
Correlation Clustering
Sanjay Subramanian

PACT, Summer 2020

Clustering
• Goal of clustering is to group similar objects together and

dissimilar objects separately

• We assume that we are given pairwise similarity scores

• Some formulations (e.g. K-means) assume that we are
given the number of clusters beforehand

Correlation Clustering
• Given a complete graph G = (V, E), each edge is labeled with a + or a

-.

• Goal: cluster vertices so that we either:

• Maximize: (# of + edges within clusters) + (# of - edges crossing
clusters)

• Minimize: (# of + edges crossing clusters) + (# of - edges within
clusters)

• Note: number of clusters is not given

• Introduced by Bansal, Blum, Chawla (2002)

Correlation Clustering
• Given a complete graph G = (V, E), each edge is labeled with a + or a

-.

• Goal: cluster vertices so that we either:

• Maximize: (# of + edges within clusters) + (# of - edges crossing
clusters)

• Minimize: (# of + edges crossing clusters) + (# of - edges within
clusters)

• Note: number of clusters is not given

• Introduced by Bansal, Blum, Chawla (2002)

Outline of Talk

1. Introduction to the Problem

2. Simple 3-approximation algorithm

3. Pairwise query oracle

4. NP-completeness proof

Introductory Notes
• Why do we have a maximization and a minimization

version of the problem?

Introductory Notes
• Why do we have a maximization and a minimization

version of the problem?

• Relevant for approximation-algorithms

Introductory Notes
• Why do we have a maximization and a minimization

version of the problem?

• Relevant for approximation-algorithms

• We will focus on the minimization version. Each + edge
crossing clusters and each - minus edge within a cluster
is called a “mistake.”

Introductory Notes
• Why do we have a maximization and a minimization

version of the problem?

• Relevant for approximation-algorithms

• We will focus on the minimization version. Each + edge
crossing clusters and each - minus edge within a cluster
is called a “mistake.”

• What is a quick upper bound on # of mistakes?

Introductory Notes
• Why do we have a maximization and a minimization

version of the problem?

• Relevant for approximation-algorithms

• We will focus on the minimization version. Each + edge
crossing clusters and each - minus edge within a cluster
is called a “mistake.”

• What is a quick upper bound on # of mistakes?

• |E | /2 = n(n − 1)/4

More Introductory Notes
• Efficient algorithm for finding optimal clustering OPT

when OPT makes 0 mistakes?

More Introductory Notes
• Efficient algorithm for finding optimal clustering OPT

when OPT makes 0 mistakes?

• Connected components of subgraph with only + edges

More Introductory Notes
• Efficient algorithm for finding optimal clustering OPT

when OPT makes 0 mistakes?

• Connected components of subgraph with only + edges

• Let be # of mistakes of OPT

• What feature of graph determines whether > 0?

COPT

COPT

More Introductory Notes
• Efficient algorithm for finding optimal clustering OPT

when OPT makes 0 mistakes?

• Connected components of subgraph with only + edges

• Let be # of mistakes of OPT

• What feature of graph determines whether > 0?

• (+, +, -) triangle

COPT

COPT

Outline of Talk

1. Introduction to the Problem

2. Simple 3-approximation algorithm

3. Pairwise query oracle

4. NP-completeness proof

3-approx. Algorithm
• Similar to the algorithm given before!

• Select a vertex uniformly at random as the “pivot.”

• Form a cluster with pivot and its +-neighbors

• Repeat with remaining vertices

• Algorithm+analysis published by Ailon, Charikar, Newman
(2005)

3 Approx. Analysis
• When does the algorithm make a mistake?

3 Approx. Analysis
• When does the algorithm make a mistake?

• When the pivot is part of a (+, +, -) triangle, mistake is
made on edge opposite the pivot

pivot

3 Approx. Analysis
• When does the algorithm make a mistake?

• When the pivot is part of a (+, +, -) triangle, mistake is made
on edge opposite the pivot

