Modularity Meets Batching: Towards an Experimental Platform for High-speed Software Routers

Motivation

Challenges all software routers share:
- **Batch processing** is the key for **performance**.
 - PacketShader showed I/O batching is essential.
- **Modularity** is the key for **programmability**.
 - More routers keep adding new functions, which are difficult to integrate with existing systems.

Hardware development trends:
- Next-generation hardware technology is proceeding to **massively parallel processors**.
 - Example: Tilera’s many core processors, AMD’s APUs, and AMD/NVIDIA’s GPGPUs
- High-performance software routers can benefit from **GPUs**, which parallelizes batch processing.
 - Our prior work PacketShader showed GPUs can boost common packet processing operations.

Technical Challenges

- Per-packet path diversity within a pack of packets
- Copy overheads between the host & GPU memory
- Load balancing for overloaded cases

Our Strategic Bullets

- Efficient pack split/merge mechanisms
 - Use of zero-copy pack data structures
- Abstraction of memory resources
 - Table buffers & packet buffers for sharing data between the host/GPU memory, differentiated by updating mechanisms
- Load balancing techniques
 - Opportunistic off-loading of computations to decrease latency of batching (small data → CPU, large data → GPU)
 - Dynamic module-to-processor assignment depending on traffic patterns and processor usage

Accommodating both batching & modularity is not trivial.