suggested that new
techniques need to be developed [36]. However, in practice,
these constraints are typically approximated by using a
sufficiently high frequency of sensor readings, by minimizing
timing jitter and latency, and by reducing computation time of
the control law. Typical implementations of control systems
achieve these approximations through the use of locally
resident sensors, actuators, and powerful computational hard-
ware. However, due to the distributed, low-power nature of
sensor networks, many of these assumptions are violated.

In PEG, we can approximate instantaneous control com-
putation by assuming that the pursuer is a powerful node
that performs all the control computation. However, the
application of classical control techniques is frustrated by
the tendency of the sensor network data to be noisy, arrive
late, lack time-stamps, and arrive without periodicity. High
speed controllers, such as a path follower, further highlight
the difficulty of control using only sensor network data. In our
case, a feedback implementation using only sensor network
data would require artificially slowing down the dynamics of
the system.

Furthermore, nodes will fail at times due in part to faulty
hardware and collisions with robots. This presents another
characteristic of sensor networks that differ from a typical
control setting. When operating in a sensor network, a
controller must additionally compensate for sporadic sensor
readings due to badly behaving nodes. For such problems, it
is not always possible for a controller to maintain a constant
level of performance. We seek to provide high performance
of the controller while allowing for a graceful degradation
in performance as the data qualitatively deteriorates, while
ensuring safety properties such as not leaving the field.

8

Strategic
Controller

Point Navigation
Controller

Motor
Controller

Coordinate
Transformation

State
Estimation

Sensor
Network

State
Estimation

GPS

Filter

motors

High
Speed

Dynamics

Low Speed
Dynamics

Fig. 6. Block diagram view of the hierarchical multi-rate pursuer controller.
All variables except those with aGPS superscript represent values relative
to the mote coordinate system. Furthermore, the subscriptsp ande, indicate
pursuer and evader respectively. Finally,wk represents the set-point for
velocity of thekth wheel

B. Design Choices

To overcome the aforementioned difficulties, we make sev-
eral design choices for the pursuer control. First, we cleanly
separate the control system from the sensor network as much
as possible. To this end, the network provides sensor readings
to the pursuer, but all processing and control computation
occurs on the pursuer. Second, we apply more traditional
control techniques to the pursuit algorithm, changing the
design where necessary for sensor network data.

A pursuit control system ultimately consists of a system
for estimating the position of the evader, for strategically
deciding where the pursuer should go next, for planning a
path to the next destination, and for following that path. To
achieve the best estimation of the evader’s position, we prefer
a model for the evader’s dynamics with unknown control
input. However, this is an unnecessary burden considering
the specification of our system. For instance, the robots
can quickly change the velocity of each of their wheels
independently (within about 0.2 seconds), which, as far as a
sensor network that reports every 1-3 seconds is concerned,
allows the robot to virtually change its speed and direction
instantly.

In PEG, the pursuer only needs data every few seconds
from the sensor network, but requires much more timely
location information for navigation. We use GPS for navi-
gation which provides updates about every 0.1 seconds with
an accuracy of about 2cm.

C. Implementation Overview

In this section, we outline our final controller design which
is illustrated in Figure 6. First, two different coordinate
systems must be addressed: the GPS coordinate system

and the coordinate system relative to the mote network.
To work within a single coordinate system as soon as
possible, we immediately convert GPS measurements into
the mote coordinate system. GPS provides estimates of the
pursuer’s position in GPS coordinates,[xgps

p , ygps
p]T . Using

a fixed, knownhomogeneous coordinate transformationΦ,
we compute the pursuer’s estimated position in the mote
coordinate system as[xp, yp, 1]T = Φ∗[xgps

p , ygps
p , 1]T . Using

a trace of these values,(. . . , [xk
p, yk

p]T , [xk+1
p , yk+1

p]T , . . .),
we can compute a full state estimation for the pursuer, which
includes estimations of the position, the velocity, and the
orientation.

