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Abstract— We propose a novel infinitesimal variation for a
nonlinear networked system’s behavior when its interconnection
topology changes discontinuously. We introduce a variational
derivative of system output with respect to the connectivity,
and derive an analytic formula for the derivative using an
adjoint formulation. We provide bounds relating the discon-
tinuous change in system behavior to the proposed continuous
infinitesimal variation. The variational derivative can be used
as the sensitivity of the system output to the interconnection
topology. The separability of the variational derivative allows us
to develop a tractable algorithm for an interconnection pursuit
problem applicable to optimization and inference in biochemical
reaction networks.

I. INTRODUCTION

Interconnected systems naturally model the dynamic in-
teractions of mobile sensors [1], [2], social agents [3] and
biochemical species [4]. Network topology plays a critical
role in determining the behavior of these systems through
coupling with the nonlinear continuous dynamics. Conse-
quently, it is important to determine the effect of variations
in network connectivity.

A standard method to variate networks involves adding
or deleting a subset of connections between nodes. This
discrete variational approach has been applied to a number
of problems including connectivity control [5] and network
identification [6]. In some applications it is more appropriate
to consider a small variation in the strength of an intercon-
nection rather than its discrete variation. Such continuous
variational approaches are adopted in robust consensus of
interconnected systems [7] and distributed routing problems
in dynamical networks [8].

Sensitivity of system output with respect to connectivity
can be a useful measure of the effect of variations in the
interconnection on the output. To define sensitivity with
respect to a graph, we consider a variation of the intercon-
nection and compare outputs from the two interconnection
structures of interest. Parametrizing the distance between any
two interconnections by a scalar parameter that varies from 0
to 1, we define the sensitivity using a variational derivative,
namely the ratio between the output variation and the scalar
parameter as the parameter tends to zero. Motivated by the
important problems of yield optimization [9] and network
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inference [10] for biochemical reaction networks, we ap-
ply the variational derivative-based sensitivity to propose a
computationally–tractable approximation of an interconnec-
tion pursuit problem.

In Section II-B, we introduce a family of interconnected
systems that interpolate between two network topologies as
a scalar parameter varies from 0 to 1. The well-posedness of
this system’s dynamics enables us to define the variational
derivative with respect to the interconnection change by com-
puting the limit as the parameter tends to zero, as presented
in Section II-C. Building on previous work in parameter
optimization [11] and optimal control [12], in Section II-C,
we explicitly derive an analytic expression for the variational
derivative by introducing an adjoint system. Furthermore, we
bound the difference between the variational derivative and
the output difference relating two interconnections, and dis-
cuss usefulness of the variational derivative as a measure of
the sensitivity of the system output. In Section III, we apply
the variational derivative to develop a novel algorithm for
design or inference of interconnection topologies in a class
of systems relevant to applications, providing a tractable
approximation to optimization [9] and inference [10] in
biochemical reaction networks.

II. INTERCONNECTION VARIATION

A. Interconnected Dynamical Systems

Suppose that we have an interconnection that is invariant
over time with the representative graph G = (V, E) where
V denotes the (finite) set of vertices and E the set of edges.
Consider the interconnected system

ẋ(t) = fE(x(t)), x(0) = x0 ∈ X , (1)

where X ⊆ Rn is the continuous state space and fE : X →
Rn is the nonlinear vector field. We restrict our analysis to
a subset Γ ⊆ 2V×V of all possible graphs over the vertex set
V containing only the feasible interconnections.

Definition 1. The set Γ ⊆ 2V×V of feasible interconnections
for system (1) contains all E ∈ 2V×V such that the vector
field fE(·) is twice differentiable, has a continuous second
derivative, and is globally Lipshitz continuous in X .

Throughout this paper we will assume a continuously
differentiable output function h : X → R is associated with
the system (1) and we will let y(t) = h (x(t)) denote the
output trajectory associated with any solution x : R→ X of
(1). Our aim is to investigate how y changes in response to
a variation in E . The set V of vertices will remain fixed even
if a vertex does not connect to any other vertices.
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Fig. 1: Graphs with (a) E ; and (b) Ẽ . The interconnections
E and Ẽ determine the vector field fE and fẼ , respectively.
The interactions among nodes with the ε-variational vector
field fε(E,Ẽ) can be considered as (c).

We begin by introducing a family of dynamical systems
that vary continuously between two interconnection topolo-
gies as a parameter ε is varied from 0 to 1. Subsequently, we
develop an adjoint-based technique to compute the infinites-
imal variation of trajectories to interconnection variations.

