Correlation Clustering

Sanjay Subramanian
PACT, Summer 2020

Clustering

- Goal of clustering is to group similar objects together and dissimilar objects separately
- We assume that we are given pairwise similarity scores
- Some formulations (e.g. K-means) assume that we are given the number of clusters beforehand

Correlation Clustering

- Given a complete graph $G=(V, E)$, each edge is labeled with $a+$ or a -.

- Goal: cluster vertices so that we either:
- Maximize: (\# of + edges within clusters) + (\# of - edges crossing clusters)
- Minimize: (\# of + edges crossing clusters) + (\# of - edges within clusters)
- Note: number of clusters is not given
- Introduced by Bansal, Blum, Chawla (2002)

Correlation Clustering

- Given a complete graph $G=(V, E)$, each edge is labeled with $a+$ or a -.

- Goal: cluster vertices so that we either:
- Maximize: (\# of + edges within clusters) + (\# of - edges crossing clusters)
- Minimize: (\# of + edges crossing clusters) + (\# of - edges within clusters)
- Note: number of clusters is not given
- Introduced by Bansal, Blum, Chawla (2002)

Outline of Talk

1. Introduction to the Problem

2. Simple 3-approximation algorithm
3. Pairwise query oracle
4. NP-completeness proof

Introductory Notes

- Why do we have a maximization and a minimization version of the problem?

Introductory Notes

- Why do we have a maximization and a minimization version of the problem?
- Relevant for approximation-algorithms

Introductory Notes

- Why do we have a maximization and a minimization version of the problem?
- Relevant for approximation-algorithms
- We will focus on the minimization version. Each + edge crossing clusters and each - minus edge within a cluster is called a "mistake."

Introductory Notes

- Why do we have a maximization and a minimization version of the problem?
- Relevant for approximation-algorithms
- We will focus on the minimization version. Each + edge crossing clusters and each - minus edge within a cluster is called a "mistake."
- What is a quick upper bound on \# of mistakes?

Introductory Notes

- Why do we have a maximization and a minimization version of the problem?
- Relevant for approximation-algorithms
- We will focus on the minimization version. Each + edge crossing clusters and each - minus edge within a cluster is called a "mistake."
- What is a quick upper bound on \# of mistakes?
- $|E| / 2=n(n-1) / 4$

More Introductory Notes

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?

More Introductory Notes

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?
- Connected components of subgraph with only + edges

More Introductory Notes

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?
- Connected components of subgraph with only + edges
- Let $C_{O P T}$ be \# of mistakes of OPT
- What feature of graph determines whether $C_{O P T}>0$?

More Introductory Notes

- Efficient algorithm for finding optimal clustering OPT when OPT makes 0 mistakes?
- Connected components of subgraph with only + edges
- Let $C_{O P T}$ be \# of mistakes of OPT
- What feature of graph determines whether $C_{O P T}>0$?
- (+,,+-$)$ triangle

Outline of Talk

1. Introduction to the Problem
2. Simple 3-approximation algorithm
3. Pairwise query oracle
4. NP-completeness proof

3-approx. Algorithm

- Similar to the algorithm given before!
- Select a vertex uniformly at random as the "pivot."
- Form a cluster with pivot and its +-neighbors
- Repeat with remaining vertices
- Algorithm+analysis published by Ailon, Charikar, Newman (2005)

3 Approx. Analysis

- When does the algorithm make a mistake?

3 Approx. Analysis

- When does the algorithm make a mistake?
- When the pivot is part of a (+, +, -) triangle, mistake is made on edge opposite the pivot

3 Approx. Analysis

- When does the algorithm make a mistake?
- When the pivot is part of a (+, +, -) triangle, mistake is made on edge opposite the pivot

- For a (+, +, -) triangle t, let A_{t} be the event that all vertices are still unclustered in a recursive call when one of the three vertices is the pivot. Let T be the set of all (+, +, -) triangles. Then

$$
E[\text { mistakes }]=\sum_{t \in T} \operatorname{Pr}\left[A_{t}\right]
$$

3 Approx. Analysis

- Consider the linear program:

$$
\begin{aligned}
\text { minimize } & \sum_{e \in E} x_{e} \\
\text { s.t. } x_{e_{1}}+x_{e_{2}}+x_{e_{3}} & \geq 1 \forall\left\{e_{1}, e_{2}, e_{3}\right\} \in T \\
x_{e} & \geq 0 \forall e \in E
\end{aligned}
$$

3 Approx. Analysis

- Consider the linear program:

$$
\begin{aligned}
\text { minimize } & \sum_{e \in E} x_{e} \\
\text { s.t. } x_{e_{1}}+x_{e_{2}}+x_{e_{3}} & \geq 1 \forall\left\{e_{1}, e_{2}, e_{3}\right\} \in T \\
x_{e} & \geq 0 \forall e \in E
\end{aligned}
$$

- Using OPT, we can construct a feasible solution to the LP: for each edge $e, x_{e}=1$ if OPT makes a mistake on e and $x_{e}=0$ otherwise.