Many techniques exist for state estimation [37], [38], in our
case, it is enough to use simple techniques. For the estimated
position [̂xp, ŷp]T , we simply use an average of the two most
recent GPS positions. These estimated positions then form
another traceΛ = (. . . , [x̂k

p, ŷk
p]T , [x̂k+1

p , ŷk+1
p]T , . . .). For

the orientation estimatêθp, we use an average of the angle
between pairwise combinations of the last four estimated po-
sitions; i.e., the four most recent entries inΛ. The magnitude
and direction of the velocitŷνp is estimated by using the two
most recent entries inΛ.

Turning to the evader’s state estimation, we first receive
an estimate of an unknown object’s position in the network,
(x?, y?). Using a previous estimation of the evader’s position
(x̂e, ŷe) and a current estimation of the pursuer’s position
(x̂p, ŷp), a filter determines if the reading corresponds to
the evader, the pursuer, or noise in the system. A simple
strategy for doing this is a probabilistic confidence system.
If we let α be the average error of the sensor network due to
true positives, i.e., not including error due to false positives.
Then, we can safely disreguard sensor reports withinα of
the pursuer’s estimated location, since these reports must
correspond to the pursuer or a captured evader (assuming that
our capture radius is greater thanα). Sensor reports within
2 ∗ α + |νmax| ∗ t of the previous estimate of the evader’s
position are assumed to be the evader, wheret is the elapsed
time since the previous estimate andνmax is the maximum
velocity of the evader.

If the new sensor reading is determined to be the evader,
this value is used to update the state estimate of the evader
using techniques similar to those for the pursuer. In this case,
our estimate of the velocity and orientation will be of much
lower quality. However, because the strategic controller only
updates every time it receives a new evader state estimate (at
a much lower rate than the actual velocity and heading of the
evader can change) it is unnecessary to exploit knowledge of
the evader’s orientation and velocity.

Using position estimates of the pursuer and evader, the
strategic controller chooses the pursuer’s next destination
[xnav, ynav]T and interception speedνnav. In making this
choice, the strategic controller attempts to minimize capture
time. Again, we use a simple strategy: the pursuer moves to
the estimated position of the evader. Finally, the point navi-
gation controller will compute a path to the new destination.
This path is realized by continually issuing new set points
(ω1, ω2, ω3, ω4) for the velocity of each robot wheel, such
that the robot moves forward enacting turns as needed to

9

4 5 6 7 8 9 10 11 12
150

200

250

300

350

400

450

500

550

600

650

R
ou

te
 ti

m
e

(m
s)

Number of hops

Fig. 7. Latency of packets routed through PEG’s landmark routing
algorithm. Each data point represents the average time to route 200 packets
through the given number of hops on a 36 node indoor Mica 2.

reach it’s destination.
In conjunction with the aforementioned processes, the

controller maintains safety specifications by applying hard
constraints to the controller at various points. To ensure that
the pursuer never leaves the network, the point navigation
controller always compares the pursuer’s estimated state with
the fixed, known values of the network boundary. If the
pursuer is leaving the network, the point navigation controller
directs the pursuer to the center of the network until further
notice. Additionally, if the strategic controller notices that the
pursuer’s estimated state is within the capture radius of the
evader’s estimated state, it has the point navigation controller
stop the pursuer. The pursuer remains there until a new evader
update farther away appears; at which time the control system
reinitiates pursuit of the evader.

VII. E VALUATION

A. Routing Service

One of the most important metrics for evaluating the
multihop routing service is end-to-end reliability, especially
when the topology is built over many unreliable links during a
network-wide flooding. We created a set of micro-benchmark
experiments to measure end-to-end success rate of packet
delivery of any random pair of nodes in the network using our
landmark routing. In all these measurements, we do not use
link retransmissions. For latency tests, there is no contention
on the channel because only one packet is being sent at a
time. The end result is very promising. For paths that have
lengths varying from 4 to 6 hops, the average of end-to-end
success rate consistently falls in the range of 95% to 98%.
This implies that our topology formation can build trees that
are reliable for bi-directional communication.

