Correlation Clustering

Sanjay Subramanian PACT, Summer 2020

Clustering

- Goal of clustering is to group similar objects together and dissimilar objects separately
- We assume that we are given pairwise similarity scores
- Some formulations (e.g. K-means) assume that we are given the number of clusters beforehand

Correlation Clustering

• Given a complete graph G = (V, E), each edge is labeled with a + or a

• Goal: cluster vertices so that we either:

-.

- Maximize: (# of + edges within clusters) + (# of edges crossing clusters)
- Minimize: (# of + edges crossing clusters) + (# of edges within clusters)
- Note: number of clusters is not given
- Introduced by Bansal, Blum, Chawla (2002)

Correlation Clustering

• Given a complete graph G = (V, E), each edge is labeled with a + or a

• Goal: cluster vertices so that we either:

-.

- Maximize: (# of + edges within clusters) + (# of edges crossing clusters)
- Minimize: (# of + edges crossing clusters) + (# of edges within clusters)
- Note: number of clusters is not given
- Introduced by Bansal, Blum, Chawla (2002)

Outline of Talk

1. Introduction to the Problem

- 2. Simple 3-approximation algorithm
- 3. Pairwise query oracle
- 4. NP-completeness proof

• Why do we have a maximization and a minimization version of the problem?

- Why do we have a maximization and a minimization version of the problem?
 - Relevant for approximation-algorithms

- Why do we have a maximization and a minimization version of the problem?
 - Relevant for approximation-algorithms
- We will focus on the minimization version. Each + edge crossing clusters and each - minus edge within a cluster is called a "mistake."

- Why do we have a maximization and a minimization version of the problem?
 - Relevant for approximation-algorithms
- We will focus on the minimization version. Each + edge crossing clusters and each - minus edge within a cluster is called a "mistake."
- What is a quick upper bound on # of mistakes?

- Why do we have a maximization and a minimization version of the problem?
 - Relevant for approximation-algorithms
- We will focus on the minimization version. Each + edge crossing clusters and each - minus edge within a cluster is called a "mistake."
- What is a quick upper bound on # of mistakes?

•
$$|E|/2 = n(n-1)/4$$

 Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?
 - Connected components of subgraph with only + edges

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?
 - Connected components of subgraph with only + edges
- Let C_{OPT} be # of mistakes of OPT
- What feature of graph determines whether $C_{OPT} > 0$?

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?
 - Connected components of subgraph with only + edges
- Let C_{OPT} be # of mistakes of OPT
- What feature of graph determines whether $C_{OPT} > 0$?
- (+, +, -) triangle

Outline of Talk

- 1. Introduction to the Problem
- 2. <u>Simple 3-approximation algorithm</u>
- 3. Pairwise query oracle
- 4. NP-completeness proof

3-approx. Algorithm

- Similar to the algorithm given before!
- Select a vertex uniformly at random as the "pivot."
- Form a cluster with pivot and its +-neighbors
- Repeat with remaining vertices
- Algorithm+analysis published by Ailon, Charikar, Newman (2005)

• When does the algorithm make a mistake?

- When does the algorithm make a mistake?
 - When the pivot is part of a (+, +, -) triangle, mistake is made on edge opposite the pivot

- When does the algorithm make a mistake?
 - When the pivot is part of a (+, +, -) triangle, mistake is made on edge opposite the pivot

 For a (+, +, -) triangle t, let A_t be the event that all vertices are still unclustered in a recursive call when one of the three vertices is the pivot. Let T be the set of all (+, +, -) triangles. Then

$$E[\text{mistakes}] = \sum_{t \in T} \Pr[A_t]$$

• Consider the linear program:

 $\begin{array}{l} \text{minimize } \sum_{e \in E} x_e \\ \text{s.t. } x_{e_1} + x_{e_2} + x_{e_3} \geq 1 \ \forall \{e_1, e_2, e_3\} \in T \end{array}$

 $x_e \geq 0 \ \forall e \in E$

• Consider the linear program:

 $\begin{array}{l} \text{minimize } \sum_{e \in E} x_e \\ \text{s.t. } x_{e_1} + x_{e_2} + x_{e_3} \geq 1 \ \forall \{e_1, e_2, e_3\} \in T \end{array}$

 $x_e \geq 0 \ \forall e \in E$

• Using OPT, we can construct a feasible solution to the LP: for each edge e, $x_e = 1$ if OPT makes a mistake on e and $x_e = 0$ otherwise.