3 Approx. Analysis

- Consider the linear program:

$$
\begin{aligned}
\text { minimize } & \sum_{e \in E} x_{e} \\
\text { s.t. } x_{e_{1}}+x_{e_{2}}+x_{e_{3}} & \geq 1 \forall\left\{e_{1}, e_{2}, e_{3}\right\} \in T \\
x_{e} & \geq 0 \forall e \in E
\end{aligned}
$$

- Using OPT, we can construct a feasible solution to the LP: for each edge $e, x_{e}=1$ if OPT makes a mistake on e and $x_{e}=0$ otherwise.
- For this definition of $x_{e}, C_{O P T}=\sum_{e \in E} x_{e}$.
- Therefore, $C_{O P T}$ is lower-bounded by the optimal LP cost.

3 Approx. Analysis

- Now consider the dual LP:

$$
\begin{aligned}
& \operatorname{maximize} \sum_{t \in T} \beta_{t} \\
& \sum_{t: e \in t} \beta_{t} \leq 1 \forall e \in E
\end{aligned}
$$

- Here is a feasible solution to the dual LP: $\beta_{t}=\frac{\operatorname{Pr}\left[A_{t}\right]}{3}$
- Why is this solution feasible?

3 Approx. Analysis

- Now consider the dual LP:

$$
\begin{aligned}
& \text { maximize } \sum_{t \in T} \beta_{t} \\
& \sum_{t \in e} \beta_{t} \leq 1 \forall e \in E
\end{aligned}
$$

- Here is a feasible solution to the dual LP: $\beta_{t}=\frac{\operatorname{Pr}\left[A_{t}\right]}{3}$
- Why is this solution feasible?
- For a given edge e, let B_{e} be the event that algorithm makes a mistake on e.
- $\operatorname{Pr}\left[B_{e} \cap A_{t}\right]=\operatorname{Pr}\left[B_{e} \mid A_{t}\right] \operatorname{Pr}\left[A_{t}\right]=\frac{1}{3} \operatorname{Pr}\left[A_{t}\right]$

3 Approx. Analysis

- Now consider the dual LP:

$$
\begin{aligned}
& \operatorname{maximize} \sum_{t \in T} \beta_{t} \\
& \sum_{t: e \in t} \beta_{t} \leq 1 \forall e \in E
\end{aligned}
$$

- Here is a feasible solution to the dual LP: $\beta_{t}=\frac{\operatorname{Pr}\left[A_{t}\right]}{3}$
- Why is this solution feasible?
- For a given edge e, let B_{e} be the event that algorithm makes a mistake on e.
- $\operatorname{Pr}\left[B_{e} \cap A_{t}\right]=\operatorname{Pr}\left[B_{e} \mid A_{t}\right] \operatorname{Pr}\left[A_{t}\right]=\frac{1}{3} \operatorname{Pr}\left[A_{t}\right]$
- Finally, note that for two triangles t and $t^{\prime},\left(B_{e} \cap A_{t}\right) \cap\left(B_{e} \cap A_{t^{\prime}}\right)=\varnothing$

3 Approx. Analysis

- We have shown that $\beta_{t}=\frac{\operatorname{Pr}\left[A_{t}\right]}{3}$ is a feasible solution to the dual LP.
- Recall that $C_{O P T}$ is lower-bounded by the optimal LP
cost. Therefore, $C_{O P T} \geq \sum_{t \in T} \beta_{t}^{*} \geq \sum_{t \in T} \frac{\operatorname{Pr}\left[A_{t}\right]}{3}$, where β^{*} denotes an optimal solution to the dual LP.
- Since $E[$ mistakes $]=\sum_{t \in T} \operatorname{Pr}\left[A_{t}\right], E[$ mistakes $] \leq 3 C_{O P T}$.

State-of-the-art

- The best algorithm (to my knowledge) gives a 2.06 approximation using LP-rounding (Chawla et al. 2015)
- There is a lot of work on other versions of the problem, e.g.
- when edges have weights between 0 and 1 ,
- when the number of clusters is treated as a constant,
- when the number of mistakes is treated as a constant,
- when edge weights are drawn from some distribution, ...

Outline of Talk

1. Introduction to the Problem
2. Simple 3-approximation algorithm
3. Pairwise query oracle
4. NP-completeness proof

Same-cluster queries

- Suppose we have access to an oracle that knows an optimal clustering $O P T$ and that can answer for any given two vertices u, v, "Does OPT put u and v in the same cluster?"

