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Recent developments in compositional visual 
reasoning

● Early VQA datasets were either simple and natural (e.g. VQA; Agrawal et al. 
2017) or compositional and synthetic (e.g. CLEVR; Johnson et al. 2017)

● Recent compositional datasets:
○ NLVR2 (Suhr et al. 2019) -- two natural images paired with a sentence. True/false 

classification.
○ GQA (Hudson and Manning 2019) -- synthetic question with natural image. 

Classification and open-ended questions.



Recent developments in compositional visual 
reasoning

● Large-scale pre-trained transformers have been successful
● Example: LXMERT (Tan and Bansal, 2019)

● Requires paired images and captions (COCO/Visual Genome) and VQA data
● SOTA on NLVR2, strong performance on GQA

Masked 
language-modeling

LXMERT loss

Visual feature 
regression

+ Image-text matching+

=

VQA+



Performance Gains from Pre-training



Issues raised by large pre-trained models

1. Interpretability: Can we make these models interpretable?
○ Unclear how to extract the steps of a vanilla Transformer
○ Particularly salient for compositional tasks

2. Evaluation: Are there shortcuts in these compositional datasets that enable 
models to perform well without going through the apparent reasoning steps?
○ Specifically: is object+attribute detection sufficient?



Obtaining Faithful Interpretations from 
Compositional Neural Networks

                   SS*,                      Ben Bogin*,                   Nitish Gupta*

ACL 2020
Tomer Wolfson, Sameer Singh, Jonathan Berant, Matt Gardner



Compositional reasoning

All dogs are black
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LXMERT
(black-box neural network) False

Not Interpretable

Tan and Bansal, EMNLP 2019

All dogs are black

Compositional reasoning



Neural Module Networks (NMN)

find[dogs] find[dogs]

filter[black]

countcount

equal

parse

[Andreas et al., NAACL 2016]
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find[dogs] find[dogs]

filter[black]

countcount

equal
1

parse

False
execute

2

Backpropagation

Modules
Learnable NNs to 
perform atomic 

tasks

Interpretable!

Learn parameters for all 
modules based on the 
answer as weak signal

All dogs are black

100% 100%

Neural Module Networks (NMN)



Module execution is not faithful!
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Faithful module execution

find[dogs]

find[dogs]
Module performs its 
intended operation; 

hence faithful

Module does not 
perform its intended 

operation; 
hence not-faithful
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Module execution is not faithful!

find[dogs]

parse

execute

find[dogs]

filter[black]

countcount

equal
11.4

False

Program is not a faithful explanation 
of the model behavior

Module execution is not faithful 
to its intended reasoning

All dogs are black

30% 100%

After training using 
only end-task 
supervision
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● Model gets high accuracy but low faithfulness → multiple reasoning steps are 

being collapsed within one module (or in the contextualizing model)

● Possible causes for the collapsed reasoning:

○ Count architecture is too expressive

○ Contextualized representations already reflect the reasoning

● Supervising module outputs directly is another method

What’s causing the unfaithful interpretations?



Dataset and Implementation

NLVR2 (Suhr et al., 2019)

two dogs are touching a food dish with their face

Train and evaluate on examples with QDMR 
program annotation
~32,000 examples

[BREAK; Wolfson et al. 2020]

Module List:
● Find() → ObjectSet
● Filter(ObjectSet) → ObjectSet
● Relation(ObjectSet, ObjectSet) 

→ ObjectSet
● Project(ObjectSet) → ObjectSet
● Count(ObjectSet) → number
● Parameter-less: Equals, 

Greater-than, etc.
● Macros: In-each-image, 

In-at-least-one-image



1) Visual-NMN: Count module mediates backprop

all dogs are black

find[dogs]

execute

find[dogs]

filter[black]

countcount

equal

False
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1) Visual-NMN: Lower-capacity Count Module 
improves faithfulness

Count

    

1.93

    

(many parameters)

76%
find[seals

]

50%
find[seals]

Layer-count

  

70%
find[seals

]
find[seals]
40% 0%

Sum-count

(no parameters)

Count (+)

1.10
Graph-count (Zhang et al., 2018)

Count

(few parameters)
1.97

97%
find[seals

]
find[seals]
97% 2%

# of parameters
there are three seals in the image pair. 

→ Answer: False
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2) Decontextualized Word Vectors Improve 
Faithfulness

doesn’t find llamas, effectively 
searching for eating llamas

100%91%

Correctly finds the llamas

llamas

llamas

  
find[llamas]

the llamas in both images are eating

8%6%

find[llamas]