Another metric that is important to PEG is the end-to-
end latency in delivering the detection events to the moving
pursuers. As discussed before, our landmark routing approach
trades off route efficiency for simplicity and low protocol
overhead. The simplicity of the landmark routing scheme
produces routes that may be longer than necessary since

the message must pass through the landmark. For example,
for a neighbor to route a message to an adjacent node,
it must traverse through the landmark which could be far
away. There could be delay from many sources: the time
it takes a packet to travel, the processing time, MAC back
off time, and routing decision time. By observing the packet
size and extra synchronization overhead coupled with the
radio bandwidth, we can conclude that a packet occupies the
channel for 26.2 ms. The MAC waits a uniformly random
time between 0.4 ms and 13.0 ms before sending a packet,
averaging in a 6.7 ms delay. We measured the latency that
it takes for our algorithm to route packets in Figure 7 on
a field of 36 sensor nodes. For a least squares minimum fit
on the data in the figure, we find the slope of the line is
53 ms/hop, so we conclude processing time is consistently
around 20 ms. Even if the landmark route is 6 hops while the
optimal path is a single hop, the landmark routing will take
225 ms longer than necessary. In this time, the evader can
only travel 13 cm, an insignificant distance compared to the
precision of the measurements. Thus, even though landmark
routing may choose longer routes, the extra routing time is
within our requirements.

B. Tracking and Interception

To evaluate the system in a large scale demonstration
on July 14, 2003, we deployed a field of 100 nodes and
performed a half-dozen runs1. The evader was controlled by
a driver not affiliated with PEG. The evader can leave the
sensor grid area, though the pursuer cannot – the maximum
speed for either robot is about 2.25 mph or around 1
meter/second. The pursuer was able to successfully capture
the evader in all cases; we define success when the pursuer
arrives within a grid square of the evader. Figure 8 displays
one such interception. Initially, the pursuer is in a different
orientation from the evader. It first orients itself towards
the evader before capturing the evader. The sequence spans
26 seconds and ends when the pursuer touches the evader.

In order to display more quantitative data, we would like
to analyze network traces from an actual run from our July
demo. Unfortunately, our demonstration was not sufficiently
instrumented to collect data, and we have subsequently
instrumented and re-deployed PEG. Figure 9 demonstrates
our efforts on a 7x7 field of sensor motes with a 2m spacing.
The grid displays the actual track of the evader in a solid line
demarcated with 10s intervals in squares, as determined by
GPS. Each star shows the leader node that sent a packet
to the moving pursuer after aggregating the detection data.
We draw a dashed line from the leader to the corresponding
point on the evader’s path when it makes the detection report.
When the dashed line is short, it indicates a successful, low
error detection reading. There are no reports when the evader
leaves the playing field around time 100s.

The results also indicate a few noisy nodes. The pursuer
must filter out this noise in estimating the evader’s position.
For example, node (12,12) detects a spurious reading at

1A movie of all runs is available athttp://webs.cs.berkeley.
edu/nestdemo.mpg

10

Fig. 8. This sequence taken from a video of the live July demonstration shows a successful capture of the evader (foreground) by the pursuer (background).

−2 0 2 4 6 8 10 12 14 16 18
−2

0

2

4

6

8

10

12

14

(0,0) (2,0) (4,0) (6,0) (8,0) (10,0) (12,0)

(0,2) (2,2) (4,2) (6,2) (8,2) (10,2) (12,2)

(0,4) (2,4) (4,4) (6,4) (8,4) (10,4) (12,4)

(0,6) (2,6) (4,6) (6,6) (8,6) (10,6) (12,6)

(0,8) (2,8) (4,8) (6,8) (8,8) (10,8) (12,8)

(0,10) (2,10) (4,10) (6,10) (8,10) (10,10) (12,10)

(0,12) (2,12) (4,12) (6,12) (8,12) (10,12) (12,12)

0s

10s

20s 30s

40s

50s
60s

70s

80s

90s

100s

110s

120s
130s

140s

x physical position (meters)

y
ph

ys
ic

al
 p

os
iti

on
 (m

et
er

s)

Fig. 9. Intruder tracking using PEG. Evader GPS position is shown as a
solid line. Detection event leaders are shown as stars. Using dotted lines,
leaders are linked to the evader’s position at the time of detection.

around 4 seconds. In analyzing this plot, we found 4-5
spurious readings. Additionally, we manually squelched the
output of nodes (4,10) and (4,12). Their magnetometers were
not properly calibrated and would generate a false reading
every few seconds. Just as in our original run, we found that a
few nodes in every deployment would not act properly when
deployed; in such situations, we needed to suppress a handful
of nodes from reporting. For larger or longer deployments,
we foresee an automatic health monitoring service that, in
its simplest form, reboots or powers down a node when
it behaves outside specified tolerances. As we discuss in
Section VIII, accurate debugging and network analysis tools
are a necessity for large sensor network deployments.