• Consider the linear program:

minimize
$$\sum_{e \in E} x_e$$

s.t. $x_{e_1} + x_{e_2} + x_{e_3} \ge 1 \quad \forall \{e_1, e_2, e_3\} \in T$

 $x_e \geq 0 ~\forall e \in E$

• Using OPT, we can construct a feasible solution to the LP: for each edge e, $x_e = 1$ if OPT makes a mistake on e and $x_e = 0$ otherwise.

For this definition of
$$x_e$$
, $C_{OPT} = \sum_{e \in E} x_e$.

• Therefore, C_{OPT} is lower-bounded by the optimal LP cost.

Now consider the dual LP:

maximize
$$\sum_{t \in T} \beta_t$$

 $\sum_{t:e \in t} \beta_t \le 1 \ \forall e \in E$

• Here is a feasible solution to the dual LP: $\beta_t = \frac{\Pr[A_t]}{3}$

• Why is this solution feasible?

• Now consider the dual LP:

maximize
$$\sum_{t \in T} \beta_t$$

 $\sum_{t:e \in t} \beta_t \le 1 \ \forall e \in E$

- Here is a feasible solution to the dual LP: $\beta_t = \frac{\Pr[A_t]}{3}$
- Why is this solution feasible?
 - For a given edge e, let B_e be the event that algorithm makes a mistake on e.

•
$$\Pr[B_e \cap A_t] = \Pr[B_e | A_t] \Pr[A_t] = \frac{1}{3} \Pr[A_t]$$

• Now consider the dual LP:

maximize
$$\sum_{t \in T} \beta_t$$

 $\sum_{t:e \in t} \beta_t \le 1 \ \forall e \in E$

• Here is a feasible solution to the dual LP: $\beta_t = \frac{\Pr[A_t]}{3}$

- Why is this solution feasible?
 - For a given edge e, let B_e be the event that algorithm makes a mistake on e.

•
$$\Pr[B_e \cap A_t] = \Pr[B_e | A_t] \Pr[A_t] = \frac{1}{3} \Pr[A_t]$$

• Finally, note that for two triangles t and t', $(B_e \cap A_t) \cap (B_e \cap A_{t'}) = \emptyset$

- . We have shown that $\beta_t = \frac{\Pr[A_t]}{3}$ is a feasible solution to the dual LP.
- Recall that C_{OPT} is lower-bounded by the optimal LP cost. Therefore, $C_{OPT} \ge \sum_{t \in T} \beta_t^* \ge \sum_{t \in T} \frac{\Pr[A_t]}{3}$, where β^* denotes an optimal solution to the dual LP.

• Since
$$E[\text{mistakes}] = \sum_{t \in T} \Pr[A_t], E[\text{mistakes}] \le 3C_{OPT}$$
.

State-of-the-art

- The best algorithm (to my knowledge) gives a 2.06 approximation using LP-rounding (Chawla et al. 2015)
- There is a lot of work on other versions of the problem, e.g.
 - when edges have weights between 0 and 1,
 - when the number of clusters is treated as a constant,
 - when the number of mistakes is treated as a constant,
 - when edge weights are drawn from some distribution, ...

Outline of Talk

- 1. Introduction to the Problem
- 2. Simple 3-approximation algorithm

3. <u>Pairwise query oracle</u>

4. NP-completeness proof

 Suppose we have access to an oracle that knows an optimal clustering OPT and that can answer for any given two vertices u, v, "Does OPT put u and v in the same cluster?"

- Suppose we have access to an oracle that knows an optimal clustering OPT and that can answer for any given two vertices u, v, "Does OPT put u and v in the same cluster?"
- Obviously, we can easily find OPT by making $O(n^2)$ queries to the oracle.

