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Abstract 

This paper presents a flight rnanageiiient system (FhIS) 
iinpleniented as on-board intelligence for rotorcraft-based 
unmanned aerial vehicles (RUAVs), in order to gradually 
refine gilen abstract mission coniinands into real-time 
control signals for each vehicle. A strategy planner uses 
the probabilistic decision making algorithms to determine 
suboptinial action at  each time step. A graphical inter- 
face on ground station enables human intervention. We 
derive nonlinear dynamics model upon which we design 
a tracking control layer using nonlinear model predictive 
control and integrate with a trajectory generator for lo- 
gistical action planning. The proposed structure has been 
implemented on Berkeley RUAVs and validated in prob- 
abilistic pursuit-evasion games to show the possibility of 
intelligent flying robots. 

1 Introduction 

Rotorcraft-based aerial vehicles are \-cry promising plat- 
form for applications of intelligent unmanned vehicles due 
to their versatile maneuvers that cannot be achieved by 
other type of vehicles. Much of our work as part of the 
BErkeley AeRobot (BEAR) research project has been di- 
rected toivard improving the performance of RUAVs to be 
eniployed in real-ivorld applications. U7e have been study- 
ing probabilistic pursuit-evasion games (PEGs), where a 
team of aerial and ground-based vehicles pursue a teain 
of etading \chicles while concurrently building a map in 
aii unknown em-iroiinient. In [l], we presented an exper- 
imental setup for pursuit-evasion games with unmanned 
aerial/grouiid vehicles (Figure 1) , addressed physical is- 
sues in centralized heterogeneous multi-robot systems 
and presented algorithms and experimental results on 
PEGs. 

This paper presents the synthesis of a flight management 
system (FhIS) for RUAVs that endows RUAVs with au- 
tonomy to independeiit,ly sense, reason. plan and act in 
coordination with other agents or environments and ac- 
cessibility by human operators if necessary so that they 
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can be employed in a versatile, resilient decentralized sys- 
tem. At the abstract level, we cast the pursuit-evasion 
problem in partially observa ble Markov decision process 
framework. By employing a policy search method, we ob- 
tained a scalable policy with the far better performance 
than myopic policies. At the physical level, we stud- 
ied nonlinear model predictive planning and control that 
conibines the trajectory generation and tracking control 
problem into a single problem. Our algorithm generates 
the control law for multiple unmanned vehicles, while ex- 
plicitly dealing with their multi-input multi-output non- 
linear dynamics, input satur ation and state constraints. 

The remaining of this paper is as follows: Section 2 
presents overview of flight management system for RU- 
AVs. Section 3 describes the design of t,he tracking con- 
trol system, highlight,ing t,he nonlinear model predictive 
approach. In Section 4, the proposed FhIS is applied to 
pursuit-evasion games. Section 5 concludes the paper. 

Figure 1: Berkeley RUAV in an autonomous search opera- 
tion with unmanned ground vehicles 

2 Flight Management System for Intelligent 
Unmanned Aerial Vehicles 

This section describes imp1c"itation of each coniponent 
in our flight iiianagement s,ysteni shown in Figure 2. 



2.1 Sensing 
Dynamically changing conditions in tlie environment and 
tlie vehicle states are perceived by various on-board 
sensors. Tlie precise guidance of the host vehicle of 
much smaller size demands more accurate navigation sen- 
sors. GPS-based INS is employed as a central navigation 
sensor-suite in order to correct the unbounded error of 
strap-down INS by supplementing a high-accuracy differ- 
ential GPS. An additional Kalman filter is used in order 
to  generate position estimates a t  a higher rate for more 
accurate position control including hover. Localizing sen- 
sors such as ultrasonic sensors and laser range-finders sup- 
plement the navigation sensor unit for the acquisition of 
the environment-specific information such as relative dis- 
tance from the ground surface and for the detection of 
nearby objects around tlie host vehicle. A Computer vi- 
sion system [2] with a PTZ camera is used to  detect the 
target objects or estimate the relative position and atti- 
tude with the help of II\S/GPS. 