VIII. D EPLOYMENT EXPERIENCES

Through the course of designing and implementing PEG,
we faced various system issues, including system breakage,
packaging, in situ debugging, network programming, and
system reconfiguration. In this section, we discuss the ap-
proach we took to cope with each of these issues. These
implementation experiences apply to many kinds of large
sensor network applications.

A. Breakage

In the course of deploying and operating PEG, we noticed
a moderate rate of breakage in terms of node failure, sim-
ilar to the experience reported in other sensor networking
deployments [22]. Some of this is due to our inexperience
as packaging engineers. However, in the course of disassem-
bling the packaging, reprogramming, charging the battery,
reassembling, and re-deploying, we noticed a trend of a
few percent of the nodes failing at run time. Out of this
experience came the maxim that “Every touch breaks.” This
reinforces our design philosophy of maintaining soft state,
loose consistency for inter-nodal coordinations, and rapid
fail over in network topology formation. Furthermore, the
system services for in situ testing and development, as shown
in Figure 3, are therefore sought to eliminateany need
to physically handle nodes. We believe that these system
services are useful even when future sensor nodes become
more robust.

B. Packaging

A real-world sensor deployment must carefully consider
node packaging, and we discovered that that packaging
requirements for deployment are different from those for
development. For development, the packaging should expose
access for convenient debugging, reprogramming, and battery
recharging. However, we did not properly anticipate such

11

need, and during development, we would frequently need to
disassemble the packaging in order to fix broken components,
reprogram the nodes, or recharge the batteries. If we had
better foresight in our design, we would have designed the
packaging to support reprogramming and recharging without
full package disassembly.

After deployment we discovered that the packaging was
interfering with the magnetometer. The piano wire antenna,
battery, and metallic spring base all align the magnetic field
in the proximity of the magnetometer, significantly reducing
its sensitivity and overall range of detection. The design
process should accommodate a series of revisions, because
defects may only become apparent when the complete design
is implemented and deployed in the sensing environment.

C. Debugging

Debugging large sensor network applications at deploy-
ment time is a challenging experience. Pre-deployment
testing using simulations and controlled experiments over
testbeds are extremely useful as they allow us to extract in-
formation about the external and internal states of each node.
However, in a real deployment, collecting state information
can be difficult, especially when the packaging is designed
for deployment. For example, even if the EEPROM fully logs
the transient internal states of each node, correlating them in
a network-wide temporal order can be difficult, especially
without time synchronization. In our deployment, we did not
have adequate time to explore this option.

Instead, we exploit a large antenna to snoop on network
traffic. This non-intrusive approach allows the collection of
as much external states of the network as possible, does not
affect the application, and enables a direct communication
with each of the node in the network.

A set of services under the node management category
in Figure 3 are implemented to address in situ debugging.
Additionally, we place a version control number into each
binary to ensure code compatibility across all the nodes in
the network. We use a basic “ping” like service to verify that
a node is up. The ping reply also reports the version control
number of its code binary, allowing us to detect incompatible
binaries. In addition, some of the basic primitives for node
management such as node reset, sleep, and active mode
control are also supported over wireless control.

The big antenna allows us to remotely control and debug
each node in the network. We implement a set of manage-
ment scripts on a PC computer to invoke the sensor node
management services to administrate the system through the
antenna. Packet traces are archived for off-line debugging
and visualization of the entire system to understand the global
behavior, which is extremely useful in system tunings. Nodes
can send packets with an ASCII text payload to act as a
“printf” to signal the occurrence of some critical debugging
events in a human readable form.

