1 Hard Core Bits

It is intuitive that it may be possible to concentrate the strength of a one-way function (OWF) into one bit. To develop this idea, we define a function that does this:

Definition 1 \(B : \{0, 1\}^n \rightarrow \{0, 1\} \) is a hard core bit of a OWF \(f : \{0, 1\}^n \rightarrow \{0, 1\}^n \) if:

1. \(B(x) \) is PPT computable
2. \(\forall \) non-uniform PPT \(A \) we have that: \(\Pr_{x,A}[A(f(x)) = B(x)] \leq \frac{1}{2} + \text{neg}(n) \)

Naively, for any OWF, one could believe a particular bit could be used as the hard core bit, but this is not true:

Proof. If \(f \) is a OWF, then we can describe a OWF \(g \) such that: \(\forall i, B_i(x) = x_i \) is not a hard core bit.
Let \(f \) be as above.
Let \(g : \{0, 1\}^{n+\log(n)} \rightarrow \{0, 1\}^{n+\log(n)} \) be defined as
\(g(x, y) = f(x_y) \circ x_y \circ y \) where \(x_y \) is all bits of \(x \) except the \(y \)th bit and similarly \(x_y \) is the \(y \)th bit of \(x \) (here \(\circ \) is used to denote concatenation of the bits)

In Example:
For \(g(000, 0) \rightarrow f(00) \circ 0 \circ 0 \), which reveals the \(x_0 \) (and \(y \)) bit
For \(g(110, 1), x_1 \) is revealed similarly

Construct the \(A_i(f(x_y) \circ x_y \circ y) \) that “breaks” the hard-core bit function such that:

1. if \(y \neq i \) then output a random bit
2. if \(y = i \) then output \(x_y \)

The accuracy of \(A_i \) is \(\frac{n-1}{n} \times \frac{1}{2} + \frac{1}{n} \times 1 = \frac{1}{2} - \frac{1}{2^n} + \frac{1}{n} = \frac{1}{2} + \frac{1}{n} > \frac{1}{2} + \text{neg}(n) \) This algorithm works, since for each \(i \) we have an \(A_i \) that can guess the output of \(B_i \) with greater than \(1/2 + \text{neg}(n) \) accuracy, but we still cannot guess the entire \(f \) (or \(g \)) non-negligibly
Note that \(g \) is still a OWF, since it keeps the strength of \(f \), but no particular bit (or no particular \(B_i \)) can function as the hard core bit. \(\square \)

A trivial example of a hard core bit that can be constructed from any OWF \(f \) is as follows:
Consider the OWF \(g(b \circ x) = 0 \circ f(x) \) and a hard-core bit function \(B(b \circ x) = b \)
Note that the value \(g(b \circ x) \) does not reveal any information about the first bit \(b \), and hence no information about the value \(B(b \circ x) \) can be ascertained, so, intuitively, the ability for \(A \) to predict the first bit cannot be more than random chance or \(\frac{1}{2} \).
2 One-to-One One-Way Functions and Hard Core Bits

For the remainder of the course we will only be concerned with OWF’s that are one-to-one. We will use the abbreviation OWP for a one-way permutation function (a bijective OWF).

Before we dive into an important characteristic of hard core bits for one-to-one OWF’s, let’s consider a use case for a hard core bit. For example:

Consider two parties trying to perform a coin flip over the phone. How can one party trust the win/loss response from the other party? If one party calls out “heads” and the other responds with “loss”, the second party could be telling a lie. A hard core bit can help with this issue:

Let f be a OWF and B be a hard core bit function for f.

Person 1: Sample x randomly from $\{0, 1\}^n$ (or flip n coins) and sends $f(x)$

Person 2: Sends back the choice for the coin - say picking heads and therefore sending back 1

Person 1: Sends back $x, B(x)$. $B(x)$ serves as the “actual” flip of the coin (note that by the definition, it must be difficult to compute from $f(x)$)

If Person 1 lied about the value x and really used x' for the final transmission, then Person 2 would be able to tell since $f(x') \neq f(x)$ from the first transmission.

Let us define the following symbols for the remainder of the lecture to ease discussion about OWF and hard core bits:

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a OWF

Then let $f' : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$, $f'(x, r) = f(x) \circ r$ have the hard core bit $R(x, r) = \sum_{i=0}^{n} x_i r_i \mod 2$

Note the following general properties: if we are given a one-way function, then we can create a OWF function (as per last lecture). Let e_i be the value/binary string $0\ldots 1\ldots 0$, where the 1 is in the ith position.

Theorem 1 If \exists non-uniform PPT adversary A s.t. $Pr_{x,r,A}[A(f'(x, r)) = B(x, r)] \geq \frac{1}{2} + \epsilon(n)$, where ϵ is non-neg, then \exists an adversary R that inverts f

Proof. First, note that f' is a OWF function (as per last lecture). Let e_i be the value/binary string $0\ldots 1\ldots 0$, where the 1 is in the ith position.

Super simple case:

Assume that A breaks the B with perfect probability/accuracy: $Pr[A(f'(x, r)) = B(x, r)] = 1$

We will now construct an adversary $R(f(x))$ which yields x

To invert f, R:

1. For each i, R executes $A(f(x) \circ e^i)$

2. Then R XOR’s (sums, modulo 2) the values from step 1. $A(f(x) \circ e^i) \rightarrow B(x, e^i) = \sum_{j=1}^{n} x_j e^i_j \mod 2 = x_i$

3. R concatenates each x_i and returns the value as x
Since A predicts $B(f'(x, r))$ with probability 1, the output of R is produced with probability 1.