2.2 Reasoning & Coordination 
Data sensed by sensor suites should be properly inter- 
preted by a strat,egy planner implemented on a flight con- 
trol computer. When this information is not enough to 
identify the current state of the world, t,lie world is niod- 
eled as a partially observable IvIarkov decision process 
(PORIDP), as described later in Section 4. Tlie strat- 
egy planner (either centrally or on each vehicle) updates 
each agent's belief (information) state, i.e., probability 
distribut,ion over the state space of the world, given mea- 
surement and action histories, and generat,es a policy, 
i.e: a niapping from t,he agent,k belief state to  its ac- 
tion set. Search of the optimal policy is computationally 
int,ractable in most, problems, thus usually sub-optimal 
policies are implemented [l], or, t.he search for an (ap- 
proximately) optimal policy is performed over a restricted 
class of policies [3] .  

Since there may be simple-structured policies with satis- 
fact,ory performance, direct. policy search methods have 
at,tract,ed particular inberest. In t8he policy search frame- 
work, we want' t80 find a good policy T E n, in a fixed class 
II of policies. For a. given POh,IDP and policy class II, de- 
fine T* 4? argsupTEn l+(~), where VE(T)  E [E,"=, ytrt] 
is the expect,ed sum of rewards when using the policy T 

stcarting from the initial st,at,e, y is a discount factor and 
rt denot.es t,he reward received at  time t .  The goal is then 
to find a policy fk E II such that I&(+) is close to VE(T*). 

In (31, the algorithm t.o draw samples according to t,he 
initial-st,ate distribut,ion and reuse tlie same samples to 
evaluat,e every T E Il was presented. Given a PORIDP 
with a. finit'e action space, the number of samples needed 
to obtain a policy wit.11 blie value close to supTEn I&(.) 
is a. polynoniial independent of the size of the state space 
or on t,lie complexit,y of t,he tmnsition distribut,ion, as 
long as t,he policy class IT is simple. We will apply this 
algorit,hni to PEG in  Section 4. 
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Figure 2: Flight. niana.gement system implemented for multi- 
agent scenarios 

The strategy planner also nianages the configuration of 
the coinniunication network. The role of coniniuiiicatio~i 
in the FRIS for RUAVs is more critical than in  conven- 
tional FhISs for manned vehicles, because RUAVs should 
report the vehicle status and accept external commands 
typically at a faster rate than human voice communi- 
cation. hloreover, the support of high quality-of-service 
(QoS) wireless communication system is desirable in or- 
der for multiple RUAVs to function as a tightly coordi- 
nated, reconfigurable, distributed networked intelligence. 

2.3 Action 
One of the most essential capabilities of an RUAV is to  
autonomously guide itself through the requested trajec- 
tories or way-points, in an autonomous manner. Each 
vehicle platform needs a flight controller that generates 
real-time control signals from the way-points requested 
by higher-level planners. Such a controller should be 
able to stabilize and follow the given trajectory in the 
presence of input saturation, state constraints and strong 
disturbance, as will be described in 3.2. Action-sensing 
coordination occurs at a very fast rate in order to cope 
with contingencies, for example, such as detection and 
avoidance of collisions. 

2.4 Incorporating Human Intervention 
While the autonomy of each vehicle is important, iuter- 
veiition of human intelligence is often necessary due to 
contingencies or mission characteristics. Human inputs 
in the form of information about the state of the world 
can be incorporated as a pnorz knowledge or transition 
rules. In the POhIDP framework. this affects only tlie 
belief state, not the procedure of computing optimal ac- 
tions. Human commands in  the form of mission ohjec- 
tives can be expressed as a change to the reward function. 
and the importance of objective is specified by chang- 
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ing tlie magnitude of the rewards. Open-control archi- 
tecture allows each strategic planner to accept inconling 
requests from human operators for mixed initiative plan- 
ning through human-to-console and console-to-RUAV in- 
terface. Tlie human-to-console interface, inipleniented as 
a graphic-user-interface (GUI) shown in Figure 3, receives 
liunian conimands and displays the information down- 
loaded from the RUAV. The console-to-RUAV interface 
sends the coninlands in a proper data structure to tlie 
RUAV controller and receives the RUAV status. 

