1 NIZK Proof system

NIZK is a class of Zero-Knowledge proof systems, where no interaction is required: The Prover sends a message to the Verifier, and the Verifier either accepts or rejects. The Prover and the verifier also have access to random public string σ.

Let R be an efficiently computable binary relation. For pairs $(x, \omega) \in R$ we call x statement and ω witness. Let L be the language consisting of statements in R.

Definition 1 A NIZK proof system for input x in language L, with witness ω, is a set of efficient PPT algorithms (S, P, V) such that:

1. S produces a random public string σ: $\sigma \leftarrow S(1^k)$
2. Prover P produces a proof π: $\pi \leftarrow P(\sigma, x, \omega)$
3. Verifier V outputs 1 if accepts the proof and 0 if rejects: $0/1 \leftarrow V(\sigma, x, \pi)$

If it has the completeness, soundness and zero-knowledge properties below.

Definition 2 (Perfect Completeness) $\forall x \in L, \omega \in R_L(x)$:

$\Pr[\sigma \leftarrow S(1^k); \pi \leftarrow P(\sigma, x, \omega) : V(\sigma, x, \pi) = 1] = 1$

Definition 3 (Perfect Computational soundness) For all polynomial size families $\{x_k\}$ s.t $x_k \notin L$ and all adversaries A we have

$\Pr[\sigma \leftarrow S(1^k); \pi \leftarrow A(\sigma, x_k) : V(\sigma, x_k, \pi) = 1] = 0$

Definition 4 (Computationally perfect ZK) If there exists a polynomial time simulator $\text{Sim} = (\text{Sim}_1, \text{Sim}_2)$, with τ is a simulation trapdoor, $\forall x \in L, \omega \in R_L(x)$ and for all non-uniform polynomial time adversaries A we have

$\Pr[\sigma \leftarrow S(1^k); \pi \leftarrow P(\sigma, x, \omega) : A(\sigma, x, \pi) = 1] \simeq \Pr[(\sigma, \tau) \leftarrow \text{Sim}_1(1^k); \pi \leftarrow \text{Sim}_2(\sigma, \tau, x) : A(\sigma, x, \pi) = 1]$
2 Homomorphic Proof Commitments

In a non-interactive commitment scheme there is a key generator, which generates a public commitment key c_k. The commitment key c_k defines a message space \mathcal{M}_{c_k}, a randomizer space \mathcal{R}_{c_k} and a commitment space \mathcal{C}_{c_k}. The commitment algorithm $\text{com}: \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{C}$. The commitment scheme must be binding and hiding:

- Binding - Infeasible to find $(m_1; r_1), (m_2; r_2)$ s.t. $m_1 \neq m_2$ and $\text{com}(m_1; r_1) = \text{com}(m_2; r_2)$.

- Hiding - Given a commitment it is infeasible to guess which message is inside the commitment.

We create commitment keys with some trapdoor t_k such that we can open a commitment to any message. We want (c_k, t_k) in two modes: K_B binding mode or in K_H hiding mode. The two kinds of keys should be computationally indistinguishable.

What makes the homomorphic proof commitments special from other homomorphic commitments is that there is a way to prove that a commitment contains 0 or 1. That is if the key is perfect binding, then it is possible to prove that there exists an opening $(m, r) \in \{0, 1\} \times \mathcal{R}$ and if it is a perfect hiding key, then the proof will be perfectly witness-indistinguishable, i.e., it is impossible to tell whether the message is 0 or 1.

Definition 5 (Homomorphic Proof Commitment Scheme) $(K_B, K_H, \text{com}, \text{Topen}, P_{01}, V_{01})$ is a homomorphic proof commitment scheme if it satisfies the following properties for all non-uniform polynomial time adversaries A.

Key indistinguishability

$$\Pr[(c_k, t_k) \leftarrow K_B(1^k) : A(c_k) = 1] \approx_c \Pr[(c_k, t_k) \leftarrow K_H(1^k) : A(c_k) = 1]$$

Homomorphic property

$$\forall m \leftarrow \{B, H\}, (c_k, *) \leftarrow K_m(1^k), \forall (m_1, r_1), (m_2, r_2) \in \mathcal{M} \times \mathcal{R}$$

then

$$\text{com}_{c_k}(m_1 + m_2; r_1 + r_2) = \text{com}_{c_k}(m_1; r_1) \cdot \text{com}_{c_k}(m_2; r_2)$$

