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Clustering
• Goal of clustering is to group similar objects together and 

dissimilar objects separately


• We assume that we are given pairwise similarity scores


• Some formulations (e.g. K-means) assume that we are 
given the number of clusters beforehand



Correlation Clustering
• Given a complete graph G = (V, E), each edge is labeled with a + or a 

-.


• Goal: cluster vertices so that we either:


• Maximize: (# of + edges within clusters) + (# of - edges crossing 
clusters)


• Minimize: (# of + edges crossing clusters) + (# of - edges within 
clusters)


• Note: number of clusters is not given


• Introduced by Bansal, Blum, Chawla (2002)
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• Relevant for approximation-algorithms


• We will focus on the minimization version. Each + edge 
crossing clusters and each - minus edge within a cluster 
is called a “mistake.”


• What is a quick upper bound on # of mistakes?


• |E | /2 = n(n − 1)/4
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3-approx. Algorithm
• Similar to the algorithm given before!


• Select a vertex uniformly at random as the “pivot.”


• Form a cluster with pivot and its +-neighbors


• Repeat with remaining vertices


• Algorithm+analysis published by Ailon, Charikar, Newman 
(2005)
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3 Approx. Analysis
• When does the algorithm make a mistake?


• When the pivot is part of a (+, +, -) triangle, mistake is made 
on edge opposite the pivot


• For a (+, +, -) triangle , let  be the event that all vertices are 
still unclustered in a recursive call when one of the three vertices 
is the pivot. Let  be the set of all (+, +, -) triangles. Then


t At

T

E[mistakes] = ∑
t∈T

Pr[At]

pivot



3 Approx. Analysis
• Consider the linear program:
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s.t. xe1
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• Using OPT, we can construct a feasible solution to the LP: 
for each edge ,  if OPT makes a mistake on  and 

 otherwise.
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3 Approx. Analysis
• Consider the linear program:











• Using OPT, we can construct a feasible solution to the LP: for 
each edge ,  if OPT makes a mistake on  and  
otherwise.


• For this definition of , .


• Therefore,  is lower-bounded by the optimal LP cost.

minimize ∑
e∈E

xe

s.t. xe1
+ xe2

+ xe3
≥ 1 ∀{e1, e2, e3} ∈ T

xe ≥ 0 ∀e ∈ E

e xe = 1 e xe = 0

xe COPT = ∑
e∈E

xe

COPT



3 Approx. Analysis
• Now consider the dual LP:








• Here is a feasible solution to the dual LP: 


• Why is this solution feasible?
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• Here is a feasible solution to the dual LP: 


• Why is this solution feasible?


• For a given edge , let  be the event that algorithm makes a mistake 
on .


•

maximize ∑
t∈T

βt

∑
t:e∈t

βt ≤ 1 ∀e ∈ E

βt =
Pr[At]
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e Be
e

Pr[Be ∩ At] = Pr[Be |At] Pr[At] =
1
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3 Approx. Analysis
• Now consider the dual LP:








• Here is a feasible solution to the dual LP: 


• Why is this solution feasible?


• For a given edge , let  be the event that algorithm makes a mistake on .


• 


• Finally, note that for two triangles  and , 

maximize ∑
t∈T

βt

∑
t:e∈t

βt ≤ 1 ∀e ∈ E

βt =
Pr[At]

3

e Be e

Pr[Be ∩ At] = Pr[Be |At] Pr[At] =
1
3

Pr[At]

t t′ (Be ∩ At) ∩ (Be ∩ At′ ) = ∅



3 Approx. Analysis

• We have shown that  is a feasible solution to 

the dual LP.


• Recall that  is lower-bounded by the optimal LP 

cost. Therefore, , where  

denotes an optimal solution to the dual LP.


• Since , .

βt =
Pr[At]

3

COPT

COPT ≥ ∑
t∈T

β*t ≥ ∑
t∈T

Pr[At]
3

β*

E[mistakes] = ∑
t∈T

Pr[At] E[mistakes] ≤ 3COPT



State-of-the-art
• The best algorithm (to my knowledge) gives a 2.06 

approximation using LP-rounding (Chawla et al. 2015)


• There is a lot of work on other versions of the problem, e.g.


• when edges have weights between 0 and 1,


• when the number of clusters is treated as a constant,


• when the number of mistakes is treated as a constant,


• when edge weights are drawn from some distribution, …
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Same-cluster queries
• Suppose we have access to an oracle that knows an 
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Same-cluster queries
• Suppose we have access to an oracle that knows an 

optimal clustering  and that can answer for any given 
two vertices , “Does  put  and  in the same 
cluster?”


• Obviously, we can easily find  by making  queries 
to the oracle.


• But can we make fewer queries and either (1) find  or 
(2) get a better approximation factor?


• “Correlation Clustering with Same-cluster queries 
bounded by Optimal Cost”, Saha and Subramanian, 2019

OPT
u, v OPT u v

OPT O(n2)

OPT



Same-cluster queries
• Why is this a realistic/useful setting?


• Crowdsourcing has become a popular method of 
obtaining annotations. We might obtain initial pairwise 
scores using some algorithm/model and then issue 
queries to crowd workers for a small set of vertex pairs.


• Related to the machine learning paradigm called 
“active learning”



Finding  with 2  
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OPT COPT

• How can we modify the 3-approx. Algorithm to achieve 
this result?



Finding  with 2  
queries
OPT COPT

• How can we modify the 3-approx. Algorithm to achieve this 
result?