3 Flight Control and Trajectory Generation 

This section describes tlie configuration of RUAV plat- 
forms and the design of control and trajectory generation 
layer at. t,he vehicle-level of tlie hierarchy for autonomous 
flight,. 

3.1 Vehicle Platform and Dynamics 
Berkeley RUAVs are built on comniercial off-the-shelf 
(COTS) radio-controlled helicopters of various sizes and 
payloads. Tlie vehicle platform is equipped with on-board 
navigation coniputers and sensors previously shown in 
Figure 2. The flight control software, implemented on 
QXXTAr real-time operation system, manages sensors, 
vehicle control, and communication. Nore detailed theo- 
retical and practical issues in building an RUAV are de- 
scribed in [4]. 

-4s shown in  Figure 4, we model an RUAV as a six degree- 
of-freedom rigid body augmented with tlie servorotor and 
gyroscope dynamics: 

where S denotes the spatial coordinate, and [U, 21, w] is 
the tangential velocities in the body coordinate frame re- 
spectively. The transformation between spatial and body 
coordinates are given by 

where RBdS E SO(3) is the rotational niatrix of the 
body axis relative to the spatial axis, represented by 
Z Y X  Euler angles [d. 0. $1; 

-se I cvce sz.ce 
-sr.c++cu ,es+ c.r,c++sr ,es+ . ( 2 )  [ si.c~+cu.sec+ -cis++st.sec+ cec+ 

RB-S = 

The variables 4, 8. and $ denote roll. pitch. and yaw, 
respectively. p ,  q. and T denote the angular rates in roll, 

pitch, and yaw direction in the body coordinate frame, 
respect.ively ; 

1 sin+tane cosdtane ] [ a ]  
0 cos+ - s i n +  ' (3) [!I=[ 0 sin&secB cos+secQ 

The parameters al, and bl ,  are loiigitudinal and lat- 
eral flapping angles, and r fb  is the feedback gyro system 
state [ 5 ] .  The input U consists of inputs to the lateral 
cyclic pitch, longitudinal cyclic pitch, main rotor collec- 
tive pitch, and tail rotor collective pitch. 

Assuming sniall velocity, sniall blade flapping, and con- 
stant rotor stiffness terms, and applying Newton-Euler 
Equation, we obtain 

where c,'s are constants, n2 and L ' s  are the mass and 
inertia of RUAV. Tlie forces vertical to each rotor sur- 
face, T A ~ ,  TT, and anti-torques, Q M ,  QT,  are modelled as 
a linear function of uenr , U ,  U ,  U J ,  r, r f b  . Finally first-order 
servorotor and feedback gyroscope dynamics (i.e., map- 
pings froin uals,ubls to  als,bls, and from u, , .~  to r f b )  
are augmented to yield Equation (1). 

3.2 Vehicle Stabilization & Control 
In order to address m u l t i - i n p u t  m u l t i - o u t p u t ,  nonlinear 
nature and input/state saturation over the flight enve- 
lope, we design a nonlinear model predictive tracking con- 
troller (NhIPTC) on Equation (4), which is discretized 
from (1); 

Xk+l = f (Xk,  Uk) (4) 
and a cost function for tracking is defined by 

A'-1 

J A 4(?N) + L(Xk,!?k,Uk) (5) 
k=O 

wit. 11 

where ? % Yd - y, y = c x  E W n U ,  Yd is the desired t,ra- 
jectory, and S is introduced to  bound the state variables 
that do not directly appear in y. 