B. Parameterizing Interconnection Variation

For any pair E , Ẽ ∈ Γ, we construct a vector field called
the variation from E to Ẽ ,

f(E,Ẽ) = fẼ − fE , (2)

and use this to define the ε–variation from E to Ẽ ,

fε(E,Ẽ) = fE + εf(E,Ẽ), ε ∈ [0, 1]. (3)

An illustration of this variation is shown in Fig. 1.

Example 1. Fig. 1 contains an example of interconnec-
tions E and Ẽ with an interpretation of fε(E,Ẽ). The orig-
inal graph in (a) consists of V = {A,B,C} and E =
{(A,B), (B,C), (C,A)}. The interconnection in (b) is
given by Ẽ = {(B,C), (C,A)}. The ε-variational vector
field fε(E,Ẽ) takes into account the small degradation of the
interaction via {(A,B)} as depicted in (c). We will study
this interconnection structure more detail in Section IV.

Let E , Ẽ ∈ Γ and consider the dynamics of the ε–variation
from E to Ẽ ,

ẋε(t) = fε(E,Ẽ) (xε(t)) , xε(0) = x0 ∈ X , (4)

which we call the ε-variational system associated with (E , Ẽ).
With ∆xε(·) = xε(·)−x(·) denoting the difference between
trajectories satisfying (1) and (4) with the same initial
condition xε(0) = x(0) = x0 ∈ X ,

˙∆xε = fε(E,Ẽ) (xε)− fE(x)

= fE(∆x
ε + x)− fE(x) + εf(E,Ẽ) (∆xε + x) .

(5)

Taking the Taylor approximation,

˙∆xε =
∂fE(x)

∂x
∆xε + εf(E,Ẽ) (∆xε + x) +H(∆xε, x)

(6)

where H := (H1, · · · , Hn) and Hi denotes the higher-order
terms in the Taylor expansion of (fE)i(∆x

ε(t) + x(t)), i.e.
by applying the mean value theorem [13],

Hi(∆x
ε(t), x(t)) =∫ 1

0

(1− s)∆xε(t)>D2
x(fE)i(x(t) + s∆xε(t))∆xε(t) ds.

Since the vector fields in (4) and (5) are Lipschitz continuous
for all ε ∈ [0, 1], they generate well-defined and bounded
trajectories in a bounded time interval; this follows from
Proposition 5.6.5 in [14].

Lemma 1. For all ε ∈ [0, 1], there exist unique trajectories
xε(·) and ∆xε(·) satisfying the dynamics in (4) and (6),
respectively. In addition, ‖xε(t)‖ and ‖∆xε(t)‖ are bounded
by some constant independent of ε for any t ∈ (0, T ].

The next question to address is how the ε-variational
system behaves as ε tends to zero as compared to the original
system. The following Lemma shows that the difference
∆xε = xε − x is Lipschitz continuous in ε; a version of
this result appears as Lemma 5.6.7 in [14].

Lemma 2. There exists L ∈ R such that for all t ∈ [0, T ]

‖∆xε(t)‖ = ‖xε(t)− x(t)‖ ≤ Lε.

This Lemma allows us to directly deduce, for all t ∈ [0, T ],

lim
ε→0+

‖∆xε(t)‖ = 0, lim
ε→0+

1

ε
‖∆xε(t)‖2 = 0.

The previous Lemmas with the dominated convergence the-
orem [15] also yields the following.

Corollary 1. For any t ∈ (0, T ],

lim
ε→0+

1

ε

∫ t

0

‖∆xε(s)‖2 ds = 0.

Lemmas 1 and 2 together with Corollary 1 imply that for
ε ∈ [0, 1] and E , Ẽ ∈ Γ the ε–variation from E to Ẽ is well-
posed in the sense of Hadamard [16].

We now compute the infinitesimal change in the output
behavior due to the ε-variation of the interconnection as ε
tends to zero.

C. Infinitesimal Interconnection Variation

We seek a first-order approximation to the change in
system behavior caused by a variation of interconnection
topology. Such an approximation is an intuitively appeal-
ing generalization of the sensitivity in continuous systems.
Defining first-order variations with respect to the connectivity
structure requires a distance metric defined over intercon-
nection topologies. We define the distance between any two
feasible connections E and Ẽ as 1 and the distance between
E and its ε-variation ε(E , Ẽ) as ε ∈ [0, 1]. We then use the
the corresponding ε-variational system (4) to obtain the ε-
variation of the system output yε := h(xε). As ε tends to
zero, we have a well-defined derivative of the output with
respect to the interconnection, which we call the variational
derivative of the output from E to Ẽ .
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Definition 2. For E , Ẽ ∈ Γ we define the variational deriva-
tive from E to Ẽ of the output as

D(E,Ẽ)y(t) := lim
ε→0+

1

ε
(h(xε(t))− h(x(t))) (7)

where xε solves (4) and x solves (1) with xε(0) = x(0).

