1 \(iO\) for Polynomial-sized Circuits

Definition 1 (Indistinguishability Obfuscator) A uniform PPT machine \(iO\) is an *indistinguishability obfuscator* for a collection of circuits \(C_\kappa\) if the following conditions hold:

- **Correctness.** For every circuit \(C \in C_\kappa\) and for all inputs \(x\), \(C(x) = iO(C(x))\).
- **Polynomial slowdown.** For every circuit \(C \in C_\kappa\), \(|iO(C)| \leq p(|C|)\) for some polynomial \(p\).
- **Indistinguishability.** For all pairs of circuits \(C_1, C_2 \in C_\kappa\), if \(|C_1| = |C_2|\) and \(C_1(x) = C_2(x)\) for all inputs \(x\), then \(iO(C_1) \simeq iO(C_2)\). More precisely, there is a negligible function \(\nu(k)\) such that for any (possibly non-uniform) PPT \(A\),
 \[
 \left| \Pr[A(iO(C_1)) = 1] - \Pr[A(iO(C_2)) = 1] \right| \leq \nu(k)
 \]

Definition 2 (Indistinguishability Obfuscator for NC\(^1\)) Let \(C_\kappa\) be the collection of circuits of size \(O(\kappa)\) and depth \(O(\log \kappa)\) with respect to gates of bounded fan-in. Then a uniform PPT machine \(iO_{NC^1}\) is an indistinguishability obfuscator for circuit class \(NC^1\) if it is an indistinguishability obfuscator for \(C_\kappa\).

Given an indistinguishability obfuscator \(iO_{NC^1}\) for circuit class \(NC^1\), we shall demonstrate how to achieve an indistinguishability obfuscator \(iO\) for all polynomial-sized circuits. The amplification relies on fully homomorphic encryption (FHE).

Definition 3 (Homomorphic Encryption) A homomorphic encryption scheme is a tuple of PPT algorithms \((\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})\) as follows:

- \((\text{Gen}, \text{Enc}, \text{Dec})\) is a semantically-secure public-key encryption scheme.
- \(\text{Eval}(pk, C, e)\) takes public key \(pk\), an arithmetic circuit \(C\), and ciphertext \(e = \text{Enc}(pk, x)\) of some circuit input \(x\), and outputs \(\text{Enc}(pk, C(x))\).

As an example, the ElGamal encryption scheme introduced in a preceding lecture is homomorphic over the multiplication function. Consider a cyclic group \(G\) of order \(q\) and generator \(g\), and let \(sk = a\) and \(pk = g^a\). For ciphertexts \(\text{Enc}(pk, m_1) = (g^{r_1}, g^{ar_1} \cdot m_1)\) and \(\text{Enc}(pk, m_2) = (g^{r_2}, g^{ar_2} \cdot m_2)\), observe that
\[
\text{Enc}(pk, m_1) \cdot \text{Enc}(pk, m_2) = (g^{r_1+r_2}, g^{a(r_1+r_2)} \cdot m_1 \cdot m_2) = \text{Enc}(pk, m_1 \cdot m_2)
\]
Note that this scheme becomes additively homomorphic by encrypting \(g^m\) instead of \(m\).

Definition 4 (Fully Homomorphic Encryption) An encryption scheme is fully homomorphic if it is both compact and homomorphic for the class of all arithmetic circuits. Compactness requires that the size of the output of \(\text{Eval}(\cdot, \cdot, \cdot)\) is at most polynomial in the security parameter \(\kappa\).
1.1 Construction

Let \((Gen, Enc, Dec, Eval)\) be a fully homomorphic encryption scheme. We require that \(Dec\) be realizable by a circuit in \(\text{NC}^1\). The obfuscation procedure accepts a security parameter \(\kappa\) and a circuit \(C\) whose size is at most polynomial in \(\kappa\).

1. Generate \((pk_1, sk_1) \leftarrow Gen(1^\kappa)\) and \((pk_2, sk_2) \leftarrow Gen(1^\kappa)\).

2. Encrypt \(C\), encoded in canonical form, as \(e_1 \leftarrow Enc(pk_1, C)\) and \(e_2 \leftarrow Enc(pk_2, C)\).

3. Output an obfuscation \(\sigma = (iO_{\text{NC}^1}(P), pk_1, pk_2, e_1, e_2)\) of program \(P_{pk_1, pk_2, sk_1, e_1, e_2}\) as described below.

The evaluation procedure accepts the obfuscation \(\sigma\) and program input \(x\).

1. Let \(U\) be a universal circuit that computes \(C(x)\) given a circuit description \(C\) and input \(x\), and denote by \(U_x\) the circuit \(U(\cdot, x)\) where \(x\) is hard-wired. Let \(R_1\) and \(R_2\) be the circuits which compute \(f_1 \leftarrow Eval(U_x, e_1)\) and \(f_2 \leftarrow Eval(U_x, e_2)\), respectively.

2. Denote by \(\omega_1\) and \(\omega_2\) the set of all wires in \(R_1\) and \(R_2\), respectively. Compute \(\pi_1 : \omega_1 \rightarrow \{0, 1\}\) and \(\pi_2 : \omega_2 \rightarrow \{0, 1\}\), which yield the value of internal wire \(w \in \omega_1, \omega_2\) when applying \(x\) as the input to \(R_1\) and \(R_2\).