For larger, real world deployments, we have since de-
veloping a multi-hop system management architecture [39]
to subsume the role of the big antenna. This lower layer
can perform system health monitoring, remote control, and

data logging; and, it integrates seamlessly with a dispersed,
higher power second tier to optimize data gathering. We look
forward to reporting on the success of this architecture for
real deployments in future work.

D. Hierarchy of Programming and Reconfiguration

In sensor networks, the need for a form ofin situ pro-
gramming presents a new kind of requirement for remote
configuration tools. Besides the common need for wireless
network-wide reprogramming, there is also a need to perform
in situ protocol parameter tuning since analytical analysis
is often insufficient to accommodate environmental effects.
For example, there are configuration options of the code that
need to be decided at the time of deployment, including
the application’s sensing policy, sensor calibrations, and
communications parameters that rely on the cell density.
Furthermore, some of these configurations may need to be
set on varying granularities, ranging from individual nodes, a
select few subset of nodes, to the entire set of nodes en masse.
We have implemented both the network reprogramming and
config services as shown in Figure 3 to address these needs.

Our design supports wireless network programming, which
is an alternative solution to installing new binaries over many
nodes by hand. For a team of five people working with one
hundred nodes, manual programming takes two hours with
an additional two hours to re-deploy the nodes in the field.
This approach is clearly not amenable to a rapid debug and
test cycle.

Using network programming, nodes receive the binary
image over the radio. By exploiting the shared wireless
medium, many nodes can be reprogrammed simultaneously
and selectively. We anticipated using network reprogramming
for our deployment, but we could not develop a sufficiently
reliable network reprogramming mechanism for our pur-
poses2. Given the problems we encountered at the time,
the entire process would have taken longer than individually
reprogramming each node.

Interestingly, with a network service we call Config, the
limitations of manually programming each node and our
inability to use network reprogramming did not pose a great
hindrance in our deployment. We spend the majority of
our time tuning the algorithms to work properly at scale
in the environment. The Config service addresses this issue
efficiently and allows run-time adjustments of the internal
states of each node. For example, Config allows us to
selectively enable sections of the code, adjust parameters,
modify calibration values, and adjust variables at run time.

Config is a smart configuration system that takes the place
of a traditional approach to using a local configuration file
per node. Configuration values are declared in the code with
a specific configuration identifier, as shown in this example:

//!! Config 31 {uint16_t RFThreshold = 200;}

In this case, the RFThreshold parameter, with a default
value of 200, is preprocessed with compilation tools to
convert it to be a member in a global Config data structure.

2Subsequent work has improved upon our initial foray. [40]

12

Config is tightly integrated with the scripting environment in
Matlab, allowing the large antenna to be used for debugging.
Therefore, it is easy to change configuration values for a
subset of the nodes or all the nodes from a PC in run time.

When a user changes a node’s configuration value, the
change is automatically reflected in that node’s global Config
data structure. And, the application is notified through an
asynchronous event of the change to the data value. Config
also supports queries of the current set of configuration values
on each node. With a rich configuration capability in place
and a bit of creative programming to utilize it, the resulting
application is quite malleable, saving us a lot of time from
installing new code images.

IX. CONCLUSION

Designing and implementing PEG enables us to establish
relevant system design principles that are useful to other sen-
sor networking systems. Our whole-system design analysis
provides a clean process of problem decomposition. It allows
complexity to be placed at the appropriate levels of the sys-
tem to achieve overall simplicity in system implementation.
Simplicity is further achieved by exploiting environmental
and physical characteristics of the application at deployment
time. Protocols should exploit soft state, loose consistency,
and rapid fail over when appropriate to cope with the lossy
wireless channel and the somewhat unreliable sensor network
hardware platform. The system management and debugging
infrastructure should be well designed to anticipate the need
of system reconfigurations at deployment time.

Our system decomposition allows each of the subsystems
to be reusable by a wide variety of sensor network appli-
cations. The neighborhood abstraction and leader election
mechanisms apply to any monitoring system requiring local
data aggregation. The density adaptive flooding mechanism
avoids the broadcast storm problem for other data dis-
semination protocols. The landmark routing subsystem is
useful for any application with moving entities. The network
management and debugging services are useful for deploying
other sensor networks. The data filter and robustness of the
control system design are applicable to other sensor network
applications with embedded actuators.