Qualitatively, the variational derivative D(E,Ẽ)y(t) mea-
sures the sensitivity of the output with respect to the network
change from E to Ẽ . We aim to prove that the variational
derivative (7) is well-defined and bounded for t ∈ [0, T ]. We
will show this by explicitly deriving an analytic formula of
D(E,Ẽ)y(t) using the adjoint system of (1) at time t:

−µ̇(s) =
∂fE(x(s))

∂x

>
(
µ(s)− ∂h(x(t))

∂x

>
)
, s ∈ [0, t]

µ(t) = 0.
(8)

Here, µ(s) is called the adjoint state. Unique solutions
to (8) exist for all t ∈ [0, T ] and E ∈ Γ since the
definition of feasible interconnections guarantees continuous
differentiability of fE and boundedness of x(s) for s ∈ [0, t].

Theorem 1. The variational derivative (7) can be obtained
as

D(E,Ẽ)y(t) =

∫ t

0

[
∂h(x(t))

∂x
− µ(s)>

]
f(E,Ẽ)(x(s)) ds,

(9)

where x and µ solve (1) and (8), respectively, and f(E,Ẽ)
is defined in (2). Hence, the variational derivative is well-
defined and bounded for any t ∈ [0, T ].

Proof. Let O := O(
∫ t

0
‖∆xε(s)‖2ds) + O(ε2) denote

high order terms. We then have limε→0+ O/ε = 0 due
to Lemma 2 and Corollary 1. Note that εf(E,Ẽ)(x(t) +

∆xε(t)) = εf(E,Ẽ)(x(t)) + O, we can rewrite system (6)
as

˙∆xε(t) =
∂fE(x(t))

∂x
∆xε(t) + εf(E,Ẽ)(x(t)) + O, (10)

which implies

∆xε(t) =

∫ t

0

∂fE(x(s))

∂x
∆xε(s) + εf(E,Ẽ)(x(s)) ds+ O.

We now consider the difference

h(xε(t))− h(x(t)) =
∂h(x(t))

∂x
∆xε(t) + O, (11)

in which we use the Taylor expansion of h(·). We now take
the inner product of both sides of (10) with the adjoint state

µ and subtract it from the difference (11) to obtain

h(xε(t))− h(x(t))

=
∂h(x(t))

∂x

∫ t

0

∂fE(x(s))

∂x
∆xε(s) + εf(E,Ẽ)(x(s)) ds+ O

−
∫ t

0

µ>
[
− ˙∆xε +

∂fE(x)

∂x
∆xε + εf(E,Ẽ)(x) + O

]
ds

= ε

∫ t

0

λ(s, t)f(E,Ẽ)(x(s)) ds+ O

+

∫ t

0

(
−µ̇(s)> + λ(s, t)

∂fE(x(s))

∂x

)
∆xε(s) ds,

(12)
in which we let λ(s, t) =

(
∂h(x(t))
∂x − µ(s)>

)
for notational

simplicity, In the second equality, we used integration by
parts

∫ t
0
µ(s)> ˙∆xε(s) ds = µ(t)>∆xε(t)−µ(0)>∆xε(0)−∫ t

0
µ̇(s)>∆xε(s) ds with µ(t) = 0 and ∆xε(0) = 0. The

second integral in the righthand side of the last equality
equals zero due to the definition of µ in (8). The limit

lim
ε→0+

h(xε(t))− h(x(t))

ε

= lim
ε→0+

[∫ t

0

λ(s, t)f(E,Ẽ)(x(s)) ds+
O

ε

]
yields the formula in (9) because limε→0+ O/ε = 0. We
also notice that D(E,Ẽ)y(t) is unique and bounded due to the
uniqueness and boundedness of x and µ.

From the proof, for yε := h(xε) we have the estimate

yε(t) = y(t) + εD(E,Ẽ)y(t) +O(ε2)

for sufficiently small ε, which is analogous to the Taylor
expansion of yε(t) with respect to ε. For the important case
ε = 1, we have the following.

Proposition 1. Let ∆(E,Ẽ)y := y1 − y denote the output
difference between (5) and (1) when ε = 1. Then there exists
K ∈ R such that for all s ∈ (0, t) we have

|∆(E,Ẽ)y(t)−D(E,Ẽ)y(t)| ≤ K
∫ t

0

‖∆x1(s)‖ ds.

