Semantic Scholar

MedICaT: A Dataset of Medical Images, Captions, and Textual References

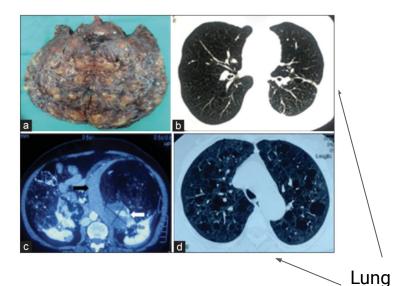
Sanjay Subramanian, Lucy Lu Wang, Sachin Mehta, Ben Bogin, Madeleine van Zuylen, Sravanthi Parasa, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi

Papers are a useful source of medical images

• How can images in medical papers be useful?

Papers are a useful source of medical images

- How can images in medical papers be useful?
 - Retrieving images representative of a specific medical concept
 - Additional training data for medical image classification

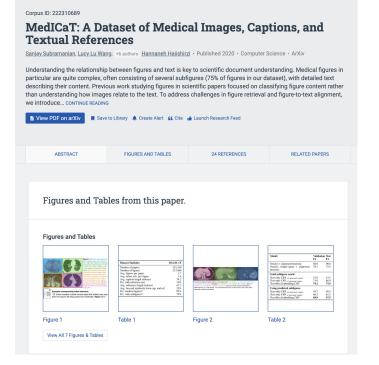


cysts

Image Source: Dhungana et al., 2018

Papers are a useful source of medical images

- How can images in medical papers be useful?
 - Retrieving images representative of a specific medical concept
 - Additional training data for medical image classification
 - Research paper reading experience show figures with associated text



The MedICaT Dataset

- Subfigure-subcaption annotations - 2000+ figures
 - Previous work -- e.g. compound figure segmentation (De Herrera et al., 2016) and subfigure labeling (You et al., 2011) -- is more limited

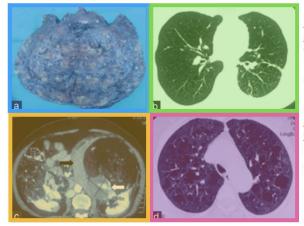
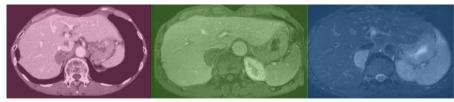


Figure 1: (a) Right renal angiomyolipoma (gross specimen postexcision). (b) High-resolution computed tomography chest images of Case 1 showing multiple variable sized cysts uniformly scattered in both lungs. (c) Computed tomography abdomen showing bilateral renal angiomvolipomas with fat densities, tortuous vessels, and pseudoaneurysm (white arrow). There is also the presence of perinephric hematoma (black arrow). (d) Highresolution computed tomography image of Case 2 showing bilateral lung cysts.

Image Source: Dhungana et al., 2018

The MedICaT Dataset

- Subfigure-subcaption annotations - 2000+ figures
 - Previous work -- e.g. compound figure segmentation (De Herrera et al., 2016) and subfigure labeling (You et al., 2011) -- is more limited



The tumor (approximately 40mm in diameter) was hypovascular on enhanced computed tomography scan (right), indicated low intensity on T1-weighted MRI (center), and high intensity on T2-weighted or diffusion MRI (left). Dynamic study revealed peripheral enhancement on a late phase. The tumor located close to the inferior vena cava. MRI = magnetic resonance imaging.

The MedICaT Dataset

- Subfigure-subcaption annotations - 2000+ figures
 - Previous work -- e.g. compound figure segmentation (De Herrera et al., 2016) and subfigure labeling (You et al., 2011) -- is more limited
- Inline references 150K+ figures
 - Provide additional context and descriptions for images

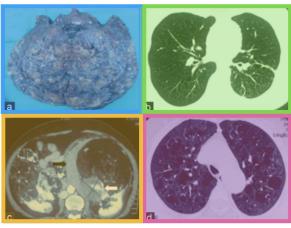
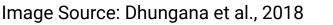


Figure 1: (a) Right renal angiomyolipoma (gross specimen postexcision). (b) High-resolution computed tomography chest images of Case 1 showing multiple variable sized cysts uniformly scattered in both lungs. (c) Computed tomography abdomen showing bilateral renal angiomvolipomas with fat densities, tortuous vessels, and pseudoaneurysm (white arrow). There is also the presence of perinephric hematoma (black arrow). (d) Highresolution computed tomography image of Case 2 showing bilateral lung cysts.