We demonstrate a working system that not only monitors
sensory data but also tracks and controls a higher tier
system to accomplish a cooperative task in real time. The
system assumes very little processing and communication
requirements on the sensor tier. Furthermore, throughout our
design we exploit the physical properties of PEG to achieve a
functional, simple design that is robust to failures. We believe
the same design philosophy should be followed in building
future sensing and actuating systems.

In the near future, we will deploy an order magnitude
larger network to achieve many of the same goals as this
work. We will leverage the lessons from this work to es-
tablish a platform well suited for long lifetime and large
scale remote reprogramming, reparameterization, and system
management. The overall goal of this redeployment is to
focus on data gathering and methodical system study. In this

new deployment, we will be able to introduce and measure
greater variation: robot speed, node spacing, node topology,
GPS resolution, sensing fidelity, sensing period, and so on.
This initial effort described in this work has been invaluable
for the experience, and we hope to extend that with a breadth
of experiments that describe in detail the behavior of the
many facets of this kind of system and application.

ACKNOWLEDGMENTS

We’d like to thank everyone who worked on PEG, includ-
ing: Phoebus Chen, Fred Jiang, Jaein Jong, Sukun Kim, Phil
Levis, Neil Patel, Joe Polastre, Robert Szewczyk, Terrence
Tong, Rob von Behren, and Kamin Whitehouse. This work
is funded in part by the DARPA NEST contract F33615-01-
C-1895 and Intel Research.

REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
world with wireless sensor networks,” inInternational Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2001), 2001.

[2] G. Pottie and W. Kaiser, “Wireless integrated network sensors,” in
Communications of the ACM, May 2000.

[3] T. Parsons, “Pursuit-evasion in a graph,” inTheory and Application
of Graphs (Y. Alani and D.R. Lick, eds.Springer-Verlag, 1976, pp.
426–441.

[4] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” inSIAM J. Comput., vol. 21, October 1992, pp.
863–888.

[5] R. Vidal and S. Sastry, “Vision-based detection of autonomous vehicles
for pursuit-evasion games,” inIFAC World Congress on Automatic
Control, 2002.

[6] H. Pasula, S. Russel, M. Ostland, and Y. Ritov, “Tracking many objects
with many sensors,” inIn Proceedings of IJCAI-99, 1999.

[7] D. Reid, “An algorithm for tracking multiple targets,” inIEEE Trans-
actions on Automatic Control, vol. 24:6, 1979.

[8] J. Hespanha and M. Prandini, “Optimal pursuit under partial infor-
mation,” in In Proceedings of the 10th Mediterranean Conference on
Control and Automation, July 2002.

[9] R. R. Brooks and P. Ramanthan, “Distributed target classification and
tracking in sensor networks,” inIn Proceedings of the IEEE, August
2003, pp. 1163–1171.

[10] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group
management for track initiation and maintenance in target localization
applications,” inIn Proceedings of the 2nd Workshop on Information
Processing in Sensor Networks (IPSN ’03), April 2003.

[11] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative signal
and information processing: An information directed approach,” in
Proceedings of the IEEE, 2003, pp. 91(8):1999–1209.

[12] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and
J. Stankovic, “An entity maintenance and connection service for
sensor networks,” 2003. [Online]. Available: citeseer.ist.psu.edu/
blum03entity.html

[13] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” inIn Proceedings of the First USENIX/ACM Sympo-
sium on Networked Systems Design and Implementation (NSDI’ 04),
March 2004.

[14] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and
D. Rus, “Tracking a moving object with a binary sensor network,”
in Proceedings of the first international conference on Embedded
networked sensor systems. ACM Press, 2003, pp. 150–161.

[15] K. Birman, “The process group approach to reliable distributed com-
puting,” in Communiation of the ACM, vol. 36(12), 1993, pp. 37–53.

[16] D. Cheriton, “Understanding the limitations of causally and totally
ordered communication,” inSOSP. ACM, December 1993.