Proof. Choose ε = 1 in (6). Then, instead of (10), we have

˙∆xε(s) =
∂fE(x(s))

∂x
∆xε(s) + εf(E,Ẽ)(x(s)) + Õ(s)

for small ‖∆x1(s)‖, where Õ(s) = O(‖∆x1(s)‖). There-
fore, (11) should be rewritten with Õ as follows:

h(x1(t))− h(x(t))

=

∫ t

0

(
∂h(x(t))

∂x
− µ>(s)

)
f(E,Ẽ)(x(s)) ds+

∫ t

0

Õ(s)ds

= D(E,Ẽ)y(t) +

∫ t

0

Õ(s)ds.

Recall that ∆(E,Ẽ)y(t) = h(x1(t)) − h(x(t)) by definition,
we have the desired estimate.

This estimate leads us to interpret the variational derivative
as measuring the output sensitivity with respect to the
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interconnection change (E\Ẽ)∪(Ẽ\E) in the following sense.
Let ε ∈ [0, 1] parameterize the intensity of the interaction
among nodes via (E \ Ẽ) ∪ (Ẽ \ E). Then the variational
derivative yields the sensitivity of the output with respect
to the perturbation that slightly degrades the efficiency of
E \ Ẽ and infinitesimally generates the interaction through
Ẽ \ E . For this reason, we believe the variational derivative
will be useful for analyzing output sensitivity in nonlinear
biochemical and power system models.

D. Computing Infinitesimal Interconnection Variation

Computation of the variational derivative D(E,Ẽ)y(t) using
(9) requires the solutions of the system (1) and its adjoint
(8). Due to nonlinearity, it is not generally possible to
find an analytic expression for solutions of (1) (and hence
(8)). Algorithm 1 contains a straightforward algorithm to
numerically approximate the variational derivative.

We discretize [0, T ] into N ∈ N equally–spaced time in-
tervals, then apply the Forward Euler algorithm to obtain the
numerical approximation xk to (1) for each k ∈ {0, . . . , N}.
To evaluate the variational derivative at time t = iT/N , we
apply Forward Euler to the adjoint dynamics (8) backward in
time to obtain µk for each k ∈ {0, . . . , i}, then numerically
integrate (i.e. sum) the formula in (9).

Algorithm 1: Variational derivative

1 Initialization:
2 Given x0 ∈ Rn and E , Ẽ ∈ Γ;

3 Approximate solution of (1):
4 for k = 0 : N − 1 do
5 xk+1 ← xk + 1

N fE(xk);
6 end

7 Variational derivative:
8 for i = 0 : N do
9 Approximate solution of (8):

10 µi ← 0;
11 for k = i− 1 : 0 do
12 µk ← µk+1 − 1

N
∂fE(xk)
∂x

> (
µk+1 − ∂h(xi)

∂x

>)
;

13 end
14 Approximation of (9):
15 D(E,Ẽ)yi ←

T
N

∑i
k=0

(
∂h(xk)
∂x − µ>k

)
f(E,Ẽ)(xk);

16 end

E. Infinitesimal Interconnection Variation at Equilibria

An important special case concerns the sensitivity of the
system (1) at an equilibrium ξ ∈ X where fE(ξ) = 0. In
applications, exponentially stable equilibria may correspond
to a setpoint in a biochemical reaction network or nominal
load conditions in an electrical power system, and there
exists a rich set of tools to ensure existence and stability
of equilibria for such interconnected systems [17], [18].

Consider an exponentially stable equilibrium trajectory x
for interconnection E of (1) so that x(t) = ξ for all t ∈
[0, T ] and Reλ < 0 for all λ ∈ spec ∂fE(ξ)

∂x . Then we have
∂h(x(t))
∂x =: b, fE(x(t)) = 0, and ∂fE(x(t))

∂x =: A independent
of t ∈ [0, T ], whence the adjoint satisfies the linear time–
invariant differential equation

−µ̇(s) = A>
(
µ(s)− b>

)
, s ∈ [0, t], µ(t) = 0 (13)

with solution µ(s) = −eA>(t−s)b> + b>, s ∈ [0, t]. This
leads to the simplified expression for D(E,Ẽ)y, for t ∈ [0, T ],

D(E,Ẽ)y(t) =

∫ t

0

(
b− µ(s)>

) (
fẼ(ξ)− fE(ξ)

)
ds

= b

∫ t

0

eA(t−s)ds fẼ(ξ)

= −bA−1
(
I − eAt

)
fẼ(ξ).