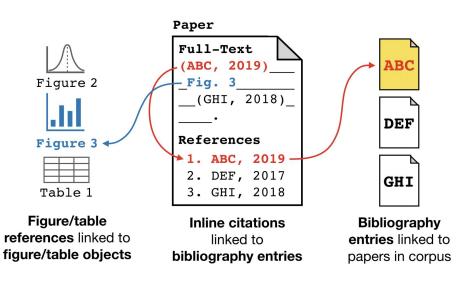
Corresponding inline reference:

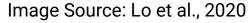
"CT thorax revealed multiple variable sized thin-walled cysts <u>scat-</u> tered throughout the lung parenchyma bilaterally [**Figure 1d**]."



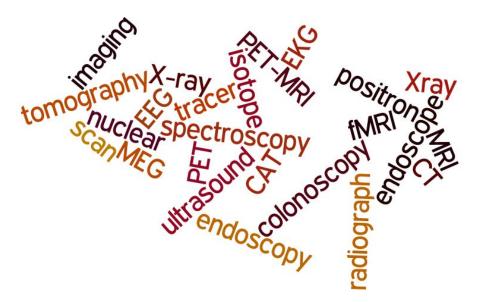
1. Identify open-access publications in PubMed Central

- 1. Identify open-access publications in PubMed Central
- Collect captions and references for figures using S2ORC (Lo et al., 2020)





- 1. Identify open-access publications in PubMed Central
- Collect captions and references for figures using S2ORC (Lo et al., 2020)
- 3. Filter figures using keyword filters on captions



- 1. Identify open-access publications in PubMed Central
- Collect captions and references for figures using S2ORC (Lo et al., 2020)
- 3. Filter figures using keyword filters on captions
- 4. Filter figures using a figure-type classifier trained on DocFigure (Jobin et al., 2019) so we are left with medical figures.

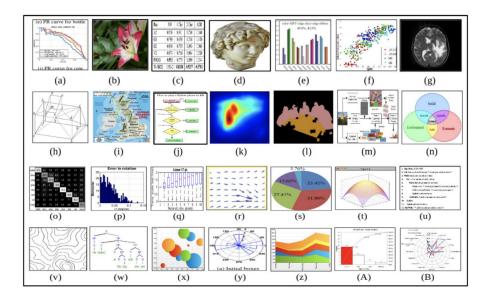


Image Source: Jobin et al., 2019

- 1. Identify open-access publications in PubMed Central
- Collect captions and references for figures using S2ORC (Lo et al., 2020)
- 3. Filter figures using keyword filters on captions
- 4. Filter figures using a figure-type classifier trained on DocFigure (Jobin et al., 2019) so we are left with medical figures.

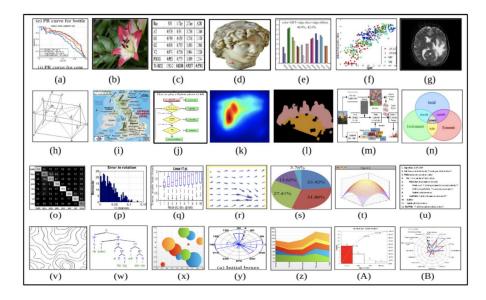
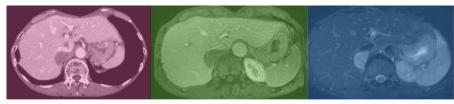


Image Source: Jobin et al., 2019

Final size: 217K images from 131K papers

Subfigure-subcaption Alignment

- **Input:** A compound figure and the corresponding full caption
- **Output:** A box around each subfigure and the subcaption corresponding to each subfigure
- Challenges with how subfigures are referenced -- by letter, by spatial position, shared subcaptions, etc.
- Annotations: 7507 subcaptions for 2069 compound figures
 - Varied medical knowledge among annotators, but no physicians



The tumor (approximately 40mm in diameter) was hypovascular on enhanced computed tomography scan (right), indicated low intensity on T1-weighted MRI (center), and high intensity on T2-weighted or diffusion MRI (left). Dynamic study revealed peripheral enhancement on a late phase. The tumor located close to the inferior vena cava. MRI = magnetic resonance imaging.