Perfect trapdoor opening indistinguishability

$$\Pr[(c_k, t_k) \leftarrow K_H(1^k); (m_1, m_2) \leftarrow A(c_k); r_1 \leftarrow \mathcal{R}; r_2 \leftarrow \text{Topen}_{t_k}(m_1, r_1, m_2) : m_1, m_2 \in \mathcal{M} \land A(r_2) = 1]$$

$$= \Pr[(c_k, t_k) \leftarrow K_H(1^k); (m_1, m_2) \leftarrow A(c_k); r_2 \leftarrow \mathcal{R} : m_1, m_2 \in \mathcal{M} \land A(r_2) = 1]$$

where $\text{com}_{c_k}(m_1; r_1) = \text{com}_{c_k}(m_2; r_2)$

Perfect completeness

$$\Pr[m \leftarrow \{B, H\}, (c_k, *) \leftarrow K_m(1^k); (m, r) \leftarrow A(c_k); \pi \leftarrow P_{01}(c_k, m, r) :$$

$$V_{01}(c_k, \text{com}(m; r), \pi) = 1 \text{ if } (m, r) \in \{0, 1\} \times \mathcal{R}] = 1$$
Perfect soundness

\[\Pr[(c_k, t_k) \leftarrow K_B(1^k); (c, \pi) \leftarrow A(c_k) : \exists (m, r) \in \{0, 1\} \times \mathcal{R}, c = \text{com}(m; r) \text{ if } V_01(c_k, c, \pi) = 1] = 1 \]

Perfect witness indistinguishability

\[\Pr[(c_k, t_k) \leftarrow K_H(1^k); (r_0, r_1) \leftarrow A(c_k); \pi \leftarrow P_01(c_k) : r_0, r_1 \in \mathcal{R} \land \text{com}(0; r_0) = \text{com}(1; r_1) \land A(\pi) = 1] = \Pr[(c_k, t_k) \leftarrow K_H(1^k); (r_0, r_1) \leftarrow A(c_k); \pi \leftarrow P_01(c_k, 1, r_1) : r_0, r_1 \in \mathcal{R} \land \text{com}(0; r_0) = \text{com}(1; r_1) \land A(\pi) = 1] \]

2.1 Homomorphic Proof Commitments based on SHA

The setup used of the system to build the a homomorphic proof commitment scheme:

Let \(G \) be a randomized algorithm, that on security parameter \(k \) outputs \((p, q, G, G_T, e, g)\) such that

- \(p, q \) are primes with \(p < q \)
- \(G, G_T \) are cyclic groups of order \(n = pq \)
- \(e : G \times G \rightarrow G_T \) is a bilinear map, i.e., \(\forall u, v \in G, \forall a, b \in \mathbb{Z} : e(u^a, v^b) = e(u, v)^{ab} \)
- \(g \) is the generator for \(G \) and \(e(g, g) \) generates \(G_T \)

Subset Hiding Assumption (SHA) The SHA holds for \(G \), where \(s \leftarrow \mathbb{Z}_n^* \) for the first and \(s \leftarrow \mathbb{Z}_q^* \) for the second if:

\[(n, e, G, G_T, g, h = g^s) \simeq^e (n, e, G, G_T, g, h = g^{ps}) \]

The protocol for homomorphic proof commitment scheme based on SHA:

- Perfectly binding key generation \(K_B(1^k) \):
 1. \((p, q, G, G_T, e, g) \leftarrow G(1^k) \)
 2. \(n = pq \)
 3. \(s \leftarrow \mathbb{Z}_q^* \)
 4. \(h = g^{ps} \)
 5. Let \(c_k = (n, e, G, G_T, g, h) \)
 6. Let \(x_k = (c_k, q) \)
 7. Return \((c_k, x_k)\)

- Perfectly hiding key generation \(K_H(1^k) \):
 1. \((p, q, G, G_T, e, g) \leftarrow G(1^k) \)
 2. \(n = pq \)
 3. \(s \leftarrow \mathbb{Z}_n^* \)
4. $h = g^s$
5. Let $c_k = (n, e, G, G_T, g, h)$
6. Let $x_k = (c_k, q)$
7. Return (c_k, x_k)

- Commitment $\text{com}_{c_k}(m)$:
 1. $r \leftarrow \mathbb{Z}_n$
 2. Return $\text{com}_{c_k}(m; r) = g^{m}h^r$

- Trapdoor opening $\text{Topen}_{t_k}(m, r, m')$: Given a commitment $c = g^m h^r$ under a perfectly hiding commitment key we have $c = g^{m'} h^{r + (m - m')/s}$. The trapdoor key $t_k = (c_k, s)$. The trapdoor opening algorithm returns $r' = r + \frac{(m - m')}{s} \mod n$

- WI proof $P_{01}(c_k, m, r)$: Given $m, r \in \{0, 1\} \times \mathbb{Z}_n$ we make the WI proof for commitment to 0 or 1 as $\pi = (g^{2m-1}h^r)^r$.