LXMERT

the  llamas  in   both images are  eating

              

LXMERT



filter[green]

find[apple]

Auxiliary supervision:

Pre-train find and filter with auxiliary module supervision on different dataset (GQA)

+1 -1

+1 -1

3) Supervising module output improves faithfulness

[Hudson and Manning, 2019]

exist

true
Is there a green apple?
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Previous work

We propose, 

(1) Ways to improve module-wise faithfulness

(2) Systematic evaluation of intermediate module execution 

[Hu et al. 2017][Andreas et al. 2016]



Previous work: Human evaluation of module 
outputs

● One exception in previous work: Hu et al. 2018 asks humans to evaluate 
module outputs in two ways:

○ Subjective understanding: Rate (on a 4-point scale) how well you can understand the model’s 
reasoning via the module outputs

○ Forward prediction: Predict the model’s output and failure based on the module outputs

● Our approach allows evaluation of multiple models without any additional 
annotations.
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equal
  count
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      relocate [face]
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How do we evaluate faithfulness?

two dogs are touching a food dish with their face

Compute 
precision, 
recall, F

1

Gold Program

equal
  count
    with-relation [is touching]
      relocate [face]
          find [dog]
      find [food dish]
  number [two]

We collect 
intermediate 

outputs for 536 
programs

F
1
: 0.5

gold

prediction
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NLVR2 Example

Gold Program

exist
  filter [is out]
    project [tongue]
      filter [is laying down]
          filter [white is]
              filter[small is]
                  find [puppy]

"a small white puppy is laying down with its tongue out."
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Gold Program

Exist True
  filter [is out]
    project [tongue]
      filter [laying down]
          filter [white]
              filter[small]
                  find [puppy]

NLVR2 Example

"a small white puppy is laying down with its tongue out."

99%

50%

17%



Another example of interpretable compositional 
reasoning: Grounded Chart Parser

Ben Bogin,

SS, Matt Gardner, 
Jonathan Berant,
Accepted to TACL



Grounded Chart Parser Results

Accuracy Interpretability

CLEVR CLOSURE

Constituents Recall 
(%)

83.1 81.6

Denotation (F1) 95.9% 94.7
Denotation Precision 97%

Denotation Recall 96%

Constituents Recall 64%



Evaluation: Are pre-trained systems doing 
compositional reasoning?

NLVR2 Example: “The dog in the image on the right is wearing a collar.”

Label: False Label: True

SS, Sameer 
Singh, Matt 
Gardner; ViGIL 
@ NeurIPS 2019
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Relation “wearing” is not necessary to answer 
these correctly

Are pre-trained systems doing compositional 
reasoning?

NLVR2 Example: “The dog in the image on the right is wearing a collar.”

Label: False Label: True

Harder image 
(Not Taken from 

NLVR2)



Experiment: Remove relational cues

● Mask/drop prepositions and verbs across all sentences
● LXMERT’s Performance is nearly the same!
● Similar result on GQA

Example

[CLS] the dog in the image on the 
right is wearing a collar. [SEP]



Experiment: Input Reduction

Remove token from NLVR2 sentence with least gradient iteratively without 
changing prediction on any image pair (Feng et al. 2018)

Examples

[CLS] a silver spoon has cookie dough in it . 
[SEP]

[CLS] at least one human is wearing eye 
glasses . [SEP]

[CLS] the left and right image contains no 
more than three bottles of lot ##ion . [SEP]



Experiment: Syntax Probe

● Compositionality presumably requires some knowledge of syntax
● How well does LXMERT encode syntax trees?
● Structural probe (Hewitt and Manning 2019) learns to map from encoder 

representations to pairwise parse-tree distance



Evaluation: Contrast sets for NLVR2

● What happens when we modify slightly the input language or images for 
NLVR2?

● Contrast sets: non-i.i.d. test data for many NLP tasks to evaluate how well 
models do around local decision boundaries

Matt Gardner and many 
others, EMNLP-Findings 
2020



Evaluation: Contrast sets for NLVR2

● What happens when we modify slightly the input language or images for 
NLVR2?

● Contrast sets: non-i.i.d. test data for many NLP tasks to evaluate how well 
models do around local decision boundaries

● NLVR2 Results (for LXMERT):

Matt Gardner and many 
others, EMNLP-Findings 
2020

# of Examples 994

# of Sets 479

Original Test Accuracy 76.4

Contrast Test Accuracy 61.1 (-15.3)

Consistency 30.1



Evaluation: Contrast sets for NLVR2

Example:

Two similarly-colored and similarly-posed chow dogs are face to face in one 
image.