To begin with a more complicated case let us consider a set that gives us better probability than that in the theorem - a set that gives $\Pr[E] \geq \frac{1}{2} + \epsilon(n)$ (where E is $A(f'(x, r)) = B(x, r)$ from the theorem statement). Let us define this set as G (standing for Good):

$$\forall x \in G \Pr_{x, r, A}[A(f'(x, r))] = B(x, r) \geq \frac{1}{2} + \frac{\epsilon(n)}{2} \text{ with } \Pr[x \in G] \geq \frac{\epsilon(n)}{2}$$

Assuming $\Pr[x \in G] \leq \frac{\epsilon(n)}{2}$ implies a contradiction, so it is safe to conclude $\Pr[x \in G] \geq \frac{\epsilon(n)}{2}$

Proof. Assume that $\Pr[x \in G] \leq \epsilon(n)/2$

$$\frac{1}{2} + \epsilon(n) \leq \Pr_{x, r, A}[E] = \Pr[E(x) \mid x \in G] \times \Pr[x \in G] + \Pr[E(x) \mid x \notin G] \times \Pr[x \notin G]$$

$$< 1 \times \frac{\epsilon(n)}{2} + (\frac{1}{2} + \frac{\epsilon(n)}{2}) \times 1 \leq \frac{\epsilon(n)}{2} + \frac{1}{2} + \frac{\epsilon(n)}{2} = \frac{1}{2} + \epsilon(n) > \frac{1}{2} + \epsilon(n)$$

$$\implies \Pr[x \in G] \geq \frac{\epsilon(n)}{2}$$

Observe that $B(x, r) \oplus B(x, r \oplus e^i) = x_i$

$$= (\sum_j x_j r_j + \sum_j x_j r_j \oplus e^i_j) \mod 2$$

$$= (\sum_j x_j (r_j + x_j r_j) + x_i r_i + x_i (1 - r_i)) \mod 2$$

$$= x_i r_i + x_i - x_i r_i = x_i$$

Let us work with the probability: $\Pr_r [A(f(x), r) \oplus A(f(x), r \oplus e^i) = x_i]$

Note that if both A's guess correctly, we get the right/intended answer. The probability of this happening = both A's are right = 1- either one is wrong

$$\geq 1 - \frac{\text{either one is wrong}}{2(\frac{1}{2} - \epsilon(n))} = 1 - \frac{\text{either one is wrong}}{2\epsilon(n)}$$

The Simple Case:

$\Pr[E(x)] \geq \frac{3}{4} + \frac{\epsilon(n)}{2}$

This probability, is bounded by $1 - 2(\frac{1}{4} - \frac{\epsilon(n)}{2}) = \frac{1}{2} + \epsilon(n)$ from the observation before (as one is wrong = $1 - (\frac{3}{4} + \frac{\epsilon(n)}{2}) = \frac{1}{4} - \frac{\epsilon(n)}{2}$)

R then runs the two A's polynomial times and uses majority vote. We use Chebyshev’s inequality to justify the use of majority vote.

2.1 Chebyshev’s inequality

Let x_1, \ldots, x_m be independent and identical random variables assuming values 0 or 1. Also, let $\Pr[x_i = 1] = p$.

Then $\Pr[|\sum x_i - pm| > \delta m] < 1/(4\delta^2 m)$

Let b_1, \ldots, b_T be random bits.

Let X_1 be 1 when $A(r_1) \rightarrow b_1$.

X_2 be 1 when $A(r_2) \rightarrow b_2$.

...

and let $X_T = 1$ when $A(r_T) \rightarrow b_T$.

Let $T = \frac{2n}{\epsilon(n)^2}$

The problematic case is:
\[
\Pr[\sum_{i=1}^{T} X_i \leq T/2]
= \Pr[\sum_{i=1}^{T} X_i - (\frac{1}{2} + \epsilon(n))T \leq T/2 - (\frac{1}{2} + \epsilon(n)) \times T]
< \Pr[|\sum_{i=1}^{T} X_i - (\frac{1}{2} + \epsilon(n))| > \epsilon(n)\frac{T}{2}]
< \frac{1}{4(\epsilon(n)/2)^2} = \frac{1}{2n} \text{ which is sufficient for the theorem}
\]

In order to show that we can use Chebyshev's inequality, we need to show that the samples we are voting over are pairwise independent:

For any two samples, - x,y - they are pair-wise independent if \(\forall a,b \in \{0,1\} \Pr[x = a \land y = b] = \Pr[x = a] \times \Pr[y = b] \)

Imagine we have \((r_1, B(x, r_1)), \ldots, (r_T, B(x, r_T))\)

Let \(k = \log(T) \), \(S_1, \ldots, S_k \in \{0,1\}^n \) be sampled uniformly, and \(b_1 = B(x, S_1), b_2 = B(x, S_2), \ldots, b_k = B(x, S_k) \ \forall Y \subseteq [k], R \text{ generates } (f(x, \bigoplus_{i \in Y} S_i), \bigoplus_{i \in Y} b_i) \)

(note: \([k]\) is the set \(\{1, \ldots, k\}\))

This proof is finished in the next lecture, with some slight changes.