• For a (+, +, -) triangle , let be the event that all vertices are
still unclustered in a recursive call when one of the three vertices
is the pivot. Let be the set of all (+, +, -) triangles. Then

t At

T

E[mistakes] = ∑
t∈T

Pr[At]

pivot

3 Approx. Analysis
• Consider the linear program:

minimize ∑
e∈E

xe

s.t. xe1
+ xe2

+ xe3
≥ 1 ∀{e1, e2, e3} ∈ T

xe ≥ 0 ∀e ∈ E

3 Approx. Analysis
• Consider the linear program:

• Using OPT, we can construct a feasible solution to the LP:
for each edge , if OPT makes a mistake on and

 otherwise.

minimize ∑
e∈E

xe

s.t. xe1
+ xe2

+ xe3
≥ 1 ∀{e1, e2, e3} ∈ T

xe ≥ 0 ∀e ∈ E

e xe = 1 e
xe = 0

3 Approx. Analysis
• Consider the linear program:

• Using OPT, we can construct a feasible solution to the LP: for
each edge , if OPT makes a mistake on and
otherwise.

• For this definition of , .

• Therefore, is lower-bounded by the optimal LP cost.

minimize ∑
e∈E

xe

s.t. xe1
+ xe2

+ xe3
≥ 1 ∀{e1, e2, e3} ∈ T

xe ≥ 0 ∀e ∈ E

e xe = 1 e xe = 0

xe COPT = ∑
e∈E

xe

COPT

3 Approx. Analysis
• Now consider the dual LP:

• Here is a feasible solution to the dual LP:

• Why is this solution feasible?

maximize ∑
t∈T

βt

∑
t:e∈t

βt ≤ 1 ∀e ∈ E

βt =
Pr[At]

3

3 Approx. Analysis
• Now consider the dual LP:

• Here is a feasible solution to the dual LP:

• Why is this solution feasible?

• For a given edge , let be the event that algorithm makes a mistake
on .

•

maximize ∑
t∈T

βt

∑
t:e∈t

βt ≤ 1 ∀e ∈ E

βt =
Pr[At]

3

e Be
e

Pr[Be ∩ At] = Pr[Be |At] Pr[At] =
1
3

Pr[At]

3 Approx. Analysis
• Now consider the dual LP:

• Here is a feasible solution to the dual LP:

• Why is this solution feasible?

• For a given edge , let be the event that algorithm makes a mistake on .

•

• Finally, note that for two triangles and ,

maximize ∑
t∈T

βt

∑
t:e∈t

βt ≤ 1 ∀e ∈ E

βt =
Pr[At]

3

e Be e

Pr[Be ∩ At] = Pr[Be |At] Pr[At] =
1
3

Pr[At]

t t′ (Be ∩ At) ∩ (Be ∩ At′) = ∅

3 Approx. Analysis

• We have shown that is a feasible solution to

the dual LP.

• Recall that is lower-bounded by the optimal LP

cost. Therefore, , where

denotes an optimal solution to the dual LP.

• Since , .

βt =
Pr[At]

3

COPT

COPT ≥ ∑
t∈T

β*t ≥ ∑
t∈T

Pr[At]
3

β*

E[mistakes] = ∑
t∈T

Pr[At] E[mistakes] ≤ 3COPT

State-of-the-art
• The best algorithm (to my knowledge) gives a 2.06

approximation using LP-rounding (Chawla et al. 2015)

• There is a lot of work on other versions of the problem, e.g.

• when edges have weights between 0 and 1,

• when the number of clusters is treated as a constant,

• when the number of mistakes is treated as a constant,

• when edge weights are drawn from some distribution, …

Outline of Talk

1. Introduction to the Problem

2. Simple 3-approximation algorithm

3. Pairwise query oracle

4. NP-completeness proof

Same-cluster queries
• Suppose we have access to an oracle that knows an

optimal clustering and that can answer for any given
two vertices , “Does put and in the same
cluster?”

OPT
u, v OPT u v

Same-cluster queries
• Suppose we have access to an oracle that knows an

optimal clustering and that can answer for any given
two vertices , “Does put and in the same
cluster?”