The details on this tracking coiitroller design and on- 
line optimization using Lagrange multiplier and gradient- 
descent methods are reported in [GI. 
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Figure 4: Block diagram of RUAV dynamics 

3.3 Trajectory Generation 
Trajectory generation layer, as a coordinator between the 
stabilization/tracking layer and the strategic planner, is 
responsible for refining reference trajectories and trigger- 
ing tlie proper control law of the stabilization/tracking 
layer in order to execute each of these flight modes in a 
preprogrammed sequence or dynamically upon request. 
In designing such  a way-point navigator, we employ the 
vehicle control language (VCL) which allows external sys- 
tems as well as ground operators to request flight se- 
quences or trajectories using the provided flight com- 
mand set in Figure 5 .  Via rapidly reprogrammable, easily 
transmitted VCL codes, we obtain the isolation between 
the strategic planner and the stabilization layer. By ab- 
stracting away tlie details of sensing and control of each 
agent, we gain the interoperability of a unified franie- 
work for high-lei el planning across heterogeneous plat- 
forms. A VCL niodule consists of the user interface part 
on the ground station, tlie language interpreter, and tlie 
sequencer on tlie RUAV flight control computer. 

In the context of batch VCL mode, a given flight is de- 
composed into a sequence of flight modes such as hover, 
forward flight, bank-to-turn. etc. A set of VCL coin- 
mands is sent to  the VCL execution module residing in 
the flight computer as a static command file or dynamic 
command set, over communication channels such as wire- 
less Ethernet or RS-232 serial link. 

When we incorporate a potential navigation fuiiction with 
tlie NhIPTC framework and use the high-speed tracking 
VCL mode, multiple unmanned aerial vehicles can re- 
plan their trajectories on-the-fly when a collision is immi- 
nent and generate safe trajectories, while minimizing the 
tracking error from the original trajectory command. By 

considering lowlevel dynamics including input saturation 
and state constraints from tlie trajectory planning step, 
this approach removes the feasibility issues, i.e., generates 
physically realizable trajectories [6]. 

4 Experiments 

In this section, we evaluate the effect,iveness of the pro- 
posed hierarchical FhlS in a pursuit-evasion game (PEG) 
assisted by tlie onboard vision computer. 

This experiment evaluates the reasoning-action coordina- 
tion and tlie performance of dynamic VCL in a pursuit- 
evasion game (PEG) [l]. The goal of pursuers is to "cap- 
ture" evaders in a given grid-field. An evader is consid- 
ered as captured when it is located within a certain range 
(e.g., 1.5 in) from a pursuer and in the pursuer's visibility 
region. The initial locations of evaders are unknown a pri- 
ori. At each time step, tlie group of pursuers are required 
to go to  the requested way-points and take measurements 
of their own locations and of any evaders within their vis- 
ibility regions using the sensor suites. This measurement 
is used to build probabilistic maps of the possible loca- 
t i o ~ ~ ~  of evaders and decide the pursuers' next action that 
minimizes the capture time. From tlie pursuers' point of 
view, this PEG is modeled as a POhIDP. 

The policy search framework [3] provides a natural way 
of specibing human insight in the process of constructing 
the pursuit policy class. Under the same pursuit-evasion 
game setup described in 111, we construct the pursuit pol- 
icy class n so that each policy 'TT E rI is characterized by 
a set of parameters 8, = {nl, QZ, 0 3 .  04, Q ~ , C Y G ,  p, 7 ~ >  7 3 ) .  
which we will explain below. 
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Figure 3: Graphical human-to-console interface on ground 
station of Berkeley testbed accepts human com- 
mands and displays the information received from 
multiple RUAVs. 

At each t ,  the pursuers recursively update the evader map 
pe(xe(t + 1) = z 1 Z‘), i.e., the posterior probability that 
the evader position x, at t h e  t + 1 is z given Z t ,  the 
pursuers’ collected observation history upto time t .  Then 
the pursuer k located at x p k  chooscs the action wi based 
on the value {fl. f2, fs} as follows: 

Here 2:;’ is the pursuer‘s position at  the next instance if 
the actmion U:. E {STAY,  N ,  N E :  E ,  S E ,  S ,  SIV, N W }  
were taken and performed accurately, thus the quantity 
f l  represents the insiglit, to maxiinize the summed dis- 
tance from the other pursuers. 