Two differently-colored but similarly-posed chow dogs are face to face in one 
image.



Evaluation: Contrast sets for NLVR2

Example:

Two similarly-colored and similarly-posed chow dogs are face to face in one 
image.



Conclusion

● Interpretability: Interpretability is still feasible using previous methods (e.g. 
NMNs) on top of recent pre-trained models

○ Our work relies heavily on gold programs; how well can we do without them?

● Evaluation: Pre-training seems to be very good for grounding nouns and 
adjectives (and perhaps for counting), but relations seem to need more work



Vision+Language in Scientific Documents

MedICaT: A Dataset of Medical Images, 
Captions, and Textual References 
(EMNLP-Findings 2020)

Unique features:

● Subfigure-subcaption alignment 
annotations for > 2000 figures

● Figure references in main body text for 
> 70% of figures



Collaborators

+many others
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Conclusion
1. We propose the concept of module-wise faithfulness 

and ways to systematically evaluate faithfulness in 
Visual and Text NMN

2. We propose various ways to improve module-wise 
faithfulness in NMNs.

3. We release over 700 human-annotated programs with 
intermediate outputs for NLVR2 and DROP to measure 
module-wise faithfulness

Code and annotations: github.com/allenai/faithful-nmn

two dogs are touching a food dish with their face

prediction

gold

Gold Program

equal
  count
    with-relation [is touching]
      relocate [face]
          find [dog]
      find [food dish]
  number [two]

https://github.com/allenai/faithful-nmn


Neural Module Networks for Text Reasoning

Neural networks with learnable parameters to solve an atomic task 

find[arg] Find bounding boxes corresponding to “arg”

filter[condition] Filter input bounding boxes based on the “condition”

Count the input number of boxescount

….

Modules for Visual Reasoning



Two dogs example with what we’re evaluating

Person 2

two dogs are touching a food dish with their face Program Output

equal True

  count 2

    with-relation [is touching] [2, 5]

      relocate [face] [2, 5]

          find [dog] [1, 4]

      find [food dish] [3, 6]

  number [two] 2
2

3

1

6

5

4



Improvement 1: Architectural choice

● Visual-NMN: Count module occurs in every program
○ Layer-count (most flexible): count = FFNN(box probabilities, box representations)

find[people]

60%

60%
...

utt: “there are three people”

35%

34%
...
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Improvement 1: Architectural choice

● Visual-NMN: Count module occurs in every program
○ Layer-count (most flexible): count = FFNN(box probabilities, box representations)

○ Sum-count (least flexible): count = Sum(box probabilities)
○ Graph-count: Like Sum-count but accounts for box overlap (Zhang et al., 2018)

● Text-NMN: “extract-answer” module produces a direct answer without 
compositional reasoning

○ Can improve accuracy by handling reasoning out of scope of modules
○ Decreases faithfulness by collapsing several reasoning steps

find[people]

60%

60%
...

utt: “there are three people”

35%

34%
...



Improvement 2: Supervising module output

● Include loss term for individual module outputs
● Visual-NMN: Supervise object box probabilities

○ Module-wise annotations are not available for NLVR2
○ We pre-train on GQA (Hudson et al., 2019) for which we can obtain annotations

● Text-NMN: Supervise token probabilities
○ We use heuristics (proposed by Gupta et al., 2020) to obtain gold spans for find-num and 

find-date



Improvement 3: Decontextualized Word Vectors

● Visual NMN: each module uses an attention over tokens to obtain a weighted 
average of LXMERT (Tan and Bansal, 2019) token representations

● However, LXMERT’s outputs are already contextualized, so tokens outside the 
attention can still contribute to the attended representation



Improvement 3: Decontextualized Word Vectors

● Visual NMN: each module uses an attention over tokens to obtain a weighted 
average of LXMERT (Tan and Bansal, 2019) token representations

● However, LXMERT’s outputs are already contextualized, so tokens outside the 
attention can still contribute to the attended representation

● Our proposal: Run LXMERT separately for each module, masking out all 
tokens outside the module’s utterance attention

Example: All the dogs are black.

find

filter
LXMERT

dogs

black



Count

    

1.95

    

(many parameters)
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50%

find[dog]
55%

Layer-count
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Capacity Faithfulness

Count (+)

1.88

find[dog]
97%

find[dog]
91%

Sum-countGraph-count (Zhang et al., 2018)

Count

(few parameters) (no parameters)

Count

    

1.95

    

(many parameters)

find[dog]
50%

find[dog]
55%

Layer-count

Visual-NMN: Lower-capacity Count Module 
improves faithfulness

  