3. Output the result of running \(P_{pk_1, pk_2, sk_1, e_1, e_2}(x, f_1, \pi_1, f_2, \pi_2)\).

Program \(P_{pk_1, pk_2, sk_1, e_1, e_2}\) has \(pk_1, pk_2, sk_1, e_1, e_2\) embedded.

1. Check whether \(R_1(x) = f_1 \land R_2(x) = f_2\). \(\pi_1\) and \(\pi_2\) enable this check in logarithmic depth.

2. If the check succeeds, output \(Dec(sk_1, f_1)\); otherwise output \(\bot\).

The use of two key pairs and two encryptions of \(C\), similar to CCA1-secure schemes seen previously, eliminates the virtual black-box requirement for concealing \(sk_1\) within \(iO_{\text{NC}^1}(P_{pk_1, pk_2, sk_1, e_1, e_2})\).

1.2 Proof of Security

We prove the indistinguishability property for this construction through a hybrid argument.

Proof. Through the sequence of hybrids, we gradually transform an obfuscation of circuit \(C_1\) into an obfuscation of circuit \(C_2\), with each successor being indistinguishable from its antecedent.

\(H_0\) : This corresponds to an honest execution of \(iO(C_1)\). Recall that \(e_1 = Enc(pk_1, C_1)\), \(e_2 = Enc(pk_2, C_1)\), and \(\sigma = (iO_{\text{NC}^1}(P_{pk_1, pk_2, sk_1, e_1, e_2}), \ldots)\).

\(H_1\) : We instead generate \(e_2 = Enc(pk_2, C_2)\), relying on the semantic security of the underlying fully homomorphic encryption scheme.

\(H_2\) : We alter program \(P_{pk_1, pk_2, sk_1, e_1, e_2}\) such that it instead embeds \(sk_2\) and outputs \(Dec(sk_2, f_2)\). The output of the obfuscation procedure becomes \(\sigma = (iO_{\text{NC}^1}(P_{pk_1, pk_2, sk_2, e_1, e_2}), \ldots)\); we rely on the properties of functional equivalence and indistinguishability of \(iO_{\text{NC}^1}\).

\(H_3\) : We generate \(e_1 = Enc(pk_1, C_1)\) since \(sk_1\) is now unused, relying again on the semantic security of the fully homomorphic encryption scheme.

\(H_4\) : We revert to the original program \(P_{pk_1, pk_2, sk_1, e_1, e_2}\) and arrive at an honest execution of \(iO(C_1)\).
2 Identity-Based Encryption

Another use of indistinguishability obfuscation is to realize identity-based encryption (IBE).

Definition 5 (Identity-Based Encryption) An identity-based encryption scheme is a tuple of PPT algorithms (Setup, KeyGen, Enc, Dec) as follows:

- **Setup**(1^n) generates and outputs a master public/private key pair (mpk, msk).
- **KeyGen**(msk, id) derives and outputs a secret key sk_{id} for identity id.
- **Enc**(mpk, id, m) encrypts message m under identity id and outputs the ciphertext.
- **Dec**(sk_{id}, c) decrypts ciphertext c and outputs the corresponding message if c is a valid encryption under identity id, or ⊥ otherwise.

We combine an indistinguishability obfuscator iO with a digital signature scheme (Gen, Sign, Verify).

- Let Setup ≡ Gen and KeyGen ≡ Sign.
- Enc outputs iO(P_m), where P_m is a program that outputs (embedded) message m if input sk is a secret key for the given id, or ⊥ otherwise.
- Dec outputs the result of c(sk_{id}).

However, this requires that we have encryption scheme where the “signatures” do not exist. We therefore investigate an alternative scheme. Let (K, P, V) be a non-interactive zero-knowledge (NIZK) proof system. Denote by Com(·; r) the commitment algorithm of a non-interactive commitment scheme with explicit random coin r.

- Let σ be a common random string. Setup(1^n) outputs (mpk = (σ, c_1, c_2), msk = r_1), where c_1 = Com(0; r_1) and c_2 = Com(0[id]; r_2).
- KeyGen(msk, id) produces a proof π = P(σ, x_{id}, s) for the following language L: x ∈ L if there exists s such that

\[
\begin{align*}
&c_1 = \text{Com}(0; s) \lor (c_2 = \text{Com}(\text{id}^*; s) \land \text{id}^* \neq \text{id}) \\
\text{Type I witness} \quad \text{Type II witness}
\end{align*}
\]

- Let P_{id,m} be a program which outputs m if V(σ, x_{id}, π_{id}) = 1 or outputs ⊥ otherwise. Enc(mpk, id, m) outputs iO(P_{id,m}).

We briefly sketch the hybrid argument:

\(H_0\) : This corresponds to an honest execution as described above.

\(H_1\) : We let c_2 = Com(id^*; r_2), relying on the hiding property of the commitment scheme.

\(H_2\) : We switch to the Type II witness using π_{id} \forall i ∈ [q], corresponding to the queries issued by the adversary during the first phase of the selective-identity security game.

\(H_3\) : We let c_1 = Com(1; r_1).

20-3