(14)

For sufficiently large T , we find that

D(E,Ẽ)y(T ) = −∂h(ξ)

∂x

(
∂fE(ξ)

∂x

)−1

fẼ(ξ) +O(eaT ).

(15)
where a = max {Reλ : λ ∈ specA} < 0 by assumption.
This expression shows that the variational derivative at
equilibria is most sensitive to changes in states that converge
slowly as measured by the output function. To see this,
consider the case where A = ∂fE(ξ)

∂x is diagonal and the
output function measures the ith state. In this case, A =
diag (a1, . . . , an) where Re ai < 0 and ∂h(ξ)

∂x = e>i where
ei is the ith standard Euclidean basis vector. For large T we
see that D(E,Ẽ)y(T ) ' − ai

|ai|2
e>i fẼ(ξ).

III. INTERCONNECTION PURSUIT

Motivated by applications, we consider an optimization
problem over interconnection topologies. Specifically, given
an initial state x(0) ∈ X , interconnection topology E ∈ Γ,
and time τ ∈ [0, T ], we seek a new interconnection Ẽ ∈
Γ that maximizes ∆E,Ẽy(τ) := h(xẼ(τ)) − h(xE(τ)), the
difference in the outputs at time τ .

Optimization 1 (Interconnection Pursuit).

max
Ẽ∈Γ

∆(E,Ẽ)y(τ) (16)

This single optimization subsumes several important prob-
lems in the context of biochemical reaction networks: design
of in vitro circuits that maximize yield of a desirable species
xi can be obtained by choosing h(x) = xi; inference of the
in vivo network most compatible with observation data η(τ)
can be achieved using h(x) = −‖x− η(τ)‖. Unfortunately,
Optimization 1 is generally nonconvex and NP-hard, whence
we seek a tractable approximation.

A. Additive Interconnections

Motivated by applications, we consider the special case
where interconnections enter additively in (1). This means
that for each E ∈ Γ the vector field fE is obtained by adding
one term for each edge e ∈ E , and we assume all possible
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interconnections are feasible for the set V of nodes, i.e. Γ =
2V×V . In the following definition, we regard the vector field
as a function f : X × Γ→ Rn where f(·, E) = fE(·).

Definition 3. The vector field f : X ×Γ→ Rn has additive
interconnections if for all E ∈ Γ

fE = f∅ +
∑
e∈E

(
f{e} − f∅

)
, (17)

where f∅ denotes the vector field with no interconnections.

The vector field with additive interconnections implies that
the variational dervative is separable over edges, i.e.,

D(E,Ẽ)y(t) =
∑
e∈Ẽ\E

D(E,E∪{e})y(t)

+
∑
e∈E\Ẽ

D(E,E\{e})y(t).
(18)

As we will see in Section III-B, this decomposition will allow
us to solve an approximate version of the interconnection
pursuit problem with an algorithm that only requires the
evaluation of D(E,E∪{e})y(τ) for e /∈ E and D(E,E\{e})y(τ)
for e ∈ E .

Proposition 2. If f : X × Γ → Rn has additive intercon-
nections, then for all E , Ẽ ∈ Γ the variational derivative
D(E,Ẽ)y(t) satisfies (18).

Proof. Since f has additive interconnections, the variation
f(E,Ẽ) is given by

f(E,Ẽ) = fẼ − fE =
∑
ẽ∈Ẽ

(f{ẽ} − f∅)−
∑
e∈E

(f{e} − f∅)

=
∑
ẽ∈Ẽ\E

(f{ẽ} − f∅) +
∑
e∈E\Ẽ

(−f{e} + f∅)

=
∑
ẽ∈Ẽ\E

(fE∪{ẽ} − fE) +
∑
e∈E\Ẽ

(fE\{e} − fE).

Now since the variation f(E,Ẽ) enters linearly into (9) and

letting λ(s, t) =
(
∂h(x(t))
∂x − µ(s)>

)
for notational simplic-

ity,

D(E,Ẽ)y(t) =

∫ t

0

λ(s, t)f(E,Ẽ) (x(s)) ds

=
∑
ẽ∈Ẽ\E

∫ t

0

λ(s, t)f(E,E∪{ẽ}) (x(s)) ds

+
∑
e∈E\Ẽ

∫ t

0

λ(s, t)f(E,E\{e}) (x(s)) ds,

which is equivalent to (18).

When the vector field has additive interconnections,
we can bound the difference between D(E,Ẽ)y(T ) and
∆(E,Ẽ)y(T ) that are associated with equilibria to obtain a
more explicit expression than the estimate in Proposition 1.

