The problem of program obfuscation asks whether one can transform a program (e.g., circuits, Turing machines) to another semantically equivalent program (i.e., having the same input/output behavior), but is otherwise intelligible. It was originally formalized by Barak et al. who constructed a family of circuits that are non-obfuscatable under the most natural virtual black box (VBB) security.

1 VBB Obfuscation

As a motivation, recall that in a private-key encryption setting, we have a secret key k, encryption E_k and decryption D_k. A natural candidate for public-key encryption would be to simply release an encryption $E'_k \equiv E_k$ (i.e., E'_k semantically equivalent to E_k, but computationally bounded adversaries would have a hard time figuring out k from E'_k).

Definition 1 (Obfuscator of circuits under VBB) O is an obfuscator of circuits if

1. Correctness: $\forall c, O(c) \equiv c$.
2. Efficiency: $\forall c, |O(c)| \leq \text{poly}(|c|)$.
3. VBB: $\forall A, A$ is PPT bounded, \exists Sim (also PPT) s.t. $\forall c$,

$$\left| \Pr[A(O(c)) = 1] - \Pr[S^c(1^{\|c\|}) = 1] \right| \leq \text{negl}(|c|).$$

Similarly we can define it for Turing machines.

Definition 2 (Obfuscator of TMs under VBB) O is an obfuscator of Turing machines if

1. Correctness: $\forall M, O(M) \equiv M$.
2. Efficiency: $\exists q(\cdot) = \text{poly} (\cdot), \forall M (M(x) \text{ halts in } t \text{ steps } \implies O(M)(x) \text{ halts in } q(t) \text{ steps})$.
3. VBB: Let $M'(t,x)$ be a TM that runs $M(x)$ for t steps. $\forall A, A$ is PPT bounded, \exists Sim (also PPT) s.t. $\forall c$,

$$\left| \Pr[A(O(M)) = 1] - \Pr[S^{M'}(1^{\|M'\|}) = 1] \right| \leq \text{negl}(|M'|).$$

Let’s show that our candidate PKE from VBB obfuscator O is semantic secure, using a simple hybrid argument.

Proof. Recall the public key $PK = O(E_k)$. Let’s assume E_k is a circuit, and we write it as c for short.

$$H_0 : A(\{(PK, E_k(m_0))\})$$
$$H_1 : S^c(\{E_k(m_0)\}) \quad \text{by VBB}$$
$$H_2 : S^c(\{E_k(m_1)\}) \quad \text{by semanti security of private key encryption}$$
$$H_3 : A(\{(PK, E_k(m_1))\}) \quad \text{by VBB}$$
Now let’s show the impossibility result of VBB.

Theorem 1 Let \(O \) be an obfuscator. There exists PPT bounded \(A \), and a family (ensemble) of functions \(\{H_n\}, \{Z_n\} \) s.t. for every PPT bounded simulator \(S \),

\[
A(O(H_n)) = 1 \ & \ A(O(Z_n)) = 0 \\
\left| \Pr \left[S^{H_n} \left(\left[H_n \right] \right) = 1 \right] - \Pr \left[S^{Z_n} \left(\left[Z_n \right] \right) = 1 \right] \right| \leq \text{negl}(n).
\]

Proof. Let \(\alpha, \beta \overset{\$}{\leftarrow} \{0,1\}^n \). We start by constructing \(A', C_{\alpha,\beta}, D_{\alpha,\beta} \) s.t.

\[
A'(O(C_{\alpha,\beta}), O(D_{\alpha,\beta})) = 1 \ & \ A'(O(Z_n), O(D_{\alpha,\beta})) = 0 \\
\left| \Pr \left[S^{C_{\alpha,\beta}, D_{\alpha,\beta}} (1) = 1 \right] - \Pr \left[S^{Z_n, D_{\alpha,\beta}} (1) = 1 \right] \right| \leq \text{negl}(n).
\]

\[
C_{\alpha,\beta}(x) = \begin{cases}
\beta, & \text{if } x = \alpha \\
0^n, & \text{o/w}
\end{cases}
\]

\[
D_{\alpha,\beta}(c) = \begin{cases}
1, & c(\alpha) = \beta \\
0, & \text{o/w}
\end{cases}
\]