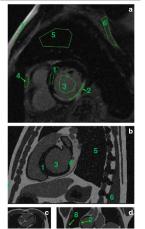
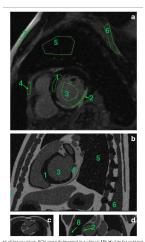


Fig. 3 Assignment of tissue values. ROIs were delineated in a clinical MR (a). Similar contrast values were imposed to the tissues in the attenuation image generated with the XCAT phantom. Panes b, c and d represent the sagittal, transaxial and axial views of the XCAT phantom, respectively, after conversion to MR-like contrast values

Image Sources: Ohkura et al., 2015; Turco et al., 2016

Subfigure-subcaption Alignment Models



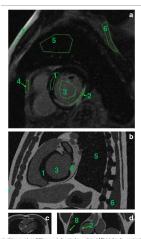
Text-only CRF Tagger

Fig. 3 Assignment of tissue values. ROIs were delineated in a clinical MR (a). Similar contrast values were imposed to the tissues in the attenuation image generated with the XCAT phantom. Panes b, c and d represent the sagittal, transaxial and axial views of the XCAT phantom, respectively, after conversion to MR-like contrast values

Image Source: Turco et al., 2016

Faster R-CNN: Ren et al., 2015, SciBERT: Beltagy et al., 2019

Subfigure-subcaption Alignment Models



Text-only CRF Tagger

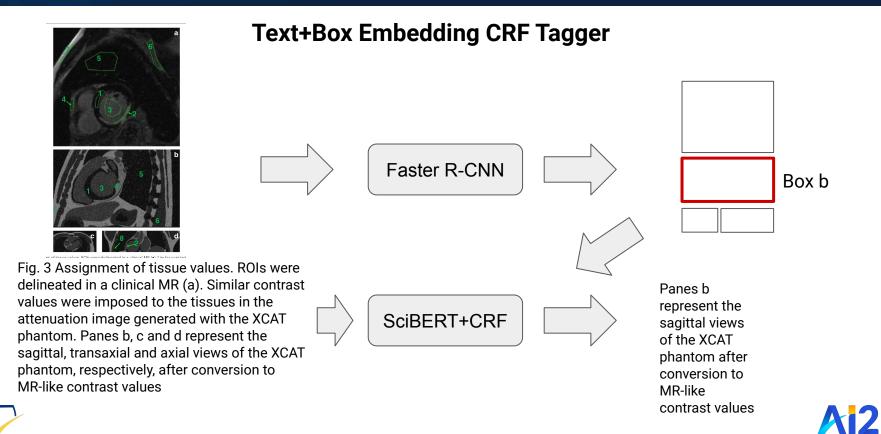
Alignment heuristic

Fig. 3 Assignment of tissue values. ROIs were delineated in a clinical MR (a). Similar contrast values were imposed to the tissues in the attenuation image generated with the XCAT phantom. Panes b, c and d represent the sagittal, transaxial and axial views of the XCAT phantom, respectively, after conversion to MR-like contrast values

ROIs were delineated in a clinical MR (a). Similar contrast values were imposed to the tissues in the attenuation image generated with the XCAT phantom.

Panes b, c and d represent the sagittal, transaxial and axial views of the XCAT phantom, respectively, after conversion to MR-like contrast values

Subfigure-subcaption Alignment Models



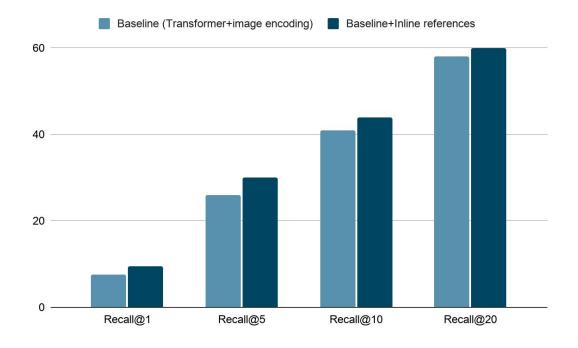
Subfigure-subcaption Alignment Results

Metric: F1 between set of tokens in gold subcaption and set of tokens in predicted subcaption

Model	Validation F1	Test F1
Oracles + alignment heuristic	88.0	90.8
Oracles (single-span) + alignment heuristic	78.1	75.5
Gold subfigure oracle		
Text-only CRF w/o pretrained weights	47.8	43.3
Text-only CRF w/ pretrained weights	71.0	66.9
Text+Box Embedding CRF	74.1	71.9
Using predicted subfigures		
Text-only CRF w/o pretrained weights	44.7	40.3
Text-only CRF w/ pretrained weights	66.4	61.3
Text+Box Embedding CRF	69.9	67.5

Data Augmentation with Inline References

We also demonstrate how inline references can be used as additional training data for an image-text matching model.



Summary and Future Work

We introduce MedICaT, a dataset of 217K medical images from 131K OA papers, with subfigure-subcaption annotations and inline figure references

Data and code at github.com/allenai/medicat

Future work:

- Can unsupervised pre-training on the full dataset help with subfigure-subcaption alignment?
- Can paired images and text in MedICaT help with medical image classification? (subfigure-subcaption alignment should help)
- Can inline references be used in a document understanding task?