• The 3 “came from” having a 1/3 chance of choosing the 
edge  makes a mistake on in a given triangle


• Can we instead find which edge  makes a mistake on 
in each triangle by paying at most 2 queries for each of 

’s mistakes?


• Extension: Query each triangle with probability  —> 
2-approximation with  queries (in expectation)

OPT

OPT

OPT

p = 0.25
COPT



RandomQueryPivot in Detail
• Pick pivot uniformly at random


• For each (+, +, -) triangle containing the pivot:


• Let pivot be , and let other two vertices be .


• With probability :


• WLOG assume  is a + edge. Query .


• If  is a + edge OR OPT doesn’t make a mistake on 
, query 


• For all edges adjacent to pivot, make decision according to oracle if 
queried and otherwise according to edge weight (+/-)

u v, w

p

{u, v} {u, v}

{u, w}
{u, v} {u, w}



Interesting properties of 
RandomQueryPivot

• What is the probability of querying an edge ?


• If + edge: 


• If - edge: Similar to above but only triangles in which 
 doesn’t make a mistake on other pivot edge

{u, v}

1 − (1 − p)# of (+,+,-) triangles including {u,v}

OPT
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Interesting properties of 
RandomQueryPivot

• What is the probability of querying an edge ?


• If + edge: 


• If - edge: Similar to above but only triangles in which  doesn’t make a 
mistake on other pivot edge


• Now consider only edges on which  makes a mistake. Does it matter 
whether  or  is the pivot?


• No! Let  be set of (+, +, -) triangles including , and let  be 
subset in which  is only edge on which  makes a mistake. Then


• If + edge: 


• If - edge: 

{u, v}

1 − (1 − p)# of (+,+,-) triangles including {u,v}

OPT

OPT
u v

Tuv {u, v} T1
uv

{u, v} OPT

1 − (1 − p)|Tuv|

1 − (1 − p)|T1
uv| -

Pivot
+

+



Query Complexity for 
RandomQueryPivot

• We will charge queries to edges on which  makes a 
mistake:


• If we query an edge on which  makes a mistake, 
charge that edge.


• Otherwise, charge to an edge in the triangle on which 
 makes a mistake.

OPT

OPT

OPT



Query Complexity for 
RandomQueryPivot

• We will charge queries to edges on which  makes a 
mistake:


• If we query an edge on which  makes a mistake, 
charge that edge.


• Otherwise, charge to an edge in the triangle on which 
 makes a mistake.


• Claim: we only make the second kind of charge in 
triangles in which  makes 1 mistake ( ).

OPT

OPT

OPT

OPT T1
uv



Query Complexity for 
RandomQueryPivot







E[queriest] = ∑
{u,v}∈Et

c*uv ∑
w∈Vt

1
|Vt |

E[Quv |Aw] ≤ ∑
{u,v}∈Et

c*uv

|Vt |
[2(1 + p |T1

uv | ) + 2p |T1
uv | ]

E[Ct
OPT] = ∑

{u,v}∈Et

c*uv ∑
w∈Vt

1
|Vt |

Pr[Duv |Aw] ≥ ∑
{u,v}∈Et

c*uv

|Vt |
(2 + |T1

uv | )

E[queriest]
Ct

OPT
≤

2 + 4p |T1
uv |

2 + |T1
uv |

≤ max(1,4p)
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NP-hardness proof
• Reduction from 3-SAT (Komusiewicz 2011): suppose we 

have  clauses and  variables.


• For each variable , create a cycle of + edges of size 4 , 
where  is the number of clauses including . (all other 
edges among the vertices in the cycle are - edges).
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NP-hardness proof
• Reduction from 3-SAT: suppose we have  clauses and  

variables.


• For each variable , create a cycle of + edges of size 4 , 
where  is the number of clauses including . (all other 
edges among the vertices in the cycle are - edges).


• For each clause (x,y,z), create:


If no satisfying assignment:

m n

x mx
mx x

x cycle

y cycle

z cycle



NP-hardness proof
• There exists an optimal solution in which we make mistakes only on + 

edges. (see Lemma on next slide)


• In variable cycles, we’ll make  mistakes


• When there’s a satisfying solution to 3-SAT instance, we can make 
 mistakes.


• When there’s no satisfying solution, we must make more mistakes 
since there will always be some unsatisfiable clause.


• Thus, deciding whether 3-SAT instance is satisfiable is equivalent to 
deciding whether optimal number of mistakes is .

1
2

4(3m) = 6m

6m + 4m = 10m

10m



NP-hardness proof
• Lemma: If for every  connected by a - edge, they have a 

common +-neighborhood of size at most 1, then there is an optimal 
clustering that puts each such  in different clusters


• Proof: Suppose not. We will take an optimal clustering and modify 
it to satisfy this property. Let  be the cluster containing . Let 

 be their shared +-neighborhood. Let  and 

. WLOG assume . If , then 

 

Contradiction. So . Consider putting  in its own 

cluster. The additional cost would be 

u, v

u, v

K u, v
X Ku = |K ∩ N(u) |

Kv = |K ∩ N(v) | Kv ≥ Ku Ku >
K − 1

2
|K | ≥ Ku + Kv − |X | + 2 > K − 1 − |X | + 2 ≥ = K − 1 − 1 + 2 = K

Ku ≤
K − 1

2
u

Ku − ( |K | − Ku − 1) = 2Ku − |K | + 1 ≤ |K | − 1 − |K | + 1 = 0