Same-cluster queries

- Suppose we have access to an oracle that knows an optimal clustering $O P T$ and that can answer for any given two vertices u, v, "Does $O P T$ put u and v in the same cluster?"
- Obviously, we can easily find $O P T$ by making $O\left(n^{2}\right)$ queries to the oracle.

Same-cluster queries

- Suppose we have access to an oracle that knows an optimal clustering $O P T$ and that can answer for any given two vertices u, v, "Does $O P T$ put u and v in the same cluster?"
- Obviously, we can easily find $O P T$ by making $O\left(n^{2}\right)$ queries to the oracle.
- But can we make fewer queries and either (1) find $O P T$ or (2) get a better approximation factor?
- "Correlation Clustering with Same-cluster queries bounded by Optimal Cost", Saha and Subramanian, 2019

Same-cluster queries

- Why is this a realistic/useful setting?
- Crowdsourcing has become a popular method of obtaining annotations. We might obtain initial pairwise scores using some algorithm/model and then issue queries to crowd workers for a small set of vertex pairs.
- Related to the machine learning paradigm called "active learning"

Finding $O P T$ with $2 C_{O P T}$

queries

- How can we modify the 3-approx. Algorithm to achieve this result?

Finding $O P T$ with $2 C_{O P T}$

queries

- How can we modify the 3-approx. Algorithm to achieve this result?
- The 3 "came from" having a $1 / 3$ chance of choosing the edge OPT makes a mistake on in a given triangle
- Can we instead find which edge $O P T$ makes a mistake on in each triangle by paying at most 2 queries for each of OPT's mistakes?
- Extension: Query each triangle with probability $p=0.25 \rightarrow>$ 2-approximation with $C_{O P T}$ queries (in expectation)

RandomQueryPivot in Detail

- Pick pivot uniformly at random
- For each (+, +, -) triangle containing the pivot:
- Let pivot be u, and let other two vertices be v, w.
- With probability p :
- WLOG assume $\{u, v\}$ is a + edge. Query $\{u, v\}$.
- If $\{u, w\}$ is a + edge OR OPT doesn't make a mistake on $\{u, v\}$, query $\{u, w\}$
- For all edges adjacent to pivot, make decision according to oracle if queried and otherwise according to edge weight (+/-)

Interesting properties of RandomQueryPivot

- What is the probability of querying an edge $\{u, v\}$?
- If + edge: $1-(1-p)^{\#}$ of $(+,+,-)$ triangles including $\{u, v\}$
- If - edge: Similar to above but only triangles in which OPT doesn't make a mistake on other pivot edge

Interesting properties of RandomQueryPivot

- What is the probability of querying an edge $\{u, v\}$?
- If + edge: $1-(1-p)^{\# \text { of }(+,+,-)}$ triangles including $\{u, v\}$
- If - edge: Similar to above but only triangles in which OPT doesn't make a mistake on other pivot edge
- Now consider only edges on which OPT makes a mistake. Does it matter whether u or v is the pivot?

Interesting properties of RandomQueryPivot

- What is the probability of querying an edge $\{u, v\}$?
- If + edge: $1-(1-p)^{\# \text { of }(+,+,-)}$ triangles including $\{u, v\}$
- If - edge: Similar to above but only triangles in which OPT doesn't make a mistake on other pivot edge
- Now consider only edges on which OPT makes a mistake. Does it matter whether u or v is the pivot?
- No! Let $T_{u v}$ be set of (+, +, -) triangles including $\{u, v\}$, and let $T_{u v}^{1}$ be subset in which $\{u, v\}$ is only edge on which OPT makes a mistake. Then
- If + edge: $1-(1-p)^{\left|T_{u v}\right|}$
- If - edge: $1-(1-p)^{\left|T_{u v}^{1}\right|}$

Pivot

Query Complexity for RandomQueryPivot

- We will charge queries to edges on which $O P T$ makes a mistake:
- If we query an edge on which $O P T$ makes a mistake, charge that edge.
- Otherwise, charge to an edge in the triangle on which OPT makes a mistake.

Query Complexity for RandomQueryPivot

- We will charge queries to edges on which $O P T$ makes a mistake:
- If we query an edge on which $O P T$ makes a mistake, charge that edge.
- Otherwise, charge to an edge in the triangle on which OPT makes a mistake.
- Claim: we only make the second kind of charge in triangles in which $O P T$ makes 1 mistake $\left(T_{u v}^{1}\right)$.