- Suppose we have access to an oracle that knows an optimal clustering OPT and that can answer for any given two vertices u, v, "Does OPT put u and v in the same cluster?"
- Obviously, we can easily find OPT by making $O(n^2)$ queries to the oracle.
- But can we make fewer queries and either (1) find OPT or
 (2) get a better approximation factor?
 - "Correlation Clustering with Same-cluster queries bounded by Optimal Cost", Saha and Subramanian, 2019

- Why is this a realistic/useful setting?
 - Crowdsourcing has become a popular method of obtaining annotations. We might obtain initial pairwise scores using some algorithm/model and then issue queries to crowd workers for a small set of vertex pairs.
 - Related to the machine learning paradigm called "active learning"

Finding OPT with $2C_{OPT}$ queries

How can we modify the 3-approx. Algorithm to achieve this result?

Finding OPT with $2C_{OPT}$ queries

- How can we modify the 3-approx. Algorithm to achieve this result?
 - The 3 "came from" having a 1/3 chance of choosing the edge *OPT* makes a mistake on in a given triangle
 - Can we instead find which edge OPT makes a mistake on in each triangle by paying at most 2 queries for each of OPT's mistakes?
- Extension: Query each triangle with probability p = 0.25 22-approximation with C_{OPT} queries (in expectation)

RandomQueryPivot in Detail

- Pick pivot uniformly at random
- For each (+, +, -) triangle containing the pivot:
 - Let pivot be *u*, and let other two vertices be *v*, *w*.
 - With probability *p*:
 - WLOG assume $\{u, v\}$ is a + edge. Query $\{u, v\}$.
 - If {u, w} is a + edge OR OPT doesn't make a mistake on {u, v}, query {u, w}
- For all edges adjacent to pivot, make decision according to oracle if queried and otherwise according to edge weight (+/-)

Interesting properties of RandomQueryPivot

- What is the probability of querying an edge $\{u, v\}$?
 - If + edge: $1 (1 p)^{\text{# of }(+,+,-)}$ triangles including $\{u,v\}$
 - If edge: Similar to above but only triangles in which *OPT* doesn't make a mistake on other pivot edge

Interesting properties of RandomQueryPivot

- What is the probability of querying an edge $\{u, v\}$?
 - If + edge: $1 (1 p)^{\#}$ of (+,+,-) triangles including {*u*,*v*}
 - If edge: Similar to above but only triangles in which *OPT* doesn't make a mistake on other pivot edge
 - Now consider only edges on which *OPT* makes a mistake. Does it matter whether *u* or *v* is the pivot?

Interesting properties of RandomQueryPivot

- What is the probability of querying an edge $\{u, v\}$?
 - If + edge: $1 (1 p)^{\# \text{ of } (+,+,-) \text{ triangles including } \{u,v\}$
 - If edge: Similar to above but only triangles in which OPT doesn't make a mistake on other pivot edge
 - Now consider only edges on which *OPT* makes a mistake. Does it matter whether *u* or *v* is the pivot?
 - No! Let T_{uv} be set of (+, +, -) triangles including $\{u, v\}$, and let T_{uv}^1 be subset in which $\{u, v\}$ is only edge on which OPT makes a mistake. Then
 - If + edge: $1 (1 p)^{|T_{uv}|}$
 - If edge: $1 (1 p)^{|T_{uv}^1|}$

Query Complexity for RandomQueryPivot

- We will charge queries to edges on which *OPT* makes a mistake:
 - If we query an edge on which *OPT* makes a mistake, charge that edge.
 - Otherwise, charge to an edge in the triangle on which *OPT* makes a mistake.

Query Complexity for RandomQueryPivot

- We will charge queries to edges on which *OPT* makes a mistake:
 - If we query an edge on which *OPT* makes a mistake, charge that edge.
 - Otherwise, charge to an edge in the triangle on which *OPT* makes a mistake.
 - Claim: we only make the second kind of charge in triangles in which OPT makes 1 mistake (T_{uv}^1) .