• Obviously, we can easily find by making
queries to the oracle.

OPT
u, v OPT u v

OPT O(n2)

Same-cluster queries
• Suppose we have access to an oracle that knows an

optimal clustering and that can answer for any given
two vertices , “Does put and in the same
cluster?”

• Obviously, we can easily find by making queries
to the oracle.

• But can we make fewer queries and either (1) find or
(2) get a better approximation factor?

• “Correlation Clustering with Same-cluster queries
bounded by Optimal Cost”, Saha and Subramanian, 2019

OPT
u, v OPT u v

OPT O(n2)

OPT

Same-cluster queries
• Why is this a realistic/useful setting?

• Crowdsourcing has become a popular method of
obtaining annotations. We might obtain initial pairwise
scores using some algorithm/model and then issue
queries to crowd workers for a small set of vertex pairs.

• Related to the machine learning paradigm called
“active learning”

Finding with 2
queries
OPT COPT

• How can we modify the 3-approx. Algorithm to achieve
this result?

Finding with 2
queries
OPT COPT

• How can we modify the 3-approx. Algorithm to achieve this
result?

• The 3 “came from” having a 1/3 chance of choosing the
edge makes a mistake on in a given triangle

• Can we instead find which edge makes a mistake on
in each triangle by paying at most 2 queries for each of

’s mistakes?

• Extension: Query each triangle with probability —>
2-approximation with queries (in expectation)

OPT

OPT

OPT

p = 0.25
COPT

RandomQueryPivot in Detail
• Pick pivot uniformly at random

• For each (+, +, -) triangle containing the pivot:

• Let pivot be , and let other two vertices be .

• With probability :

• WLOG assume is a + edge. Query .

• If is a + edge OR OPT doesn’t make a mistake on
, query

• For all edges adjacent to pivot, make decision according to oracle if
queried and otherwise according to edge weight (+/-)

u v, w

p

{u, v} {u, v}

{u, w}
{u, v} {u, w}

Interesting properties of
RandomQueryPivot

• What is the probability of querying an edge ?

• If + edge:

• If - edge: Similar to above but only triangles in which
 doesn’t make a mistake on other pivot edge

{u, v}

1 − (1 − p)# of (+,+,-) triangles including {u,v}

OPT

Interesting properties of
RandomQueryPivot

• What is the probability of querying an edge ?

• If + edge:

• If - edge: Similar to above but only triangles in which
 doesn’t make a mistake on other pivot edge

• Now consider only edges on which makes a
mistake. Does it matter whether or is the pivot?

{u, v}

1 − (1 − p)# of (+,+,-) triangles including {u,v}

OPT

OPT
u v

Interesting properties of
RandomQueryPivot

• What is the probability of querying an edge ?

• If + edge:

• If - edge: Similar to above but only triangles in which doesn’t make a
mistake on other pivot edge

• Now consider only edges on which makes a mistake. Does it matter
whether or is the pivot?

• No! Let be set of (+, +, -) triangles including , and let be
subset in which is only edge on which makes a mistake. Then

• If + edge:

• If - edge:

{u, v}

1 − (1 − p)# of (+,+,-) triangles including {u,v}

OPT

OPT
u v

Tuv {u, v} T1
uv

{u, v} OPT

1 − (1 − p)|Tuv|

1 − (1 − p)|T1
uv| -

Pivot
+

+

Query Complexity for
RandomQueryPivot

• We will charge queries to edges on which makes a
mistake:

• If we query an edge on which makes a mistake,
charge that edge.

• Otherwise, charge to an edge in the triangle on which
 makes a mistake.

OPT

OPT

OPT

Query Complexity for
RandomQueryPivot

• We will charge queries to edges on which makes a
mistake:

• If we query an edge on which makes a mistake,
charge that edge.

• Otherwise, charge to an edge in the triangle on which
 makes a mistake.

• Claim: we only make the second kind of charge in
triangles in which makes 1 mistake ().