Proposition 3. Suppose that the vector field f has additive
interconnections. Let ξ and ξ̃ be exponentially stable equi-
libria of ẋ = fE(x) and ẋ = fẼ(x), respectively. Then

|∆(E,Ẽ)y(T )−D(E,Ẽ)y(T )|

≤

∥∥∥∥∥∂h(ξ)

∂x

(
∂fE(ξ)

∂x

)−1 ∂f(E,Ẽ)(ξ)

∂x

∥∥∥∥∥ ‖ξ − ξ̃‖
+O(eaT ) +O(‖ξ − ξ̃‖2)

where a = max
{

Reλ : λ ∈ spec ∂fE(ξ)
∂x

}
< 0.

The proof is contained in the Appendix. Proposition 3
implies that for sufficiently large T and small ‖ξ − ξ̃‖,
the variation D(E,Ẽ)y(T ) approximates the actual differ-
ence in system behavior ∆(E,Ẽ)y(T ) as the interconnection
changes from E to Ẽ . Although the relationship between
∆(E,Ẽ)y(τ) and D(E,Ẽ)y(τ) for any τ ∈ (0, T ] warrents
further study beyond Proposition 1, we will use D(E,Ẽ)y(τ)
in the approximate interconnection pursuit problem proposed
below. Additive interconnections and the separability of the
variational derivative enable us to solve this approximate
pursuit problem efficiently relative to the original (NP-hard)
interconnection pursuit problem.

B. Approximate Interconnection Pursuit

The analysis in the previous section suggests a tractable
approximation to the interconnection pursuit problem (16)
for systems with additive interconnections. We assume that
τ ∈ (0, T ] is fixed, all possible interconnections are feasible,
and the vector field has additive interconnections.

Optimization 2 (Approximate Interconnection Pursuit).

max
Ẽ∈Γ

D(E,Ẽ)y(τ) (19)

To study how efficiently we can solve this problem, we
first let E := {e−1 , · · · , e

−
L} and E∗ \ E := {e+

1 , · · · , e
+
M−L}

and , where E∗ is the maximal interconnection (i.e., arbitrary
two nodes are connected) and L := |E| and M := |E∗|. We
also introduce the following vectors of variational derivatives

c+ :=
(
D(E,E∪{e+1 })

y(τ), · · · , D(E,E∪{e+M−L})
y(τ)

)
,

c− :=
(
D(E,E\{e−1 })

y(τ), · · · , D(E,E\{e−L})
y(τ)

)
,

(20)

and let c := [c+, c−] ∈ RM . Due to the separability of the
variational derivative, we have

DE,Ẽy(τ) = c>α

with α ∈ RM such that

αi =

{
1 if e+

i ∈ Ẽ or e−i /∈ Ẽ ,
0 otherwise.

i = 1, · · · ,M.

Optimization 2 is then equivalent to

max
α∈RM

c>α

subject to αi ∈ {0, 1}, i = 1, · · · ,M.
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This problem has an explicit solution given by

αi =

{
1 if ci > 0,
0 otherwise. i = 1, · · · ,M,

which motivates the following tractable algorithm:

Algorithm 2: Approximate interconnection pursuit

1 Initialization:
2 Ẽ ← E ;
3 Fix τ ∈ (0, T ];
4 Compute the vectors of variational derivates c+ and c−

given by (20);

5 Interconnection pursuit:
6 for i = 1 : M − L do
7 if c+i > 0 then
8 Ẽ ← Ẽ ∪ {e+

i };
9 end

10 end
11 for i = 1 : L do
12 if c−i > 0 then
13 Ẽ ← Ẽ \ {e−i };
14 end
15 end

Note that lines 6–15 can be completely parallelized be-
cause the order of the additions and the deletions does
not matter. In practice, we choose a threshold δ ≥ 0,
and add e+

i 6∈ E if D(E,E∪{e+i })
y(τ) > δ and remove

e−i ∈ E if D(E,E\{e−i })
y(τ) > δ to account for error

introduced by the approximation (3). While the original
interconnection pursuit problem requires us to search all 2M

possible interconnections to find a global optimal solution,
the approximate interconnection pursuit problem can be
very efficiently solved with Algorithm 2 that has O(M)
complexity.