Clearly \(A'(X, Y) = Y(X) \) works. Now notice that input length to \(D \) grows as the size of \(O(C) \). However for Turing machines which can have the same description length, one could combine the two in the following way:

\[
F_{\alpha,\beta}(b, x) = \begin{cases}
C_{\alpha,\beta}(x), & b = 0 \\
D_{\alpha,\beta}(x), & b = 1
\end{cases}
\]

Let \(OF = O(F_{\alpha,\beta}) \), \(OF_0(x) = OF(0, x) \), similarly for \(OF_1 \), then \(A \) would be just \(A(OF) = OF_1(OF_0) \).

Now assuming OWF exists, specifically we already have private-key encryption, we modify \(D \) as follows.

\[
D_{k}^{\alpha,\beta}(1, i) = \text{Enc}_k(\alpha_i) \\
D_{k}^{\alpha,\beta}(2, c, d, \odot) = \text{Enc}_k(\text{Dec}_k(c) \odot \text{Dec}_k(d)), \text{ where } \odot \text{ is a gate of AND, OR, NOT}
\]

\[
D_{k}^{\alpha,\beta}(3, \gamma_1, \cdots, \gamma_n) = \begin{cases}
1, & \forall i, \text{Dec}_k(\gamma_i) = \beta_i \\
0, & \text{o/w}
\end{cases}
\]

Now the adversary \(A \) just simulate \(O(C) \) gate by gate with a much smaller \(O(D) \), thus we can use the combining tricks as for the Turing machines.

\[\blacksquare\]

2 Indistinguishability Obfuscation

Definition 3 (Indistinguishability Obfuscation) \(iO(\cdot) \) is an indistinguishability obfuscation if \(\forall c_1, c_2 \) such that \(|c_1| = |c_2| \) and \(c_1 \equiv c_2 \), we have

\[
iO(c_1) \approx iO(c_2).
\]
Recall the witness encryption scheme, with which one could encrypt a message \(m \) to an instance \(x \) of an NP language \(L \), such that \(\text{Dec} (x, w, \text{Enc} (x, m)) = \begin{cases} m, & \text{if} (x, w) \in L, \\ ⊥, & \text{o/w} \end{cases} \)

Proposition 1 Indistinguishability obfuscation implies witness encryption.

Proof.
Let \(C_{x,m}(w) \) be a circuit that on input \(w \), outputs \(m \) if and only if \((x, w) \in L\).
Now we construct witness encryption as follows: \(\text{Enc} (x, m) = \text{iO} (C_{x,m}), \text{Dec} (x, w, c) = c(w) \).
Semantic security follows from the fact that, for \(x \not\in L \), \(C_{x,m} \) is just a circuit that always output \(⊥ \), and by indistinguishability obfuscation, we could replace it with that constant circuit (padding if necessary), and then change the message, and change the circuit back, and we are done.

Proposition 2 Indistinguishability obfuscation and OWF implies public key encryption.

Proof.
We’ll use a length doubling PRG \(F : \{0,1\}^n \to \{0,1\}^{2n} \), together with a witness encryption scheme \((E, D)\). The NP language for the encryption scheme would be the image of \(F \).

\[
\begin{align*}
\text{Gen}(1^n) &= (PK = F(s), SK = s), s \leftarrow \{0,1\}^n \\
\text{Enc} (PK, m) &= E(x = PK, m) \\
\text{Dec} (e, SK = s) &= D(x = PK, w = s, c = e).
\end{align*}
\]

Proposition 3 Every best possible obfuscator could be equivalently achieved with an indistinguishability obfuscation (up to padding and computationally bounded).

Proof.
We prove by hand-waving.
Consider circuit \(c \), the best possible obfuscated \(\text{BPO}(c) \), and \(c' \) which is just padding \(c \) to the same size of \(\text{BPO}(c) \). Computationally bounded adversaries cannot distinguish between \(\text{iO}(c') \) and \(\text{iO}(\text{BPO}(c)) \).
Note that doing \(\text{iO} \) never decreases the “entropy” of a circuit, so \(\text{iO}(\text{BPO}(c)) \) is at least as secure as \(\text{BPO}(c) \).