- Verification $V_{01}(c_k, c, \pi)$: To verify a WI proof π of commitment c containing 0 or 1, check $e(c, cg^{-1}) = e(h, \pi)$.

Theorem 1 The protocol described above is a homomorphic proof commitment scheme if the SHA holds for G.

Proof.

- **Key indistinguishability:** The SHA implies that it is hard to distinguish perfect binding keys and perfect hiding keys.

- **Homomorphic:**

 $\text{com}_{c_k}(m_1 + m_2; r_1 + r_2) = g^{m_1 + m_2}h^{r_1 + r_2} = g^{m_1}h^{r_1}g^{m_2}h^{r_2} = \text{com}_{c_k}(m_1; r_1) \cdot \text{com}_{c_k}(m_2; r_2)$

- **Perfect binding:** When h has order q.

- **Unique trapdoor opening:** When h has order n.

- **Perfect completeness:** For $m \in \{0, 1\}$ we have

 $e(c, cg^{-1}) = e(g^m h^r, g^{m-1}h^r) = e(g, g)^{m(m-1)} e(h^r, g^{2m-1}h^r) = e(h, \pi)$

- **Perfect soundness:** $c = g^m h^r$ for some uniquely defined $m \in \mathbb{Z}_p$.
 We have $e(c, cg^{-1}) = e(g, g)^{m(m-1)} e(h, (g^{2m-1}h^r)^r)$. Since h has order q, $e(h, \pi)$ has order 1 or q. The verification $e(c, cg^{-1}) = e(h, \pi)$ implies $e(c, cg^{-1})$ has order 1 or q. Since $e(c, cg^{-1}) = e(g, g)^{m(m-1)} e(h, (g^{2m-1}h^r)^r)$ we get that $e(g, g)^{m(m-1)}$ has order 1 or q. Since $e(g, g)$ is a generator for G_T, this means $m(m-1) = 0 \mod p$ and therefore $m = 0 \mod p$ or $m = 1 \mod p$.

18-4
3 Computational NIZK Proof for Circuit SAT

This is an NIZK proof for Circuit SAT. The common reference string is a public key for a homomorphic proof commitment scheme.

- **Common reference string:**
 1. \((c_k, t_k) \leftarrow K_B(1^k)\)
 2. The common reference string is \(\sigma = c_k\).

- **Statement:** The statement is a circuit \(C\) built from NAND-gates. The claim is that there exist wires \(\omega = (\omega_1, \ldots, \omega_{out})\) such that \(C(\omega) = 1\).

- **Proof:** Input \((\sigma, C, \omega)\) such that \(C(\omega) = 1\)
 1. Commit to each bit \(\omega_i\) as \(r_i \leftarrow \mathcal{R}; c_i = \text{com}(\omega_i; r_i)\)
 2. For the output wire let \(r_{out} = 0\) and \(c_{out} = \text{com}(1; 0)\)
 3. \(\forall c_i\) make a proof \(\pi_i\) of \((\omega_i, r_i)\) s.t. \(\omega_i \in \{0, 1\}\) and \(c_i = \text{com}(\omega_i; r_i)\)
 4. For all NAND-gates with input wires \(i, j\) and output wire \(k\). Using \(w_i + w_j + 2w_k - 2\) and \(r_i + r_j + 2r_k\) make a proof \(\pi_{ijk}\) for \(c_i c_j c_k^2 \text{com}(-2; 0)\) containing 0 or 1.
 5. Return the proof \(\pi\) consisting of all the commitments and proofs.

- **Verification:** Input \((\sigma, C, \pi)\).
 1. Check that all wires have a corresponding commitment and \(c_{out} = \text{com}(1; 0)\).
 2. Check that all commitments have a proof of the message being 0 or 1.
 3. Check that all NAND-gates with input wires \(i, j\) and output wire \(k\) have a proof \(\pi_{ijk}\) for \(c_i c_j c_k^2 \text{com}(-2; 0)\) containing 0 or 1.
 4. Return 1 if all checks pass, else return 0.