The set V,, (x) denotes the pursuer‘s visibility region of 
the pursuer when located at z. ?;:,>g denotes the pur- 
suer’s position after taking the frontier-greedy action, i.e.. 
tlie action that maximizes the probability summed over 

TakeoffTo (coord) {abs,rel} 
: perform autonomous take-off t o  :t certain t,arget point 

Hover (coord) {abs,rel} {heading=(heading) {deg,rad}} 
(duration) {sec,min} 
: hover wit,h a given heading angle for a given time 

FlyTo (coord) {abs,rel} 
{vel (velocity) {mps,kmps,fps,knots,mph}} 
{passby,stopover} {autoheading, 
heading= (heading) {deg,rad}} 
: cruise to  a certain way-point, stopping over or passing by 

MoveTo (coord) {abs,rel} 
{vel (velocity) {mps,kmps,fps,knots,mph}} 
{autoheading, heading=(heading) {deg,rad}} 
: move to  a certain way-point t o  stop-over wit,h a fixed headin! 

BankToTurn (heading change) {deg,rad} 
{{radius} (radius){m,ft}} 
{{vel} (velocity) {mps,kmps,fps,knot,s,mph)) 
: perform bank-to-turn during cruise 

Land : command the vehicle t o  Land 

Figure 5:  Vehicle Control Language Syntax 

the newly observed cells at each step (see the shaded re- 
gions in Figure 6(a)), which is analogous to the “frontier” 
concept in map-building literature [7]. Thus, f:, repre- 
sents the probability of capturing the evader, summed 
over the visibility region following the path taken by 
frontier-greedy actions from time t + 1 until t + T ,  af- 
ter taking the action u i ,  witha discount factor -y2. This 
reflects the heuristic to maximize the probability to find 
the evader over the horizon T .  

For T = 1,2 , .  . . , T L ~  I{. E R(zbk, WE) : d(x,i$;’) = T } I  
denotes the number of cells that  can be reached within T 

steps, where d(., .) is the distance function defined by the 
pursuer‘s action set, and R(&, U ; )  denotes the region 
in X exemplified in Figure G ( b ) .  f3 denotes the current 
evader map value summed over the quadrant, depending 
on t8he proceeding direction generated by action U;, thus 
prioritizing tlie action sequence with a smaller heading 
change. 

For each wi in the pursuer‘s action set, we compute tlie 
value 

4(~;) = a z f l + a s ~ + a r J ~ + a s ~ + a c J ~ ,  (6) 

and assign the probability of taking action w: according 
to the Boltzniaii distribution 

(7) 
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Figure 6: (a) The value fi represents the discounted sum 
of evader map value over the pursuer’s visibil- 
ity region along the path that maximizes frontier 
values. The evader map over the shaded region 
will be summed when = E and the frontire- 
greedy action sequence is { N E ,  E ,  SE ,  S E }  for 
T = 4. (b) explains f3 for the actions uf, = N and 
SIV. Each shaded region represents R(xkk, Ai) 
and R(xb,, SW) ,  respectively. 

grid size I greedy I policy search 
10 x 10 I (7.3.4.8) I (5.1,2.7) 

Table 1: Mean and standard deviation of tlie capture t,ime 
over 100 runs 

Then the paramet,ers 0, are opt,imized (i.e., approxi- 
mat,ely optimal f E n is searched) using standard opti- 
mization techniques. This policy comput,at.ion algorithm 
is run in real-time using blocking socket of TCP/IP com- 
munication and the incoming VCL commands are pro- 
cessed by t,he on-board VCL execution module as previ- 
ously described. 