IV. EXAMPLE

The three-species biochemical circuit has played an impor-
tant role in illuminating fundamental properties of complex
signaling networks such as biochemical adaptation [19] and
dynamic correlations in biochemical noise [20]. In this
section, we consider the biochemical network in Figure 2 (a)
and investigate which edges should be deleted to maximize
the increase in the concentration of active species pB. We
first represent the biochemical circuit in Figure 2 (a) as a
graph G = (V, E) with V = {A,B,C} and E = {e1, e2, e3},
where e1 = (A,B), e2 = (B,C) and e3 = (C,A). In
the biochemical network, species A activates (i.e., phos-
phorylates) B, B activates C, and species C inhibits (i.e.,
dephosphorylates) A. The following biochemical equations
allow us to examine the interaction among the species:
• Activation of B by A (edge e1 = (A,B))

pA + B
k1


k2
pAB, pAB

k3


k4
pA + pB

B

A

CB

A

C

activation!
inhibition!

B

A

C

(a) (b) (c)

B

A

C

(d)

Fig. 2: Three component biochemical network G with con-
nection (a) E ; (b) E \ {e1}; (c) E \ {e2}; and (d) E \ {e3}.

• Activation of C by B (edge e2 = (B,C))

pB + C
k5


k6
pBC, pBC

k7


k8
pB + pC

• Inhibition of A by C (edge e3 = (C,A))

pC + pA
k9


k10

pCA, pCA
k11


k12

pC + A.

Here, pA and A denote the active (phosphorylated) version
and the inactive version of A, respectively, and pAB is the
complex of A and B. Others are defined in a similar way.
Let x1 = [pA], x2 = [A], x3 = [pB], x4 = [B], x5 = [pC],
x6 = [C], x7 = [pAB], x8 = [pBC] and x9 = [pCA],
where [M] denotes the concentration level of protein M.
The dynamics of the biochemical concentrations with the
signaling network G in Figure 2 (a) can then be modeled by
(1) with the vector field fE such that

(fE)1 = −k1x1x4 + k2x7 + k3x7 − k4x1x3 − k9x1x5 + k10x9

(fE)2 = k11x9 − k12x2x5

(fE)3 = k3x7 − k4x1x3 − k5x3x6 + k6x8 + k7x8 − k8x3x5

(fE)4 = −k1x1x4 + k2x7

(fE)5 = k7x8 − k8x3x5 − k9x1x5 + k10x9 + k11x9 − k12x2x5

(fE)6 = −k5x3x6 + k6x8

(fE)7 = k1x1x4 − k2x7 − k3x7 + k4x1x3

(fE)8 = k5x3x6 − k6x8 − k7x8 + k8x3x5

(fE)9 = k9x1x5 − k10x9 − k11x9 + k12x2x5,

where we used the mass-action kinetics. We can see that the
vector field has additive interconnections, i.e.,

fE = f{e1} + f{e2} + f{e2}

with f∅ = 0. Note that the vector field is quasi-positive, i.e.,

(fE)i(x1, · · · , xi−1, 0, xi+1, · · · , x9) ≥ 0, ∀i = {1, · · · , 9},

and the quasi-positivity guarantees the solution to be non-
negative invariant. If we let X := x1 + x2 + x3 + x4 + x5 +
x6 + 2x7 + 2x8 + 2x9, then Ẋ = 0. Hence, xi ≤ X(0)
due to the non-negative invariance. Therefore, we can set
the state space as the compact subset X = [0, X(0)]9 ⊂ R9.
Furthermore, the vector field fẼ is Lipschitz continuous and
twice differentiable in X for any interconnection Ẽ .

In this example, we choose the output to be the concen-
tration of the active protein pB, i.e.,

y(t) = h(x(t)) = x3(t).
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Fig. 3: Trajectory of the variational derivatives
(c−1 , c

−
2 , c
−
3 ) := (D(E,E\{e1})y,D(E,E\{e2})y, D(E,E\{e3})y)

over time interval t ∈ [0, 10].

We assume that xi(0) = 1 for all i = 1, · · · , 9, and k2j−1 =
1 and k2j = 10−3 for j = 1, · · · , 5.

Our goal is to solve the interconnection pursuit problem
to maximize the increase in [pB], i.e., ∆(E,Ẽ)y(τ), where the
maximal interconnection is given by E∗ := {e1, e2, e3}. We
must consider all possible Ẽ’s that are subsets of {e1, e2, e3}.
By comparing all 23 cases, we have the optimal interconnec-
tion as

{e1, e2} = arg max
Ẽ∈Γ

∆(E,Ẽ)y(τ), τ ∈ (0, 10].