[17] “Anonymous xxx fixme xxx,” inCitation omitted for blind reviewing;
we will make this available to any of the program chairs at the
reviewer’s request.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” inProceedings
of ACM ASPLOS IX, November 2000, pp. 93–104.

13

[19] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a
neighborhood abstraction for sensor networks,” inIn Proceedings of
ACM International Conference on Mobile Systems, Applications, and
Services (MobiSys ’04). ACM Press, June 2004.

[20] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao,
“Habitat monitoring: Application driver for wireless communications
technology,” inACM SIGCOMM Workshop on Data Communications
in Latin America and the Caribbean, April 2001.

[21] S. Madden, “The design and evaluation of a query processing archi-
tecture for sensor networks,” Ph.D. dissertation, UC Berkeley, 2003.

[22] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
from a sensor netowkr expedition,” inIn the 1st European Workshop
on Wireless Sensor Networks (EWSN 04), January 2004.

[23] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc wireless
networks,” inMobile Computing. Kluwer Academic Publishers, 1996,
pp. 153–181.

[24] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance-vector
(aodv) routing,” inProceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, 1999.

[25] V. Park and M. Corson, “A highly adaptive distributed routing algo-
rithm for mobile wireless networks,” inIn Proceedings of the IEEE
INFOCOM ’97, April 1997.

[26] C. E. Perkins, B. Woolf, and S. R. Alpert, “Mobile ip design principles
and practices,” January 1998.

[27] Q. Fang, J. Li, L. Guiba, and F. Zha, “Roamhba: maintaining group
connectivity in sensor networks,” inProceedings of the third interna-
tional symposium on Information processing in sensor networks. ACM
Press, 2004, pp. 151–160.

[28] P. Tsuchiya, “The landmark hierarchy, a new hierarchy for routing in
very large networks,” inSpecial Interest Group on Data Communica-
tion (SIGCOMM), 1988, pp. 36–42.

[29] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Gouda, Y. Choi, T. Herman, S. Kularni,
U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita, “Line in
the sand: A wireless sensor network for target detection, classification,
and tracking,” inOSU-CISRC-12/03-TR71, 2003.

[30] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,”Wirel. Netw., vol. 8, no. 2/3, pp.
153–167, 2002.

[31] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, “Complex behavior at scale: An experimental study of low-
power wireless sensor networks,” inTechnical Report UCLA/CSD-TR
02-0013, February 2002.

[32] J. Zhao and R. Govindan, “Understanding Packet Delivery Perfor-
mance in Dense Wireless Sensor Networks,” inProceedings of the
first international conference on Embedded networked sensor systems.
ACM Press, 2003, pp. 1–13.

[33] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” inProceedings
of the 9th annual international conference on Mobile computing and
networking. ACM Press, 2003, pp. 134–146.

[34] W. J. Rugh,Linear System Theory, 2nd ed., ser. Information and
System Sciences Series. Upper Saddle River, New Jersey 07458:
Prentice Hall, 1996.

[35] P. Martí, G. Fohler, K. Ramamritham, , and J. M. Fuertes, “Jitter
compensation for real-time control systems,” in22nd IEEE Real-Time
Systems Symposium, London, December 2001.

[36] P. Martí, R. Villa,́ J. M. Fuertes, and G. Fohler, “Stability of on-line
compensated real-time scheduled control tasks.” inIFAC Conference
on New Technologies for Computer Control, Hong Kong, November
2001.

[37] B. Ristic, S. Arulampalam, and N. Gordon,Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House, February
2004.

[38] P. Varaiya and P. Kumar,Stochastic Systems: Estimation, Identification,
and Adaptive Control, ser. Information and System Sciences Series.
Upper Saddle River, New Jersey 07458: Prentice Hall, 1986.

[39] G. Tolle and D. Culler, “Snms – xxx fixme xxx,” inThis work has been
submitted and is currently under review; we will make this available
to any of the program chairs at the reviewer’s request.

[40] N. Reijers and K. Langendoen, “Efficient code distribution in wireless
sensor networks,” inProceedings of the 2nd ACM international con-
ference on Wireless sensor networks and applications. ACM Press,
2003, pp. 60–67.