OPT

OPT

OPT

OPT T1
uv

Query Complexity for
RandomQueryPivot

E[queriest] = ∑
{u,v}∈Et

c*uv ∑
w∈Vt

1
|Vt |

E[Quv |Aw] ≤ ∑
{u,v}∈Et

c*uv

|Vt |
[2(1 + p |T1

uv |) + 2p |T1
uv |]

E[Ct
OPT] = ∑

{u,v}∈Et

c*uv ∑
w∈Vt

1
|Vt |

Pr[Duv |Aw] ≥ ∑
{u,v}∈Et

c*uv

|Vt |
(2 + |T1

uv |)

E[queriest]
Ct

OPT
≤

2 + 4p |T1
uv |

2 + |T1
uv |

≤ max(1,4p)

Outline of Talk

1. Introduction to the Problem

2. Simple 3-approximation algorithm

3. Pairwise query oracle

4. NP-completeness proof

NP-hardness proof
• Reduction from 3-SAT (Komusiewicz 2011): suppose we

have clauses and variables.

• For each variable , create a cycle of + edges of size 4 ,
where is the number of clauses including . (all other
edges among the vertices in the cycle are - edges).

m n

x mx
mx x

NP-hardness proof
• Reduction from 3-SAT: suppose we have clauses and

variables.

• For each variable , create a cycle of + edges of size 4 ,
where is the number of clauses including . (all other
edges among the vertices in the cycle are - edges).

• For each clause (x,y,z), create:

m n

x mx
mx x

x cycle

y cycle

z cycle

NP-hardness proof
• Reduction from 3-SAT: suppose we have clauses and

variables.

• For each variable , create a cycle of + edges of size 4 , where
 is the number of clauses including . (all other edges among

the vertices in the cycle are - edges).

• For each clause (x,y,z), create:

If there’s a satisfying assignment 
with x = True, y = z = False:

m n

x mx
mx x

x cycle

y cycle

z cycle

NP-hardness proof
• Reduction from 3-SAT: suppose we have clauses and

variables.

• For each variable , create a cycle of + edges of size 4 , where
 is the number of clauses including . (all other edges among

the vertices in the cycle are - edges).

• For each clause (x,y,z), create:

If there’s a satisfying assignment 
with x = True, y = z = False:

m n

x mx
mx x

x cycle

y cycle

z cycle

NP-hardness proof
• Reduction from 3-SAT: suppose we have clauses and

variables.

• For each variable , create a cycle of + edges of size 4 ,
where is the number of clauses including . (all other
edges among the vertices in the cycle are - edges).

• For each clause (x,y,z), create:

If no satisfying assignment:

m n

x mx
mx x

x cycle

y cycle

z cycle

NP-hardness proof
• There exists an optimal solution in which we make mistakes only on +

edges. (see Lemma on next slide)

• In variable cycles, we’ll make mistakes

• When there’s a satisfying solution to 3-SAT instance, we can make
 mistakes.

• When there’s no satisfying solution, we must make more mistakes
since there will always be some unsatisfiable clause.

• Thus, deciding whether 3-SAT instance is satisfiable is equivalent to
deciding whether optimal number of mistakes is .

1
2

4(3m) = 6m

6m + 4m = 10m

10m

NP-hardness proof
• Lemma: If for every connected by a - edge, they have a

common +-neighborhood of size at most 1, then there is an optimal
clustering that puts each such in different clusters

• Proof: Suppose not. We will take an optimal clustering and modify
it to satisfy this property. Let be the cluster containing . Let

 be their shared +-neighborhood. Let and

. WLOG assume . If , then

Contradiction. So . Consider putting in its own

cluster. The additional cost would be

u, v

u, v

K u, v
X Ku = |K ∩ N(u) |

Kv = |K ∩ N(v) | Kv ≥ Ku Ku >
K − 1

2
|K | ≥ Ku + Kv − |X | + 2 > K − 1 − |X | + 2 ≥ = K − 1 − 1 + 2 = K

Ku ≤
K − 1

2
u

Ku − (|K | − Ku − 1) = 2Ku − |K | + 1 ≤ |K | − 1 − |K | + 1 = 0