Not,e that a2 = 0, y2 = 0, ad = 0, a5 = 0, = 0,T = 0 
yields a stochast,ic policy that is greedy with respect to 
p , ,  i.e., that chooses t.he act,ion to move t>o the cell with 
t,he maximum probability of capt,uring the evader at t,he 
next, time inst,ant. Ta.ble 1 compares t,he performance of 
this greedy policy wit,h two policies wit.11 1000 samples, 
H = 40, T = 5 ,  np = 2. In a. 10 x 10 grid, it took 7.3 
steps for stochastic greedy pursuers to capture one ran- 
domly moving evader, while the pursuit policy optimized 
in tlie predescribed pursuit class needed 5.1 steps. The 
performance difference of these policies increases as t,he 
grid size increases. For example, in a 20 x 20 grid, the 
st,ochastic greedy policy takes 42.3 steps, while the op- 
timized policy t,akes only 12.3 steps. The ot,her notable 
point is a very large standard deviation under the greedy 
policy, which we &tribute to the well-known shortcoming 
of greedy policy: the high possibility of getting in a trap 
while failing t,o explore for long-term opt.ima1it.y. 

5 Conclusion 

This paper presented a hierarchical flight management 
system designed for intelligent RUL4Vs. We described 
noillinear RUAV dynamics model upon which we design a 
tracking controller, and addressed how to generate feasi- 
ble trajectories for RU.4Vs. The experimental results val- 
idate the satisfactory performance of the multi-functional 
flight management system constructed on Berkeley RU- 
AVs. At the strategy planning level, we cast the pursuit- 
evasion game in partially observable hIarkov decision pro- 
cess framework. In applying policy search methods to  
find pursuit policies, we incorporated the insight in  con- 
structing a policy class, and obtained a suboptimal pol- 
icy with the far better performance than myopic poli- 
cies. Future research effort will be focused on expanding 
the capability of the flight control system with rich strat- 
egy planning logics that also consider limited resources 
or communication network, and improving robustness of 
current RUAV flight management systems. 

References 

[l] R. Vidal, 0. Shakernia, H. J. Kim, H. Shim, and 
S. Sastry, “hlulti-agent probabilistic pursuit,-evasion 
games with unmanned ground and aerial vehicles,” ac- 
cepted for publication in IEEE Tran,sactions on. Robotics 
and Automation,. 

[2] C. S. Sharp, 0. Shakernia, and S. S. Sastry, “A 
vision system for landing an unmanned aerial vehicle,” 
in IEEE Internation,al Conference on Robotics and Au- 
tomation, Seoul, Korea, 2001, pp. 1720-1727. 
[3] A. Y. Ng and hl.  Jordan, “PEGASUS: A policy 
search met,hod for large hIDPs and PORIDPs,” in Proc. 
of 17th hternational Confereme on hcertainty in Arti- 
ficial In.telligen.ce, 2000. 

[4] D. H. Shim, Hierarchical Control System Synthesis 
for Rotorcrafi-based lJnmann,ed Aerial Vehicles, P1i.D. 
t,hesis, University of California a t  Berkeley, 2000. 

[5]  B. hlett>ler, hl .  B. Tischler, and T. Kanade, “Sys- 
tem ident.ification of small-size unmaniied helicopt,er dy- 
namics,” in American Helicopter Society 55th Forum, 
hIont,real, Quebec, Canada, hlay 1999. 

[GI “A flight 
management. syst,ein for int,elligent unmanned aerial ve- 
hicles with nonlinear model predictive control,” t,o appear 
in 21st Am.erican Con,trol Confereme, 2002. 

[7] B. Yamauchi, A. C. Schultz: and W. Adams, “h.10- 
bile robot exploration and map-building with coiit,inuous 
localization,” in Proc. of IEEE Conferen,ce on Robotics 
and Automation,, Leuven, Belgium, 1998, pp. 3715-3’720. 

H. J. Kim, D. H. Shim, aad S. Sast,ry, 

71 