Query Complexity for RandomQueryPivot

$$
\begin{array}{r}
E\left[\text { queries }_{t}\right]=\sum_{\{u, v\} \in E_{t}} c_{u v}^{*} \sum_{w \in V_{t}} \frac{1}{\left|V_{t}\right|} E\left[Q_{u v} \mid A_{w}\right] \leq \sum_{\{u, v\} \in E_{t}} \frac{c_{u v}^{*}}{\left|V_{t}\right|}\left[2\left(1+p\left|T_{u v}^{1}\right|\right)+2 p\left|T_{u v}^{1}\right|\right] \\
E\left[C_{O P T}^{t}\right]=\sum_{\{u, v\} \in E_{t}} c_{u v}^{*} \sum_{w \in V_{t}} \frac{1}{\left|V_{t}\right|} \operatorname{Pr}\left[D_{u v} \mid A_{w}\right] \geq \sum_{\{u, v\} \in E_{t}} \frac{c_{u v}^{*}}{\left|V_{t}\right|}\left(2+\left|T_{u v}^{1}\right|\right) \\
\\
\frac{E\left[q u e r i e s_{t}\right]}{C_{O P T}^{t}} \leq \frac{2+4 p\left|T_{u v}^{1}\right|}{2+\left|T_{u v}^{1}\right|} \leq \max (1,4 p)
\end{array}
$$

Outline of Talk

1. Introduction to the Problem
2. Simple 3-approximation algorithm
3. Pairwise query oracle
4. NP-completeness proof

NP-hardness proof

- Reduction from 3-SAT (Komusiewicz 2011): suppose we have m clauses and n variables.
- For each variable x, create a cycle of + edges of size $4 m_{x}$, where m_{x} is the number of clauses including x. (all other edges among the vertices in the cycle are - edges).

NP-hardness proof

- Reduction from 3-SAT: suppose we have m clauses and n variables.
- For each variable x, create a cycle of + edges of size $4 m_{x}$, where m_{x} is the number of clauses including x. (all other edges among the vertices in the cycle are - edges).
- For each clause (x, y, z), create:
x cycle

NP-hardness proof

- Reduction from 3-SAT: suppose we have m clauses and n variables.
- For each variable x, create a cycle of + edges of size $4 m_{x}$, where m_{x} is the number of clauses including x. (all other edges among the vertices in the cycle are-edges).
- For each clause (x, y, z), create:

If there's a satisfying assignment with $x=$ True, $y=z=$ False:

z cycle
y cycle

NP-hardness proof

- Reduction from 3-SAT: suppose we have m clauses and n variables.
- For each variable x, create a cycle of + edges of size $4 m_{x}$, where m_{x} is the number of clauses including x. (all other edges among the vertices in the cycle are-edges).
- For each clause (x, y, z), create:

If there's a satisfying assignment with $x=$ True, $y=z=$ False:

z cycle

y cycle

NP-hardness proof

- Reduction from 3-SAT: suppose we have m clauses and n variables.
- For each variable x, create a cycle of + edges of size $4 m_{x}$, where m_{x} is the number of clauses including x. (all other edges among the vertices in the cycle are - edges).
- For each clause (x, y, z), create:
x cycle

z cycle

If no satisfying assignment:

NP-hardness proof

- There exists an optimal solution in which we make mistakes only on + edges. (see Lemma on next slide)
- In variable cycles, we'll make $\frac{1}{2} 4(3 m)=6 m$ mistakes
- When there's a satisfying solution to 3-SAT instance, we can make $6 m+4 m=10 m$ mistakes.
- When there's no satisfying solution, we must make more mistakes since there will always be some unsatisfiable clause.
- Thus, deciding whether 3-SAT instance is satisfiable is equivalent to deciding whether optimal number of mistakes is 10 m .

NP-hardness proof

- Lemma: If for every u, v connected by a - edge, they have a common +-neighborhood of size at most 1, then there is an optimal clustering that puts each such u, v in different clusters
- Proof: Suppose not. We will take an optimal clustering and modify it to satisfy this property. Let K be the cluster containing u, v. Let X be their shared +-neighborhood. Let $K_{u}=|K \cap N(u)|$ and $K_{v}=|K \cap N(v)|$. WLOG assume $K_{v} \geq K_{u}$. If $K_{u}>\frac{K-1}{2}$, then $|K| \geq K_{u}+K_{v}-|X|+2>K-1-|X|+2 \geq=K-1-1+2=K$ $K-1$
Contradiction. So $K_{u} \leq \frac{K-1}{2}$. Consider putting u in its own cluster. The additional cost would be

$$
K_{u}-\left(|K|-K_{u}-1\right)=2 K_{u}-|K|+1 \leq|K|-1-|K|+1=0
$$