However, for the approximate interconnection pursuit prob-
lem, i.e, Optimization 2, however, it is sufficient to compute
c− = (D(E,E\{e1})y,D(E,E\{e2})y, D(E,E\{e3})y) because
the vector field has a additive interconnections. Note that
E∗ = E , we have c+ = ∅. In Fig. 2 (b)–(d), interconnections
E \ {e1}, E \ {e2} and E \ {e3} are depicted. Using the
adjoint-based formula for the variational derivative (9) and
Algorithm 1, we compute the variational derivatives over
(0, 10] as shown in Fig. 3. If we use Algorithm 2 (with
threshold δ = 0), then the optimum of the approximate
problem is as follows:

{e1, e2} = arg max
Ẽ∈Γ

D(E,Ẽ)y(τ), τ ∈ (0, T1],

{e1} = arg max
Ẽ∈Γ

D(E,Ẽ)y(τ), τ ∈ (T1, 10],

where T1 ≈ 5.46. In other words, the approximate problem,
Optimization 2, finds the global optimum of the original
problem, Optimization 1, in (0, T1]. Even in (T1, 10], the
solution obtained by the approximate problem is the third
best interconnection out of the total eight connections. Note
that, if we choose the threshold δ as 0.075 or higher, then
we can obtain the global optimum of the original problem
by solving the approximate problem for all T ∈ (0, 10].

V. CONCLUSION AND FUTURE WORK

Inspired by the directional derivative approach in func-
tional analysis, we introduced a variational derivative for
nonlinear networked systems with respect to the intercon-
nection topology. We derived an analytical expression for
the derivative by introducing an adjoint state, and provided
bounds relating our derivative to the actual change in sys-
tem behavior. The additivity assumption on the vector field
yielded separability of the variational derivative that further

enabled us to develop an efficient solution to an approxi-
mate interconnection pursuit problem with applications to
optimization and inference of biochemical reaction networks.
We also believe the variational derivative will be useful for
analyzing output sensitivity in nonlinear biochemical and
power system models with respect to the interconnection
topology.

In future work we plan to further study convergence
and suboptimality of the approximate interconnection pursuit
problem and to generalize the variational method to the net-
worked control systems setting where we anticipate finding
applications to estimating sensitivity of power transmission
systems to connectivity structure.

APPENDIX
PROOF OF PROPOSITION 3

We first note that

0 = fE(ξ),

0 = fẼ(ξ̃) = fE(ξ̃) + f(E,Ẽ)(ξ̃).

Subtracting one with another, we have

0 =
∂fE(ξ)

∂x
(ξ̃ − ξ) + f(E,Ẽ)(ξ̃) +O,

where O := O(‖ξ − ξ̃‖2). This implies that

ξ̃ − ξ = −
(
∂fE(ξ)

∂x

)−1

f(E,Ẽ)(ξ̃) +O.

The Taylor expansion allows us to deduce

∆(E,Ẽ)y(T ) = h(ξ̃)− h(ξ) =
∂h(ξ)

∂x
(ξ̃ − ξ) +O

= −∂h(ξ)

∂x

(
∂fE(ξ)

∂x

)−1

f(E,Ẽ)(ξ̃) +O.
(21)

On the other hand, we can rewrite (15) as

D(E,Ẽ)y(T ) = −∂h(ξ)

∂x

(
∂fE(ξ)

∂x

)−1

f(E,Ẽ)(ξ) +O(eaT )

(22)
because fE(ξ) = 0 and the interconnection additivity. Com-
paring (21) with (22), we obtain

|∆(E,Ẽ)y(T )−D(E,Ẽ)y(T )|

= −∂h(ξ)

∂x

(
∂fE(ξ)

∂x

)−1

(f(E,Ẽ)(ξ̃)− f(E,Ẽ)(ξ)) +O2

≤

∥∥∥∥∥∂h(ξ)

∂x

(
∂fE(ξ)

∂x

)−1 ∂f(E,Ẽ)(ξ)

∂x

∥∥∥∥∥ ‖ξ − ξ̃‖+O2,

as desired, where O2 := O(eaT ) +O(‖ξ − ξ̃‖2).
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[11] P. Kokotović and J. Heller, “Direct and adjoint sensitivity equations
for parameter optimization,” IEEE Transactions on Automatic Control,
vol. 12, no. 5, pp. 609–610, 1967.

[12] A. Jameson, “Aerodynamic design via control theory,” Journal of
Scientific Computing, vol. 3, no. 3, pp. 233–260, 1988.

[13] T. M. Apostol, Calculus, 2nd ed. New York: Wiley, 1967.
[14] E. Polak, Optimization: algorithms and consistent approximations.

Springer Verlag, 1997, vol. 124.
[15] H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th ed. Boston:

Prentice Hall, 2010.
[16] J. Hadamard, “Sur les problèmes aux dèrivèes partielles et leur
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