 $E[queries_t] = \sum_{\{u,v\}\in E_t} c_{uv}^* \sum_{w\in V_t} \frac{1}{|V_t|} E[Q_{uv}|A_w] \le \sum_{\{u,v\}\in E_t} \frac{c_{uv}^*}{|V_t|} [2(1+p|T_{uv}^1|) + 2p|T_{uv}^1|]$

$$E[C_{OPT}^{t}] = \sum_{\{u,v\}\in E_{t}} c_{uv}^{*} \sum_{w\in V_{t}} \frac{1}{|V_{t}|} \Pr[D_{uv}|A_{w}] \ge \sum_{\{u,v\}\in E_{t}} \frac{c_{uv}^{*}}{|V_{t}|} (2 + |T_{uv}^{1}|)$$

$$\frac{E[queries_t]}{C_{OPT}^t} \le \frac{2 + 4p |T_{uv}^1|}{2 + |T_{uv}^1|} \le \max(1, 4p)$$

Outline of Talk

- 1. Introduction to the Problem
- 2. Simple 3-approximation algorithm
- 3. Pairwise query oracle
- 4. <u>NP-completeness proof</u>

- Reduction from 3-SAT (Komusiewicz 2011): suppose we have *m* clauses and *n* variables.
- For each variable x, create a cycle of + edges of size $4m_x$, where m_x is the number of clauses including x. (all other edges among the vertices in the cycle are edges).

- Reduction from 3-SAT: suppose we have *m* clauses and *n* variables.
- For each variable *x*, create a cycle of + edges of size $4m_x$, where m_x is the number of clauses including *x*. (all other edges among the vertices in the cycle are edges).

- Reduction from 3-SAT: suppose we have *m* clauses and *n* variables.
- For each variable *x*, create a cycle of + edges of size 4m_x, where m_x is the number of clauses including *x*. (all other edges among the vertices in the cycle are edges).
- For each clause (x,y,z), create:

```
If there's a satisfying assignment
with x = True, y = z = False:
```


- Reduction from 3-SAT: suppose we have *m* clauses and *n* variables.
- For each variable *x*, create a cycle of + edges of size 4m_x, where m_x is the number of clauses including *x*. (all other edges among the vertices in the cycle are edges).
- For each clause (x,y,z), create:

```
If there's a satisfying assignment
with x = True, y = z = False:
```


- Reduction from 3-SAT: suppose we have *m* clauses and *n* variables.
- For each variable x, create a cycle of + edges of size $4m_x$, where m_x is the number of clauses including x. (all other edges among the vertices in the cycle are edges).

 There exists an optimal solution in which we make mistakes only on + edges. (see Lemma on next slide)

• In variable cycles, we'll make
$$\frac{1}{2}4(3m) = 6m$$
 mistakes

- When there's a satisfying solution to 3-SAT instance, we can make 6m + 4m = 10m mistakes.
- When there's no satisfying solution, we must make more mistakes since there will always be some unsatisfiable clause.
- Thus, deciding whether 3-SAT instance is satisfiable is equivalent to deciding whether optimal number of mistakes is 10*m*.

- Lemma: If for every u, v connected by a edge, they have a common +-neighborhood of size at most 1, then there is an optimal clustering that puts each such u, v in different clusters
 - Proof: Suppose not. We will take an optimal clustering and modify it to satisfy this property. Let *K* be the cluster containing *u*, *v*. Let *X* be their shared +-neighborhood. Let $K_u = |K \cap N(u)|$ and $K_v = |K \cap N(v)|$. WLOG assume $K_v \ge K_u$. If $K_u > \frac{K-1}{2}$, then $|K| \ge K_u + K_v |X| + 2 > K 1 |X| + 2 \ge K 1 1 + 2 = K$ Contradiction. So $K_u \le \frac{K-1}{2}$. Consider putting *u* in its own cluster. The additional cost would be $K_u (|K| K_u 1) = 2K_u |K| + 1 \le |K| 1 |K| + 1 = 0$